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� SLAM stands for simultaneous localization and 

mapping

� The task of building a map while estimating 

the pose of the robot relative to this map

� Why is SLAM hard?

Chicken-or-egg problem: 

� a map is needed to localize the robot and 

a pose estimate is needed to build a map

The SLAM Problem
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Given:

� The robot’s 
controls

� Observations of 
nearby features

Estimate:

� Map of features

� Path of the 
robot

The SLAM Problem

A robot moving though an unknown, static environmen t
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Typical models are:

� Feature maps

� Grid maps (occupancy or reflection 
probability maps)

Map Representations

today
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Why is SLAM a hard problem?

SLAM : robot path and map are both unknown!

Robot path error correlates errors in the map
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Why is SLAM a hard problem?

� In the real world, the mapping between 
observations and landmarks is unknown

� Picking wrong data associations can have 
catastrophic consequences

� Pose error correlates data associations

Robot pose
uncertainty



7

Data Association Problem

� A data association is an assignment of 
observations to landmarks

� In general there are more than 
(n observations, m landmarks) possible 
associations

� Also called “assignment problem”
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� Represent belief by random samples

� Estimation of non-Gaussian, nonlinear processes

� Sampling Importance Resampling (SIR) principle

� Draw the new generation of particles

� Assign an importance weight to each particle

� Resampling

� Typical application scenarios are 

tracking, localization, …

Particle Filters
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� A particle filter can be used to solve both problems

� Localization: state space < x, y, θ>

� SLAM: state space < x, y, θ, map>
� for landmark maps = < l1, l2, …, lm>
� for grid maps = < c11, c12, …, c1n, c21, …, cnm>

� Problem: The number of particles needed to 

represent a posterior grows exponentially with 

the dimension of the state space!

Localization vs. SLAM
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� Is there a dependency between the dimensions of 

the state space?

� If so, can we use the dependency to solve the 

problem more efficiently?

Dependencies 
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� Is there a dependency between the dimensions of 

the state space?

� If so, can we use the dependency to solve the 

problem more efficiently?

� In the SLAM context

� The map depends on the poses of the robot.

� We know how to build a map given the position 

of the sensor is known.

Dependencies
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements
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Factored Posterior (Landmarks)

SLAM posterior

Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Knowledge of the robot’s true path renders 
landmark positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u1

z3

zt

Landmark 2

x0

u0 
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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Rao-Blackwellization

� This factorization is also called Rao-Blackwellization

� Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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FastSLAM

� Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]

� Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)

� Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, θ

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#1

Landmark 1 Landmark 2 Landmark M…x, y, θParticle
#2

Particle
N

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1
Filter

Landmark #2
Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1



21

FastSLAM  - Video
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FastSLAM  Complexity

� Update robot particles 
based on control ut-1

� Incorporate observation zt
into Kalman filters

� Resample particle set

N = Number of particles
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle
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Data Association Problem

� A robust SLAM must consider possible data 
associations 

� Potential data associations depend also 
on the pose of the robot 

� Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

� Data association is 
done on a per-particle 
basis

� Robot pose error is 
factored out of data 
association decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

� Two options for per-particle data association

� Pick the most probable match

� Pick an random association weighted by 
the observation likelihoods

� If the probability is too low, generate a new 
landmark
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Results – Victoria Park

� 4 km traverse

� < 5 m RMS 
position error

� 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Results – Victoria Park (Video)

Dataset courtesy of University of Sydney
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Results – Data Association
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FastSLAM Summary

� FastSLAM factors the SLAM posterior into 
low-dimensional estimation problems
� Scales to problems with over 1 million features

� FastSLAM factors robot pose uncertainty 
out of the data association problem
� Robust to significant ambiguity in data 
association

� Allows data association decisions to be delayed 
until unambiguous evidence is collected

� Advantages compared to the classical EKF 
approach

� Complexity of O(N logM)


