Exploiting Bias for
Scene Recovery

D.A. Forsyth, UIUC



Crowded

Figure 1. Sample results of our algorithm on examples from fc
different classes of CULane dataset [33] are shown here. Cy
lines are the detected lane boundaries, green region represents t
ego lane and magenta line displays the estimated horizon. In t
No Line class, there is actually no line markings on the road t
the ground truth carries the lines shown.



Goal: Road Layout Map

3D scene
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Figure 1: Our goal is to infer the layout of complex driving
scenes from a single camera. Given a perspective image (top
left) that captures a 3D scene, we predict a rich and inter-

pretable scene description (bottom right), which represents
the scene in an occlusion-reasoned semantic top-view.

Wang et al 19




Road layout maps

® A prediction of the layout of the main scene in front

® distinguish between

® transients (cars, pedestrians, etc)

® and persistent (road, walkways, bicycle lanes, buildings)
® including

® intersections

® Jane boundaries

® Potential cues
® streetview
® openmaps
® layout is stylized
® persistent categories have coherent (but variable) appearance
e scene flow/photometric consistency
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Fig. 1: 3D Intersection Understanding. Our system makes use of monocular (left) and stereo (middle) feature cues to infer the road layout and
the location of traffic participants in the scene (right) from short video sequences. The observer is depicted in black.

Geiger et al



Cues

Incidental data
® streetview+openmaps

layout is stylized
persistent categories have coherent appearance

scene flow/photometric consistency



Partially supervised cues

® Open Street Maps (OSM)

Map data: OpenStreetMap is an open-source mapping
project covering over 21 million miles of road. Unlike pro-
prietary maps, the underlying road coordinates and metadata
are freely available for download. Accuracy and overlap with
Google Maps is very high, though some inevitable noise is
present as information is contributed by individual volunteers
or automatically extracted from users’ GPS trajectories. For
example, roads in smaller cities may lack detailed annota-
tions (e.g., the number of lanes may be unmarked). These
inconsistencies result in varying-sized subsets of the data
being applicable for different attributes.
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Fig. 3. Intersection detection heatmap. Images are cropped from test set
GSV panoramas in the direction of travel indicated by the black arrow. The
probabilities of “approaching” an intersection output by the trained ConvNet
are overlaid on the road. (The images are from the ground level road, not
the bridge.)



Partially supervised cues

® Google street view

Image collection: Google Street View contains panoramic
images of street scenes covering 5 million miles of road
across 3,000 cities. Each panorama has a corresponding
metadata file storing the panorama’s unique “pano_id”, geo-
graphic location, azimuth orientation, and the pano_ids of ad-
jacent panoramas. Beginning from an initial seed panorama,
we collect street view i1mages by running a bread-first
search, downloading each image and its associated metadata
along the way. Thus far, our dataset contains one million
GSV panoramas from the San Francisco Bay Area. GSV
panoramas can be downloaded at several different resolutions
(marked as “zoom levels™). Finding the higher zoom levels
unnecessary for our purposes, we elected to download at a
zoom level of 1, where each panorama has a size of 832x416
pixels.



Labelling - I

® Match panoramas to roads

® panorama center location, orientation is known
® (essentially) project to plane
® thresholded nearest neighbor to road center polyline
® thresholding removes panoramas inside buildings, etc.
® some noise
® under bridges, etc.

® Annotations
® [ntersections
Drivable heading
Heading angle
Bike lane
Speed limit, wrong way, etc.



Pred =0.1 m Pred =229 m
True=19m True=19.2 m True =224 m

Fig. 4. Distance to intersection estimation. For images within 30 m of true
intersections, our model 1s trained to estimate the distance from the host car
to the center of the intersection across a variety of road types.
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Fig. 5. Intersection topology is one of several attributes our model learns
to infer from an input GSV panorama. The blue circles on the Google
Maps extracts to the left show the locations of the input panoramas. The
pie charts display the probabilities output by the trained ConvNet of each
heading angle being on a driveable path (see Figure 3 for colormap legend).



p(driveable) = 0.002 p(driveable) =0.714 p(driveable) = 0.998

Fig. 6. Driveable headings. A ConvNet is trained to distinguish between
non-drivable headings (left) and drivable headings aligned with the road
(right). The ConvNet weakly classifies the middle example as drivable
because the host car’s heading is facing the alleyway between the buildings.
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Pred =-52.7° Pred =-18.3° Pred = 31.6°
True = -49.1° True =-20.5° True = 32.7°

