Basic SFM and SLAM

D.A. Forsyth, UIUC
Camera and structure from motion

• Assume:
 • a moving camera views a static scene
 • the camera is orthographic OR
 • weak perspective applies with one scale for all
 • all points can be seen in all views AND all correspondences are known

• Can get:
 • the positions of all points in the scene
 • the configuration of each camera

• Applications
 • Reconstruction: Build a 3D model out of the reconstructed points
 • Mapping: Use the camera information to figure out where you went
 • Object insertion: Render a 3D model using the cameras, then composite the videos
Rendering and compositing

- Rendering:
 - take camera model, object model, lighting model, make a picture
 - very highly developed and well understood subject
 - many renderers available; tend to take a lot of skill to use (Luxrender)
- Compositing:
 - place two images on top of one another
 - new picture using some pixels from one, some from the other
 - example:
 - green screening
 - take non-green pixels from background, non-bg pixels from top
Recall: Affine Cameras - I

- And this becomes (for the relevant group of points)

\[
\begin{bmatrix}
U \\
V \\
W
\end{bmatrix} = \mathcal{C} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \mathcal{W} \begin{bmatrix}
X \\
Y \\
Z \\
T
\end{bmatrix}
\]

- We will see further simplifications soon
Scaled orthographic cameras

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = c \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]

- Alternatively
 - the camera film plane has
 - two axes, u and v
 - an origin, at (tx, ty)
 - axes are at right angles
 - axes are the same length
 - point in 3D is \((x, y, z) = x\)
 - equation:

\[
x \rightarrow (u \cdot x + t_x, v \cdot x + t_y)
\]
Simplify

- Now place the 3D origin at center of gravity of points
 - i.e. mean of x over all points is zero, mean of y is zero, mean of z is zero
- Camera origin at center of gravity of image points
 - we see all of them, so we can compute this
 - this is the projection of 3D center of gravity
- Now camera becomes

\[x \rightarrow (u \cdot x, v \cdot x) \]

- Index for points, views

\[x_j \rightarrow (u_i \cdot x_j, v_i \cdot x_j) \]
Multiple views

• More notation:
 • write $x_{i,j}$ for the first (x) coordinate of the i’th picture of the j’th point
 • write $y_{i,j}$ for the second (y) coordinate of the i’th picture of the j’th point

• We had: $x_j \rightarrow (u_i \cdot x_j, v_i \cdot x_j)$

• Rewrite:

\[
\begin{pmatrix}
 x_{i,j} \\
 y_{i,j}
\end{pmatrix}
= \begin{pmatrix}
 u_i^T \\
 v_i^T
\end{pmatrix} x_j
\]
Multiple views

\[
\begin{pmatrix}
 x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\
 x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\
 \vdots \\
 y_{m,1} & y_{m,2} & \cdots & y_{m,n} \\
 y_{1,1} & y_{1,2} & \cdots & y_{1,n} \\
 y_{2,1} & y_{2,2} & \cdots & y_{2,n} \\
 \vdots \\
 y_{m,1} & y_{m,2} & \cdots & y_{m,n}
\end{pmatrix}
=
\begin{pmatrix}
 u_1^T \\
 u_2^T \\
 \vdots \\
 u_m^T \\
 v_1^T \\
 v_2^T \\
 \vdots \\
 v_m^T
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\]

Data - observed!
Multiple views

- The data matrix has rank 3!
 - so we can factor it into an mx3 factor and a 3xn factor
 - (tall+thin)x(short+fat)
 - so we know what to do; SVD -> factors
 - recall SVD from IRLS!
- These factors are not unique
 - assume A is 3x3 with rank 3, we get symmetry below

\[\mathcal{D} = \mathcal{T} \mathcal{S} = (\mathcal{T} \mathcal{A})(\mathcal{A}^{-1} \mathcal{S}) \]
Camera and reconstruction

- Can choose factors uniquely
 - recall v_i, u_i are
 - at right angles
 - same length
- Algorithm
 - form D
 - factor
 - now choose A so that v_i, u_i are at right angles, same length
 - by numerical optimization
- What if there are missing points?
 - Fairly simple optimization trick, following slides
Factoring without all points

- Write D for the data matrix, W for a mask matrix
 - $W_{ij}=0$ if that entry of D is unknown, $=1$ if it is known
- Strategy:
 - choose S, T to minimize
 - now multiply these S, T - the result is the whole of D
 - i.e. holes are filled in
 - we expect this to work even if D has many holes in it because
 - there are few parameters in S, T

\[
\sum_{i,j} W_{ij} (D_{ij} - \sum_k T_{ik} S_{kj})^2
\]
Factors with missing points

- How to minimize? set the gradient to zero

- gradient with respect to T_{uv} is

\[2 \sum_j W_{uj} (D_{uj} - \sum_k T_{uk} S_{kj}) S_{vj} \]

- gradient with respect to S_{uv} is

\[2 \sum_i W_{iv} (D_{iv} - \sum_k T_{ik} S_{kv}) T_{iu} \]
Software

- **Colmap**
 - open source SFM at very large scale
 - backbone of many other projects
 - https://demuc.de/colmap/
Notice there are TWO products here

\[
\begin{pmatrix}
x_{1,1} & x_{1,2} & \ldots & x_{1,n} \\
x_{2,1} & x_{2,2} & \ldots & x_{2,n} \\
\vdots & & & \vdots \\
y_{m,1} & y_{m,2} & \ldots & y_{m,n} \\
y_{1,1} & y_{1,2} & \ldots & y_{1,n} \\
y_{2,1} & y_{2,2} & \ldots & y_{2,n} \\
\vdots & & & \vdots \\
y_{m,1} & y_{m,2} & \ldots & y_{m,n}
\end{pmatrix}
\begin{pmatrix}
u_1^T \\
u_2^T \\
\vdots \\
u_m^T \v^T \\
v_1^T \\
v_2^T \\
\vdots \\
v_m^T
\end{pmatrix}
=
\begin{pmatrix}
x_1 & x_2 & \ldots & x_n
\end{pmatrix}
\]

Points in 3D

Estimates of camera rotation

What happened to translation?
Key takeaway

- Multiple views of multiple points yields
 - point positions
 - camera rotations

- IF
 - you can match

- We’ll do more detailed versions in various cases
 - but it’s all basically this point