
Fully connected CRF’s
D.A. Forsyth

More general conditional random fields

• More than two labels
• we’ve seen this case, very briefly, under stereo

• But now we have it for segmentation as well
• one label per segment
• costs:

• per pixel:
• how well does this label/pixel value go together
• as in grabcut above

• per pair:
• how well does this label/pixel pair work together
• usually, a form of smoothness

• agree with your neighbors

Stereo as an optimization problem

• Original:
• find q, q’ that match, and infer depth

• Now:
• choose value of depth at q; then quality of match at q’ is cost
• optimize this

Stereo as an optimization problem

• Typically:
• quantize depth to a fixed number of levels
• unary cost is color match

• (photometric consistency constraint)
• it can be helpful to match intensity gradients, too

• pairwise cost from smoothness constraint on recovered depths
• eg depth gradient not too big, etc.

• massive discrete quadratic program

Discrete Quadratic Programs

• Minimize:
• x^T A x + b^t x
• subject to: x is a vector of discrete values

• Summary:
• turn up rather often in early vision

• from Markov random fields; conditional random fields; etc.
• variety of cases:

• some instances are polynomial
• most are NP hard

• but have extremely efficient, fast approximation algorithms
• typically based on graph cuts, qv

More general conditional random fields

• x^t A x + b^t x
• with x discrete, n labels

• Setting this up for segmentation
• know a likelihood model for each label and pixel

• cost(observation at pixel | label for that pixel)
• easy way: x is a vector of one-hot vectors

• one one-hot vector for each pixel
• (eeew!) BIG

• b is a vector
• [cost(obs_1|l1=first), cost(obs_1|l1=second), ….]

• A requires that nearby labels agree with one another

• Q: how to solve?

How to solve?

• Immense, very active literature
• settled down a bit over the last 10 years, but…

• Key points:
• Assume it is better to agree than disagree (this is in A)

• Strong approximations available - they reduce to 0-1 case
• a-expansion:

• iterate over label values:
• any label can either stay (0) or become a (1)

• a-b swap:
• iterate over pairs:

• a, b pixels can stick (0) or swap (1)
• Relatively fast, BUT iterative

Special case

• Every pixel is connected to every other pixel
• with weights

• Yields a fast variational algorithm
• based in non-local means

Fully connected CRF

Why bother?

FCCRF

Variational Inference for FCCRFs

This is non-local means
or bilateral filter

Non-local means

• Smoothing
• Estimate the value of a pixel using pixels that are nearby

• eg gaussian filter, etc.
• problem: some pixels might be on the other side of an edge

• Non-local means
• Estimate the value of a pixel using pixels that are “similar”

• eg write pixel value v; feature vector at pixel f; smoothed s

si =
X

j

w(fi, fj)vj

Non-local means

• Non-local means
• Estimate the value of a pixel using pixels that are “similar”

• average all pixels, weighting by similarity
• easy questions:

• what is f? what is w?
• harder:

• how to get the sum quickly

si =
X

j

w(fi, fj)vj

Pixel value

feature vector at
pixel location

smoothed
estimate

Weight function

Natural choices

• In

• f is
• color, position, perhaps a texture feature

• w is

• Notice this should simplify computing the sum
• only “similar” pixels make reasonable contributions
• but we must find them

si =
X

j

w(fi, fj)vj

w(fi, fj) = exp�1

2

h
(fi � fj)

T M (fi � fj)
i

Bilateral Filter

Filtered version of
an image Image

Weights
that depend on
pixel position

Weights
that depend on
image value

Bilateral filter

si =
P

j w(f i,fj)gijvjP
j w(fi,fj)gij

Pixel value

feature vector at
pixel location

smoothed
estimate

Weight function

Weight depending
on pixel location

Bilateral filter

• Issue:
• how to evaluate this

• sum over all pixels? really?

• Notice:
• we expect f’s to cluster in some space
• w falls off quite quickly for distance between f’s

• so clusters are what matters

si =
P

j w(f i,fj)gijvjP
j w(fi,fj)gij

Bilateral filter

Tomasi Manduci 98

Barron et al 15

Depth maps

Barron et al 16

Apply to class probability maps

si =
P

j w(f i,fj)gijvjP
j w(fi,fj)gij

This is now a class
probability at a pixel

Barron et al FBS

Bilateral filter

• Issue:
• how to evaluate this

• sum over all pixels? really?

• Notice:
• we expect f’s to cluster in some space
• w falls off quite quickly for distance between f’s

• so clusters are what matters

si =
P

j w(f i,fj)gijvjP
j w(fi,fj)gij

Splat, smooth, slice

from Adams, Baek, Davis

Need

• Some form of grid in high-D for f to splat onto
• smoothing on this grid should be easy
• it should be easy for pixels to find the closest point(s) on grid

Splat requires finding
grid points enclosing

splatted point

Blur requires finding neighboring grid
points to a grid point

Slice requires interpolation
from grid points

In “high” dimension

• Permutohedral lattice

Alg.

This is a vector of values, one per label l’, hence the notation issue

This is a vector of values, one per label l’, hence the notation issue

non-local means (splat blur slice)

Long range connections seem to help

Manipulate these

Long range connections seem to help

General summary

• Complicated but fast and efficient method
• imposes spatial priors
• results are pre deep learning

• no end-to-end training

• For a while, widely used on semantic segmenters
• train segmenter end-to-end
• then bolt this on to smooth labels

• now somewhat less common
• why? not sure

• Weight training method exists
• essentially, search

• Good evidence that applying fast bilateral solver
• is faster, only slightly worse

General summary, II

• This will impose coherence constraints
• things with the same label should look similar

• And spatial constraints
• neighbors should mostly agree

• But it won’t
• make straight lines
• make stylized layouts

Mansinghka et al 13

Geometric
models

Pix
Road
class

Lane
markers