Fig. 7. Heading angle regression. The network learns to predict the
relative angle between the street and host vehicle heading given a single
image cropped from a GSV panorama. Below each GSV image, the graphic
visualizes the ground truth heading angle.



p(bike lane) = 0.043 p(bike lane) = 0.604 p(bike lane) = 0.988

Fig. 8. The ConvNet learns to detect bike lanes adjacent to the vehicle.
The GSV i1mages are arranged from left to right in increasing order of
probability output by the ConvNet of a bike lane being present (ground
truth labels from left to right are negative, negative, positive). The middle
example contains a taxi lane, resulting in a weak false positive.



Pred = 26.1 mph Pred = 30.0 mph Pred = 54.3 mph
True = 30 mph True = 50 mph True = 50 mph

Fig. 9. Speed limit regression. The network learns to predict speed limits
given a GSV 1mage of road scene. The model significantly underestimates
the speed limit in the middle example as this type of two-way road with a

single lane in each direction would generally not have a speed limit as high
as 50 mph.



p(one-way) = 0.207 p(one-way) = 0.226 p(one-way) = 0.848

Fig. 10. One-way vs. two-way road classification. The probability output
by the ConvNet of each GSV scene being on a one-way road is shown.
From left to right the ground truth labels are two-way, two-way, and one-
way. The image on the left is correctly classified as two-way despite the
absence of the signature double yellow lines.



p(wrong way) =0.555 p(wrong way) =0.042  p(wrong way) =0.729

Fig. 11. Wrong way detection. The probability output by the ConvNet of
each GSV 1mage facing the wrong way on the road is displayed. From left
to right the ground truth labels are wrong way, right way, and right way. For
two-way roads with no lane markings (left), this is an especially difficult
problem as it amounts to estimating the horizontal position of the host car.
The problem can also be quite ill-defined if there are no context clues as is
the case with the rightmost image.



Pred =2 Pred =2 Pred.=3
True =1 True =2 True =2

Fig. 12. Number of lanes estimation. The predicted and true number
of lanes for three roads are displayed along with the corresponding GSV
images. For streets without clearly visible lane markings (left), this 1is
especially challenging. Although the ground truth for the rightmost image
1s two lanes, there is a third lane that merges just ahead.



Cues

Incidental data
® streetview+openmaps

layout is stylized
persistent categories have coherent appearance

scene flow/photometric consistency



Layout 1s stylized

) Number of lanes
() One-way or not
® Lane widths

Lanes

3 () Existence of sideroad

% (5 Distance to sideroad

§ (3 Main road ends I '
% (® Existence of crosswalks

g () Existence of sidewalks

é © Width of sidewalks

¥ Road Lanes [ Sidewalk @ Crosswalk

Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.
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Figure 3: Overview of our proposed framework: At train-time, our framework makes use of both manual annotation for
real data (blue) and automated annotation for simulated data (red), see Sec. 3.2. The feature extractors g convert semantic
top views from either domain into a common representation which is input to A. An adversarial loss (orange) encourages
a domain-agnostic output of g. At test-time, an RGB image in the perspective view is first transformed into a semantic
top-view [23], which is then used by our proposed neural network (see Sec. 3.3), h o g, to infer our scene model (see Sec. 3.1).
The graphical model defined in Sec. 3.4 ensures a coherent final output.



Birds eye view

® We want

e overhead view of semantically labelled image
e completed

horizon (v=0)

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Schulter et al 18



Strategy

Label image

Knock out incidentals
® cars, pedestrians, etc.

Inpaint
Project using depth

NaANANA






Birds eve view

Warp into
bird's eye
view

Refinement CNN =

Hallucination CNN

Y
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Simulator

zéf
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.y

OpenStreetMap
(if GPS available)

Input: Single RGB image Hallucinating semantics and depth of occluded areas Inducing learned priors from simulation
with foreground objects enables an initial occlusion-reasoned BEV map of the (and map-data if available) refines the initia
masked-out scene estimate to give our final semantic top-view

Fig. 1: Given a single RGB image of a typical street scene (left), our approac
creates an occlusion-reasoned semantic map of the scene layout in th
bird’s eye view. We present a CNN that can hallucinate depth and semantics i
areas occluded by foreground objects (marked in red and obtained via standar
semantic segmentation), which gives an initial but noisy and incomplete estimat
of the scene layout (middle). To fill in unobserved areas in the top-view, we furthe
propose a refinement-CNN that induces learning strong priors from simulate
and OpenStreetMap data (right), which comes at no additional annotation cost

Schulter et al 18



Inpainting

| Semantics |

Masked RGB i

Mask : | Depth |
B E—

(a) (b)
Fig. 2: (a) The inpainting CNN first encodes a masked image and the mask itself.
The extracted features are concatenated and two decoders predict semantics and
depth for visible and occluded pixels. (b) To train the inpainting CNN we ignore
foreground objects as no ground truth is available (red) but we artificially add
masks (green) over background regions where full annotation is already available.

