FastSlam and variants

D.A. Forsyth, UIUC
(with a lot of help from borrowed slides....!)



Particle filters

® We’ve seen basic particle filters

® (Can deal with

® non-linear state updates
® non-linear measurements

e Dislike

® high dimensions



Localization vs. SLAM

A particle filter can be used to solve both problems

Localization: state space <x, y, 6> « Easy for pf

SLAM: state space <x, y, 6 map> - Bad news for pf
" for landmark maps = </, 15, ..., |,>
" for grid maps = <Cy;, C;5 -, C1y Co1y ooy Cnm>

Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!

From Burgard et al slides



Factored Posterior (Landmarks)
poses map observations & movements

‘o

P14, l1:m | 214, U0 t—1) =
I (@14 | 216 u04—1) - PU1om | Z1:4> 21:¢)

SLAM posterior ‘
Robot path posterior

landmark positions
Does this help to solve the problem?
Factorization first introduced by Murphy in 1999 13

From Burgard et al slides



Mapping using Landmarks

Landmark 1 — 0

observations — e
oot posos (x4 3, — o %
controls — @ Q Q

Landmark 2 — @

Knowledge of the robot’s true path renders
landmark positions conditionally independent

From Burgard et al slides



Factored Posterior

P(ml:tallzm | zl:tauo:t—l)
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AnE
i e

From Burgard et al slides



Rao-Blackwellization

p(mlitallim | Zl:t7u02t—1) —
M
p(T1:¢ | 214, u0:t—1) - H p(l; | 1:¢, 21:¢)
1=1
" This factorization is also called Rao-BIackweIIizaticzn

" Given that the second term can be computed
efficiently, particle filtering becomes possible!

The factorization isn’t Rao-Blackwellization
It’s the consequences that are. What’s important

here is that estimating p(llx, z) is very well behaved;
you can bung these terms in an Extended Kalman filter

From Burgard et al slides



p(xlitallim | Zl:tauo:t—l) —

M
p(T1:¢ | Z1:4, U0:t—1) ° H p(l; | T1:¢, 21:¢)
T 1=1 4

Particle filter represents this distribution

Each of these terms is handled by an EKF
FOR EACH PARTICLE



FastSLAM

" Rao-Blackwellized particle filtering based on
landmarks [Montemerlo et al., 2002]

" Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

" Each particle therefore has to maintain M EKFs

Pa"'c'e - Landmark 1 | Landmark 2 8l Landmark M
Partlcle -

' ESX)

Landmark 1 | Landmark 2 Landmark M

Landmark 1 | Landmark 2 Landmark M

From Burgard et al slides



FastSLAM Complexity

Update robot particles
based on control u;_4

Incorporate observation z
into Kalman filters

Resample particle set

N = Number of particles
M = Number of map features

O(N)

Constant time per particle

O(N-log(M))

Log time per particle

O(N-log(M))

Log time per particle

O(N-log(M))

Log time per particle

From Burgard et al slides



Key Steps of FastSLAM 1.0

o Extend the path posterior by sampling a new pose
for each sample

k k
‘B£ '~ p(xt | 33;[:_]1:“4&)

exp. observation

o Compute particle weight
wih = 127Q| =2 exp {—3(z — 2FHTQ1 (2 — 2[F])}

- Update belief of observed landmarks
(EKF update rule)

-1 Resample
Courtesy: C. Stachniss

Unknown author, UW Slides




FastSLAM - Action Update

Particle #1

Particle #2

Particle #3

Ca

Landmark #1

Filter

Landmark #2

Filter
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From Burgard et al slides



FastSLAM - Sensor Update
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From Burgard et al slides



FastSLAM - Sensor Update

Particle #1 RN Weight = 0.8

Particle #2 43: ==+

Weight = 0.4
Particle #3 )T Weight = 0.1
) 20

From Burgard et al slides



Cum grano salis

Implementation Hint

e Alan Oursland has a Java implementation
— http://www.oursland .net/projects/fastslam/

e He reports having a hard time getting 1t to

work, until Dieter Fox helped him tune the
Kalman Filter.

