Very simple control

We assume that everything is linear

- This creates huge mathematical simplifications
- Linear system:
 - accepts a signal x(t)
 - produces a signal y(t)=K x(t)
 - AND
 - K(x(t) + y(t)) = K(x(t) + K(y(t))
 - K(a x(t))=a K x(t)
 - (notice this means K = 0)

K stands for a linear operator, so that (for example) we could have

$$K x(t) = a x(t)$$
 or

$$K x(t) = dx/dt$$

In fact, study only the response to a step

- You can approximate any function with a lot of steps
- Step is u(t)
 - this is 0 for $t \le 0$, 1 otherwise
 - so u(t)-u(t+dt) is a bar
- Approximate f(t) by

$$\sum_{i} f(i\Delta t)(u(i\Delta t) - u(i\Delta t + \Delta t))$$

- ex: simplify this expression
- ex: we know K u(t) what is K f(t)?

Ideas: plant/process, control

- Plant/process is the thing we wish to control
 - assume: 1 input, 1 output, linear
 - for simple examples, I'll write out the form of the plant
 - but very often, it isn't known exactly
 - System Identification

• Control:

- supply the plant with the input needed to produce the output you want
- Q: why is this hard?
 - A1: Plant may not be exactly known
 - A2: Plant may have dynamics
 - A3: Desired output may change

The very simplest control

- Plant: K x(t) = c x(t)
 - here c is a known constant
- We'd like the output to be 1
 - feed plant with 1/c
 - and go home early
- Example of open loop control
 - compute a fixed input and supply to plant
 - whatever the plant
- Advantages:
 - simple, sometimes works
- Disadvantages:
 - what if your model is wrong?

Throttle Control

History of feedback

Watt's Flyball Governor

Watt's flyball governor, C19

These were still in use in late C20!

Throttle Control

Closed loop control

- Derive an input to the plant from
 - setpoint (where you want the output to be)
 - current plant output
- The form we will discuss is:

We have

Simple, worrying example

- H c(t) = a c(t)
- G x(t) = b x(t)
- o(t)+ab o(t)=ab i(t)
- Now imagine that i(t) is a step function
 - for t>0 we have
 - o(t) = ab/(1+ab)
 - which isn't what we wanted
 - (remember, i(t) is the output value we want)
 - steady state error is lim t->infinity (o(t)-i(t))

Fix with integral term

- Idea:
 - if (i(t)-o(t)) is not zero, there should be some control input
 - magnitude increases until it is zero

$$Gx(t) = bx(t) + c \int_0^t x(s)ds$$

Fixing with integral term

$$o(t) + abo(t) + ac \int_0^t o(s)ds = abi(t) + ac \int_0^t x(s)ds$$

Differentiate

$$(1+ab)\frac{do(t)}{dt} + aco(t) = ab\frac{di(t)}{dt} + aci(t)$$

BUT we're interested in t>0, and i(t) is a step at 0

$$(1+ab)\frac{do(t)}{dt} + aco(t) = aci(t)$$

Fixing with integral term

$$(1+ab)\frac{do(t)}{dt} + aco(t) = ac$$

Assume that do/dt \rightarrow 0 as t \rightarrow infinity (we'll see it does in a moment)

$$o(t) = 1$$

For large t, which is what we wanted

Fixing with integral term

$$\frac{(1+ab)}{ac}\frac{do(t)}{dt} + o(t) = 1 \qquad o(0) = 0$$

$$o(t) = \left(1 - e^{\frac{-ac}{1+ab}t}\right)$$

• is it a good idea to get a faster response by making c bigger?

A more interesting plant

- Apply a force to the car to control its velocity
 - eg braking

Output
$$v(t) = \int_0^t \frac{F(s)}{m} dt$$

Proportional control

$$o(t)+H G o(t)=H G i(t)$$

$$Gx(t) = bx(t)$$

$$o(t) + H [bo(t)] = H [bi(t)]$$

$$o(t) + \frac{b}{m} \int_0^t o(s)ds = \frac{b}{m} \int_0^t i(s)ds$$

$$\frac{do}{dt} + \frac{b}{m}o(t) = \frac{b}{m}$$

Recall that t>0, i(t)=1

Notice

$$\frac{do}{dt} + \frac{b}{m}o(t) = \frac{b}{m}$$

$$o(t) = (1 - e^{\frac{-bt}{m}})$$

- steady state error is now zero
- larger b/m -> faster response
 - BUT larger forces applied to car
- (obvious) b/m <0 -> unstable behavior
- Example

Proportional - Integral (PI) control

$$o(t)+H G o(t)=H G i(t)$$

$$Gx(t) = bx(t) + c \int_0^t x(s)ds$$

$$o(t) + H\left[bo(t) + c\int_0^t o(s)ds\right] = H\left[bi(t) + c\int_0^t i(s)ds\right]$$

$$o(t) + \frac{1}{m} \int_0^t \left[bo(u) + c \int_0^u o(s) ds \right] = \frac{1}{m} \int_0^t \left[bi(u) + c \int_0^u i(s) ds \right]$$

$$\frac{d^2o}{dt^2} + \frac{b}{m}\frac{do}{dt} + \frac{c}{m}o(t) = \frac{c}{m}$$
 (recall t>0, i(t)=1)

$$\frac{d^2o}{dt^2} + \frac{b}{m}\frac{do}{dt} + \frac{c}{m}o(t) = \frac{c}{m}$$

Assume derivatives ->0 as t-> infinity (we'll see they do) then o(t) = 1 for very large t, which is what we wanted

$$A_1 e^{zt} + A_2 t + A_3$$

$$A_1 e^{zt} \left(z^2 + \frac{b}{m} z + \frac{c}{m} \right) + A_2 t \frac{c}{m} + A_3 \frac{c}{m} = \frac{c}{m}$$

$$A_2 = 0$$

$$A_3 = 1$$
 $A_1 = -1$ (0(0)=0)

$$z^2 + \frac{b}{m}z + \frac{c}{m} = 0$$

$$(1 - e^{zt})$$

Where

$$z^2 + \frac{b}{m}z + \frac{c}{m} = 0$$

$$z = \frac{1}{2} \left| -\frac{b}{m} \pm \sqrt{\frac{b^2}{m^2} - 4\frac{c}{m}} \right|$$