Notice: we inpaint labels and depth, NOT the image

Notice: depth is inferred from the image



Fig.6: Qualitative example of our halluci-
nation CNN: Semantics and depth without
(left) and with (right) hallucination.



Birds eye view from depth + labels

Fig. 3: The process of mapping the se-
mantic segmentation with correspond-
ing depth first into a 3D point cloud
and then into the bird’s eye view. The
red and blue circles illustrate corre-
sponding locations in all views.




Refining birds eye predictions

Simulator:
Adversarial Loss
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Fig.4: (a) Simulated road shapes in the top-view. (b) The refinement-
CNN i1s an encoder-decoder network receiving three supervisory signals: self:
reconstruction with the input, adversarial loss from simulated data, and recon-
struction loss with aligned OpenStreetMap (OSM) data. (c) The alignment
CNN takes as input the initial BEV map and a crop of OSM data (via noisy
GPS and yaw estimate given). The CNN predicts a warp for the OSM map and
1s trained to minimize the reconstruction loss with the initial BEV map.



Warping OSM to map layout
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Fig.5: (a) We use a composition of similarity transtorm (left, “box”) and a non-
parametric warp (right, “flow”) to align noisy OSM with image evidence. (b, top)
Input image and the corresponding B™?*, (b, bottom) Resulting warping grid
overlaid on the OSM map and the warping result for 4 different warping functions,
respectively: “box”, “flow”, “box+flow”, “box+flow (with regularization)”. Note
the importance of composing the transformations and the induced regularization.




The impact of the
hallucination - CNN

The impact of induced
priors from the learned
refinement CNN

Wb S5 hi

Fig.8: Examples of our BEV representation. Each one shows the masked
RGB input, the hallucinated semantics and depth, as well as three BEV maps,
which are (from left to right), The BEV map without hallucination, with halluci-
nation, and after refinement. The last example depicts a failure case.
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Good + bad

Birds eye view is a good 1dea

e right place to compare labels with models

Label inpainting is good i1dea

® but why in image?

® the warping, registration seem to help A LOT with this

It’s clear that warping, registration, adversary are helpful

Depth inference is a dubious idea

® Why not use ground plane estimate?
® and homography?
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Figure 3: Overview of our proposed framework: At train-time, our framework makes use of both manual annotation for
real data (blue) and automated annotation for simulated data (red), see Sec. 3.2. The feature extractors g convert semantic
top views from either domain into a common representation which is input to A. An adversarial loss (orange) encourages
a domain-agnostic output of g. At test-time, an RGB image in the perspective view is first transformed into a semantic
top-view [23], which is then used by our proposed neural network (see Sec. 3.3), h o g, to infer our scene model (see Sec. 3.1).
The graphical model defined in Sec. 3.4 ensures a coherent final output.



%&ﬂ@@ ,

Figure 4: Unpaired examples of simulated semantic top-

views (top) and real ones from [23] (bottom).



CRF

® (: what does this apply to

® [ *think* predicted labels on “ground plane”
® but what is discretization?



|
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Figure 6: Qualitative results of H-BEV+DA+GM on individual frames from KITTI. Each example shows perspective RGB,
ground truth and predicted semantic top-view, respectively. Our representation is rich enough to cover various road layouts
and handles complex scenarios, e.g., rotation, existence of crosswalks, sidewalks, side-roads and curved roads.
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Figure 7: Qualitative results comparing H-BEV+DA and H-BEV+DA+GM in consecutive frames of two example sequences
of the KITTI validation set. In each column, we have visualized the perspective RGB image, prediction from H-BEV+DA and
that of H-BEV+DA+GM from left to right. Each row shows a sequence of three frames. We can observe more consistent
predictions, e.g., width of side-road and delimiter width, with the help of the temporal CRF.