— The observation covariance R must be very large,
so observations can match far-away landmarks.

e This 1s an example of how personal
experience 1s important to replicating 1deas.

From Burgard et al slides



FastSLAM Complexity

Update robot particles
based on control u;_4

Incorporate observation z,
into Kalman filters

Resample particle set

N = Number of particles
M = Number of map features

Cum grano salis
O(N)

Constant time per particle

O(N-<log(M))

Log time per particle

O(N-log(M))

Log time per particle

O(N-log(M))

Log time per particle
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From Burgard et al slides



The grain of salt..

Another Practical Note

In theory, FastSLAM
should scale well:
O(KN log M), where

— N 1s the number of
particles

R Mean time per frame vs N
10

— K 1s the number of
landmarks observed

Mean procassing time per frame (ms)

— M 1is the number of
landmarks in the map ™« 10 10 10° 10"

Nurmber cf samples

But, 1n practice . . .

Robert Sim, http://www .cs.ubc.ca/~simra/lci/fastslam/nonlinear.html

From Kuipers’ slides



More salt....

Why doesn’t FastSLAM scale?

* At each frame:
— K SIFT features are added to the kd-tree, and
— NK landmarks are added to the FastSILLAM tree.

 Memory fragmentation:

— In time, nearby SIFT features are separated in
memory, so CPU cache miss rate goes up.

— For large maps, page fault rate will also
Increase.

e So the problem 1s the memory hierarchy,
due to failure of locality.

From Kuipers’ slides




Data Association Problem

= Which observation belongs to which landmark?

= A robust SLAM must consider possible data
associations

= Potential data associations depend also
on the pose of the robot

From Burgard et al slides



Multi-Hypothesis Data Association

= Data association is
done on a per-particle s
basis

= Robot pose erroris | -,
factored out of data ~ * "Q Yo
association decisions

24

From Burgard et al slides



Per-Particle Data Association

Cxl

S

Was the observation

generated by the red

.

y < BES7,

or the blue landmark?

P(observationlred) = 0.3

P(observationlblue) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick an random association weighted by

the observation likelihoods

= If the probability is too low, generate a new

landmark

From Burgard et al slides



FastSLLAM 1n Victoria Park

with raw odometry FastSLAM 2.0

From Kuipers’ slides



Results — Victoria Park

R . N
-~ X :]"\%; &
L > -

= 4 km traverse Al
* < 5m RMS "'\-

position error ° ‘
= 100 particles & %

1 L
. .‘}: L —‘ SN
Blue = GPS | ﬂ'* .
Yellow = FastSLAM mﬂ :

Dataset courtesy of University of Sydney
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From Burgard et al slides



FastSLAM 1.0

L]

FastSLAM 1.0 uses the motion model as the
proposal distribution

<] k] )

zy o~ pag | 5177[3—1vut

L]

[Monfemerlo et GI-: 2002] Courtesy: C. Stachniss

Unknown author, UW Slides




Weakness of FastSLAM 1.0

— Proposal Distribution o Importance weighting

(a) (b)

Unknown author, UW Slides




FastSLAM 1.0 to FastSLAM 2.0

1 FastSLAM 1.0 uses the motion model as the

proposal distribution

371[sk] ~ p(z¢ | 5”@1»“0

o FastSLAM 2.0

o Especially useful if an accurate sensor is used
(compared to the motion noise)

[Montemerlo et al., 2003] Courtesy: C. Stachniss

Unknown author, UW Slides




FastSLAM 2.0 (Informally)

o FastSLAM 2.0 samples from
k] 7N

(k] _ \
L ~/ £ Li.4_1, ULt 21
t p( t ’ 1:t—17 ta._\}
= Results in a more peaked proposal distribution
o Less particles are required

-1 More robust and accurate

= But more complex...

[Montemerlo et al., 2003] Courtesy: C. Stachniss

Unknown author, UW Slides




FastSLAM Problems

7 How to determine the sample size?

o Particle deprivation, especially when closing

(multiple) loops

Particles share common history here

FastSLAM .2.0.. \

Courtesy: M. Montemerlo

Unknown author, UW Slides




