Introduction to Mobile Robotics

SLAM - Landmark-based FastSLAM

(Slide courtesy of Mike Montemerlo)

Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map
- Why is SLAM hard? Chicken-or-egg problem:
 - a map is needed to localize the robot and a pose estimate is needed to build a map

The SLAM Problem

A robot moving though an unknown, static environment

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot

Map Representations

Typical models are:

Feature maps

today

Grid maps (occupancy or reflection probability maps)

Why is SLAM a hard problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Data Association Problem

- A data association is an assignment of observations to landmarks
- In general there are more than ⁿ_m (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resampling
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$
- SLAM: state space < x, y, θ, map>
 - for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$
- Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

Dependencies

- Is there a dependency between the dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks) poses map observations & movements $p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$ $p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

Factorization first introduced by Murphy in 1999

Mapping using Landmarks

Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$
Robot path posterior
localization problem)
Conditionally
independent
landmark positions

Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible!

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

FastSLAM – Action Update

FastSLAM – Sensor Update

FastSLAM – Sensor Update

FastSLAM - Video

FastSLAM Complexity

 Update robot particles based on control u_{t-1} O(N) Constant time per particle

- Incorporate observation z_t into Kalman filters
- Resample particle set
 - N = Number of particles M = Number of map features

O(N•log(M)) Log time per particle

 $O(N \bullet log(M))$ Log time per particle

O(N•log(M)) Log time per particle

Data Association Problem

Which observation belongs to which landmark?

- A robust SLAM must consider possible data associations
- Potential data associations depend also on the pose of the robot

Multi-Hypothesis Data Association

 $\frac{1}{2}$

 \mathbf{x}

 \checkmark

- Data association is done on a per-particle basis
- Robot pose error is factored out of data association decisions

 \checkmark

 $\overline{\mathbf{A}}$

Per-Particle Data Association

Was the observation generated by the red or the blue landmark?

P(observation|blue) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick an random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results – Victoria Park

- 4 km traverse
- < 5 m RMS
 position error
- 100 particles

Blue = GPS **Yellow** = FastSLAM

Dataset courtesy of University of Sydney ²⁶

Results – Victoria Park (Video)

Dataset courtesy of University of Sydney ²⁷

Results – Data Association

28

FastSLAM Summary

- FastSLAM factors the SLAM posterior into low-dimensional estimation problems
 - Scales to problems with over 1 million features
- FastSLAM factors robot pose uncertainty out of the data association problem
 - Robust to significant ambiguity in data association
 - Allows data association decisions to be delayed until unambiguous evidence is collected
- Advantages compared to the classical EKF approach
- Complexity of O(N logM)