Good + bad

It’s clear that label fields are highly structured

® but BEV construction is weird

This structure 1s very important and valuable
® (Q: can we exploit without OSM, Streetview, etc.?



Scene Flow and Ways to Infer It

® particularly photometric consistency
® a version of this applies to scene inference



Scene Flow

® From pair of images/images+depths/stereo pairs infer
® for each image point (x,y, z) AND (v_x, v_y, v_z)
® Rigid scene
® casy for stereo pair/image+depth pair:
® (v_x,v_y,v_z) follow from depth and camera ego-motion
® harder for image pair
® depth, scene flow ambiguity

® We assume there are moving objects



Scene Flow

® From pair of images/images+depths/stereo pairs/lidar infer
® for each (image) point (x,y, z) AND (v_x, v_y, v_z)
® Rigid scene
® casy for stereo pair/image+depth pair:
® (v_x,v_y,v_z) follow from depth and camera ego-motion
® harder for image pair
® depth, scene flow ambiguity

® We assume there are moving objects



Ambiguity

® Notice there are no
problems if you know
depth

(a) Projecting scene flow into 2D space.

P(P:. P P.)

P'(PLB), F)

(b) Back-projecting optical flow into 3D space.

Figure 2. Relating monocular scene flow estimation to opti-
cal flow: (a) Projection of scene flow into the image plane yields
optical flow [59]. (b) Back-projection of optical flow leaves an
ambiguity in jointly determining depth and scene flow. Menze 2015



Typical scene flows

Figure 1: Scene Flow Results on the proposed Dataset.
Top-to-bottom: Estimated moving objects with background
object in transparent, flow results and flow ground truth.

Menze 2015



Estimation for stereo

Depth+motion+ego-motion cue
left right Depth+motion+ego-motion cue

® Break into
superpixels

® FEach gets depth,
flow

® Use this to predict in
other views

® This gives massive
CRF

® pile in and solve

reference view

Figure 2: Data Term. Each superpixel 7 in the reference
view 1s modeled as a rigidly moving 3D plane and warped
into each other image to calculate matching costs. Each of
the superpixels is associated with a 3D plane variable and a

pointer to an object hypothesis comprising its rigid motion. Menze 2015



Lagniappe: Scene flow in LIDAR

LLearn without labelled data
ICP 1sn’t quite enough

® objects might contract, for example
® use a cycle consistency loss
® f ab=3Da->3Db
® we must have f ba(f_ab(x))=x
® trick:
® 3s stated, this is unstable
® instead,f ba(0.5 f_ab(x)+ 0.5 NN(f_ab(x))) close to x
® this also avoids problems with zero flow



Figure 4: Scene flow estimation between point clouds at time ¢ (red) and £+ 1 (creen) from the KITTI dataset trained without
any labeled LIDAR data. Predictions from our self-supervised method, trained on nuScenes and fine-tuned on KITTT using
self-supervised learning is shown in blue; the baseline with only synthetic training is shown in purple. In the absence of
real-world supervised training, our method clearly outperforms the baseline method, which overestimate the flow in many
regions. (Best viewed in color)

Mittal 20
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(a) Ours (Self-Supervised Fine Tuning) (b) Baseline (No Fine Tuning)

Figure 5: Comparison of our self-supervised method to a baseline trained only on synthetic data, shown on the nuScenes
dataset. Scene flow is computed between point clouds at time ¢ (red) and ¢ + 1 (green); the point cloud that is transformed
using the estimated flow is in shown in blue. In our method, the predicted point cloud has a much better overlap with the
point cloud of the next timestamp (2reen) compared to the baseline. Since nuScenes dataset does not provide any scene flow
annotation, the supervised approaches cannot be fined tuned to this environment.

Mittal 20



Scene flow 1n single 1images

® Predict depth from single image
® using network which makes mixture of normals in depth at location
e trained using existing image-depth data

® Break image into superpixels

® cach is a plane section that moves rigidly
e to infer: plane params, motion params (9 total per superpixel)
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Brickwedde 19



Scene flow 1n single 1images

Photometric consistency

® CRF

® unary losses: l
® plane section motion should predict next frame pixel values well
® plane section should model predicted depth well

® binary losses:

® plane sections should have compatible depths on boundary
e normals of neighbors should be similar

ﬁ “ 3 l- | b '!I-’ llz
.| - . _1"_ v

Figure 8. Exemplary quahtatlve result of Mono-SF on a crop of
Cityscapes (removing car hood); left: first input image, middle:
estimated depth values at time ¢ = O (left half) and ¢ = 1 (right
half), right: estimated optical flow Brickwedde 19




Mono-SF

Ground truth

UO—uE Flow

Depth Flow

Brickwedde 19



Scene flow 1n single 1mages

jointly predicts depth (middle) and scene flow (right). (x,z)-coordinates of 3D scene flow are visualized using an optical flow color coding.