Cases:

 $b^2-4cm > 0$ (two real roots; sum of exponentials)

b^2-4cm=0 (two copies of the same root - this is known as critical damping)

b^2-4cm<0 (sinusoid with exponential amplitude)

Stability:

-b/m >0 - soln GROWS with time, otherwise OK

Careful with b

• small c

$$c = \epsilon \frac{b^2}{m}$$

$$z = \frac{1}{2} \left[-\frac{b}{m} \pm \sqrt{\frac{b^2}{m^2} - 4\frac{c}{m}} \right]$$

• gives roots that are like

$$-\frac{b}{m}(1-\frac{\epsilon}{4})$$

$$-rac{b}{m}rac{\epsilon}{4}$$

rather a lot slower

More on quadratic equations!

$$z^2+2\zeta\omega z+\omega^2=0 \hspace{1cm} z=-\omega\left(\zeta\pm i\sqrt{1-\zeta^2}\right)$$
 Natural frequency

Critical damping occurs when there is a double root equivalently when zeta=1
zeta <1 underdamped (soln. wobbles)
zeta>1 overdamped (slow rise time)

More on quadratic equations!

$$z^2 + 2\zeta\omega z + \omega^2 = 0$$

Damping
$$z = -\omega \left(\zeta \pm i \sqrt{1 - \zeta^2} \right)$$

Natural frequency

Our equation

$$z^2 + \frac{b}{m}z + \frac{c}{m} = 0$$

$$\omega = \sqrt{\frac{c}{m}} \qquad \zeta = \frac{1}{2} \frac{b}{\sqrt{cm}}$$

Critical damping:

$$b = 2\sqrt{cm}$$

A derivative term

• Issue:

- may be hard to get fast rise time
 - big m requires big b for critical damping
- this may be because we are feeding back the current error

• Idea:

- predict future error
- this is equivalent to feeding back some fraction of the derivative

The most important slide

• A very high fraction of all controllers in the real world are:

$$Gx(t) = K_i \int_0^t x(u)du + K_p x(t) + K_d \frac{dx}{dt}$$

PID controller

A more interesting plant

- Apply a force to the car to control its velocity
 - eg braking

Output
$$v(t) = \int_0^t \frac{F(s)}{m} dt$$

Proportional-Integral-Derivative (PID) control

Thrash through math of PI slide, and end up with:

$$\frac{d^2o}{dt^2} + \frac{K_p}{m + K_d} \frac{do}{dt} + \frac{K_i}{m + K_d} o = \frac{K_i}{m + K_d}$$

Compare to:
$$\frac{d^2o}{dt^2} + \frac{b}{m}\frac{do}{dt} + \frac{c}{m}o(t) = \frac{c}{m}$$

Kd makes the mass look smaller!

Yet more interesting plant

Apply a force to the mass, want to control its position.

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F$$

Proportional-Integral-Derivative (PID) control

Thrash through math of past slides, and end up with:

$$\frac{d^2o}{dt^2} + \frac{K_p + b}{m + K_d} \frac{dx}{dt} + \frac{K_i + k}{m + K_d} x = \frac{K_i + k}{m + K_d}$$

Compare to:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F$$

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!

Proportional-Integral-Derivative (PID) control

Thrash through math of past slides, and end up with:

$$\frac{d^2o}{dt^2} + \frac{K_p + b}{m + K_d} \frac{dx}{dt} + \frac{K_i + k}{m + K_d} x = \frac{K_i + k}{m + K_d}$$

Compare to:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F$$

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!

Tuning

- Usually, you don't know the plant and can't do the math
- Powerful rule of thumb (manual tuning)

If the system must remain online, one tuning method is to first set K_i and K_d values to zero. Increase the K_p until the output of the loop oscillates, then the K_p should be set to approximately half of that value for a "quarter amplitude decay" type response. Then increase K_i until any offset is corrected in sufficient time for the process. However, too much K_i will cause instability. Finally, increase K_d , if required, until the loop is acceptably quick to reach its reference after a load disturbance. However, too much K_d will cause excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however, some systems cannot accept overshoot, in which case an overdamped closed-loop system is required, which will require a K_p setting significantly less than half that of the K_p setting that was causing oscillation.

Tuning, II

Effects of increasing a parameter independently [22][23]

Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

Kd = 0 for about 75% of deployed systems

Stability and oscillation (rough)

- Linear systems can clearly oscillate
 - generally, too big a Kp or Kd can cause problems
- Nonlinearities can easily cause oscillations
- Delays cause oscillations

Demand is a step - this should look unpromising... NOTICE Plant is 1 (really simple)

Unrecoverable

Pushing up Ki speculatively doesn't help

Ideas

- Plant/process
- control
- Open vs closed loop
- stability
- Linear vs non-linear
- Simplest linear feedback control
 - x constant
 - with derivative term
 - large gains can cause instability
 - steady state error is a problem
- Delay is a problem
- non-linearities can create excitement

Ideas

• PID control

- standard procedure
 - (there are tons in the car software)
- P controls; I reduces steady state error; D increases response speed
- Straightforward tuning procedure
 - (see software example)