® Straightforward network prediction of scene flow
® depth ambiguity?
® semantics, etc. resolve
® “*train* with stereo pairs
® cues
® single image depth cues (texture)
® photometric consistency
® optic flow

Hur 20



Single image depth estimator for disparity

Feature Pyramid

Output
Disparity
>
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Reference Image 0%
A
. 38
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Target Image t - Residual
l Scene Flow Scene Flow
Feature Pyramid
Projectingto  _

* Optical Flow

Figure 3. Our monocular scene flow architecture based on PWC-Net [45]: while maintaining the overall original structure of PWC-
Net, we modify the decoder to output residual scene flow and (non-residual) disparity together. After the residual update of scene flow,
we project the scene flow back to optical flow using depth. Then, the optical flow is used for warping the feature map (only 3 of 7 levels
shown for ease of visualization) in the next pyramid level. The light-yellow shaded region shows one forward pass for each pyramid level.



Feature Pyramid

Output
Disparity

Reference Image
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Optical Flow

Scene flow predictions warped back to optic flow;
this allows photometric consistency to be imposed
at run time



Training losses

Disparity predictions should be good

® train with stereo pairs for this

e disparity should predict color in other frame (in training)
® disparity should be smooth

Photometric consistency
® scene flow should predict pixel values in next frame

Point consistency
® scene flow should predict depth in next frame

Smoothness
® scene flow at a point should be similar to neighbors



(a) Input images (b) Monocular depth (c) Optical flow (d) 3D visualization of scene flow

Figure 5. Qualitative results of our monocular scene flow results (Self-Mono-SF-ft) on KITTI 2015 Scene Flow Test: each scene
shows (a) two input images, (b) monocular depth, (¢) optical flow, and (d) a 3D visualization of estimated depth, overlayed with the
reference image, and colored with the (z, z)-coordinates of the 3D scene flow using the standard optical flow color coding.












Notice

Straightforward consistency losses are very powerful

Minimal use of labelled data
® (augmentation by stereo pairs, but no labelling)

Some form of photometric consistency loss for labels
® cg
® predict layout map 1
® move forward
predict layout map 2
they should register
things that have the same label (tar, paint, junction, etc.)
® should look similar



Appearance Consistency and Clustering

® Map image into some feature space so that

® patches that “look similar” are “close”
® without markup

® Why?
® because doing so would help produce a layout map eg

® attach labels to clusters using current maps
® improve maps using labels



Deep Embedding Clustering
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® Compute embedding that i
® autoencodes O — — -
® clusters well Z S ol a
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Figure 1. Network structure

Xieetal 15



Clustering

® (luster centers mu_j must

be estimated

® form membership weights as in
TSNE (alpha=1) ->

® We want these weights to

match a target distribution

® p_ij=target for j’th cluster on i’th
point

® KL divergence (as in TSNE)

Following van der Maaten & Hinton (2008) we use the Stu-
dent’s ¢-distribution as a kernel to measure the similarity
between embedded point z; and centroid f;:

a+1

(1+ ||z — ]2 /o) ="% 0
S+ 2 — e l2/) =

qdij =

L =KL(P||Q) = Zprlogp” @)



Clustering-11

But what are p?

® notice we have some form of
reestimation going on here

After that, just descend

® note autoencoder initialization
would probably be done
differently now

In our experiments, we compute p; by first raising g; to
the second power and then normalizing by frequency per

cluster: )
i = Qij/ fi
ij = 2
Zj/ Qij’/fj' 7
where f; = > .q;; are soft cluster frequencies. Please

refer to section 5.1 for discussions on empirical properties
of L and P.

3)



Clustering
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Clustering
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Figure 4. Gradient visualization at the start of KL divergence min-

imization. This plot shows the magnitude of the gradient of the
loss L vs. the cluster soft assignment probability g, ;. See text for

discussion.



S
o?
5
q
/
7
b
3
q
0

V0 W e~ ~ 000 N\
O W BH\) —-0 N0
D0 WY N0 NW
QAILWSN 00N @
QY UWSN~D W
ORWPWe~d—IDx0NG

S B
222
g &8
9 q 4
| /)
7 T
b6 b
5 3 3
949 ¢
000

(a) MNIST (b) STL-10

Figure 3. Each row contains the top 10 scoring elements from one cluster.
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Attribute discovery

® We have;:

e a set of images labelled with class, but not attribute
® a feature construction (now very old fashioned)

® We want:

® to associate each image with a bit vector
® attribute present/absent
® where
® bits are “easily predicted”
® bits are “informative”
® bit vectors within a category cluster
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Fig. 1. Each bit in the code can be thought of as a hyperplane in the feature space. We learn
arrangements of hyperplanes in a way that the resulting bit codes are discriminative and also
all hyperplanes can be reliably predicted (enough margin). For example, the red hyperplanes
(IL,V) are not desirable because II is not informative(discriminative) and IV is not predictable
(no margin). Our method allows the green hypeplanes (good ones) to sacrifice discrimination
for predictability and vice versa. For example, our method allows the green hyperplane (I) to go
through the triangle class because it has strong evidence that some of the triangles are very similar
to circles.



Fig. 6. This figure qualitatively compares the quality of retrieved images by our method com-
paring to that of I'TQ and SpH. Each row corresponds to the top five images returned by three
different methods: ours, I'TQ and spectral hashing. This retrieval is done by first projecting the
query image to the space of binary codes and then running KNN in that space. Notice how, even
with relatively short codes(32 bits), our method recovers relevant objects. This menas that the
discriminative training of the code has forced our code learning to focus on distinctive shared
properties of categories. Our method consistently becomre more accurate as we increase the code
size.



Fig. 8. Discovering attributes: Each bit corresponds to a hyperplane that group the data according
to unknown notions of similarity. It is interesting to show what our bits have discovered. On two
sides of the black bar we show 8 most confident images for 5 different hyperplanes/bits (Each
row). Note that one can easily provide names for these attributes. For example, the bottom row
corresponds to all round objects versus objects with straight vertical lines. The top row has silver,
metalic and boxy objects on one side and natural images on the other side, the second row has
water animals versus objects with checkerboard patterns. Discovered attributes are in the form
of contrast: both sides have its own meaning. These attributes are compact representations of
standard attributes that only explain one property. For more examples of discovered attributes
please see supplementary material.



Why do we care?

® FEach imputes labels by

® compelling the label space to have strong properties
® variant clustering

® DEC suggests that this 1s enough to learn features
e DBC has fixed feature stack (but this is discriminative)

® Idea:
® a feature stack that is discriminative
e and perhaps has autoencoding properties
e likely clusters appearance in a useful way

® 50 you can impose labels by just compelling them to have spatial
structure



How do we deal with reliet?

® Surely some form of height field
® ecstimated by consistency
® changing slowly
® Horizon estimation gets complicated in tilted planes

® vyou might get distracted by distant horizon
® [.ocal horizon estimator has problems



Nasty geometries

® Single image depth prediction likely doesn’t work here
® weird relief and dip in road

® (Ground plane estimates likely don’t work here either




Estimating the camera

Height

e from car (calibrated and known)

Roll and pitch

® from horizon

e roll is why horizon isn’t parallel to image plane
® pitch is why it isn’t centerline

horizon (v=0)

/
y/
/F/

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h




Sources of variation in the label map

® Foreshortening

® Wrong ground plane estimate



Sources of variation in the label map

Image

® Torsion - Horizon

Ground plane




Horizon estimation

® Khan et al - vanishing points from road lines + fudge
® Workman et al - mark up dataset, classify

1

[
I
L]
e

Figure 5: Example results showing the estimated distribution over horizon lines. For each
image, the ground truth horizon line (dash green) and the predicted horizon line (magenta)
are shown. A false-color overlay (red = more likely, transparent = less likely) shows the
estimated distribution over the point on the horizon line closest to the image center.



Horizons

® Horizon estimation gets

complicated in tilted planes

® you might get distracted by distant
horizon (picture)
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Horizons
complicated 1n tilted planes

e Horizon estimation gets
® Jocal cues are a problem



What to do?

¢ (Likely) f e
® build sources of variance into simulated label fields
® work on best available ground plane

® (possibly) estimate several planes to rectify label fields
® train without labelled images, as above
® qote this is a clusterer




