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Tracking - more formal view

® Very general model:
® We assume there are moving objects, which have an underlying state X
® There are observations Y, some of which are functions of this state
® There is a clock
® at each tick, the state changes
® at each tick, we get a new observation

e Examples

® object is ball, state is 3D position+velocity, observations are stereo pairs

® object is person, state is body configuration, observations are frames, clock
1s in camera (30 fps)
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Tracking - Probabilistic formulation

® (iven
e P(X i-1Y O, .., Y_i-1)
® “Prior”
® We should like to know
e P(X ilY O0,..,Y_i-1)
® “Predictive distribution”
o P(X ilY O, ....,Y_ 1)
® “Posterior”
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Key assumptions:

e Only the immediate past matters: formally, we require
P(X;| Xy, ..., Xi21) = P(X;| X 1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we’re clever about interpreting X;
as we shall show in the next section.

¢ Measurements depend only on the current state: we assume that Y,
is conditionally independent of all other measurements given X ;. This means
that

PY;, Y ... Y X:) = P(YJ X)P(Y,,..., Y X))

Acain. this isn’t a particularly restrictive or controversial assumption. but it
y, ?
yields important simplifications.
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Tracking as Induction - base case

Firstly, we assume that we have P(X)

Then we have

P(yy| Xo)P(Xo)
P(y,)
_ Pyl Xo)P(Xo)
fp(y()’XO)P(XO)dX()
< P(yo|Xo0)P(Xo)

P(XolYo=1yy) =

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth



Tracking as induction - induction step

Given P(Xi1lygs - -, Yi_1)-

Prediction
Prediction involves representing
g Notice this is 1-1
P(XilYyg: -5 Y1)
current state based

Our independence assumptions make it possible to write measurements

1')(X,‘|y() ..... yi—l) /1)(X,‘.X,‘_1 (TR y,'_l)(lX,'_[

[ POGIX gy Py )Xy
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Tracking as induction - induction step

Correction

Correction involves obtaining a representation of

P(Xilygs---»Y;) Notice thisisi

Our independence assumptions make it possible m Prediction based on

current measurement

P(X, yy,---, Y,)
P(Xilygs -y y;) = - -
(Xilyg ) PWo,. . 0) as well.
_ P(y'i|X'zﬁayOf"':yi—l)])(Xi|yO’ ay'i—l)P(y09""yz—l)
P(yo,---,Y;)
P(y()= cee yv'—l)
= P(y,| X)) P(Xilyg, - Y1) — :
| | 0 ! ])(yOa"-ay‘i)
P(y;| X:)P(Xilygs - Y1)

T [P, | X)P(Xilyg, -y, )dX;
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The Kalman Filter

Assume that:
® All state follows a linear dynamical model
® Measurements are a linear function of state, plus noise

Then (if first prior 1s Gaussian)
® All PDF’s are Gaussian
® and so easy to represent
® just need to keep track of mean and covariance

The Kalman Filter correctly updates mean and covariance
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[Linear models

Read this as: x_i is normally distributed.
The mean 1s a linear function of x_i-1 and
whose variance is known (and can
depend on 1).

;i ~ N(D;jxzi—1;24,)

\Read this as: y_i is normally distributed.
The mean is a linear function of x_1 and

whose variance is known (and can
depend on 1)

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth



InlD

® We have

When both P(D|#) and P(#) are normal with known standard deviation, the pos-
terior is normal, too.

_log (P(z]0)) = 2%2 (z — 0)? + K (o)
~log (P(8)) = 55 (60— 1)+ K(s)
1

—log (P(f|z)) = (something)

((92 — 2(something else)f) + K’
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InlD

2
log P(0) = —% + constant not dependent on 6.

Start by assuming that D is a single measurement z;. The measurement z; could

be in different units from #, and we will assume that the relevant scaling constant

c1 is known. We assume that P(z1|f) is normal with known standard deviation

Om,1, and with mean ¢16. Equivalently, z; is obtained by adding noise to ¢16. The

noise will have zero mean and standard deviation o,, ;. This means that

(1’1 — 019)2

p)
20m’1

We would like to know P(f|z). We have that

log P(D|0) = log P(z4|0) = — + constant not dependent on z; or #.

log P(8|z1) = logp(z1]0)+ logp(#) + terms not depending on 6
_ (m1—ad)?® (0 pa)?
N 207, 202

+ terms not depending on 6.

c? 1 €171 o
- _ 02 1 -0 m
[ (20,2""1 + 202 207, 4 + 202

+ terms not depending on 6.
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In 1D

Now some trickery will get us an expression for P(6|z,). Notice first that log P(0|z,)
is of degree 2 in @ (i.e. it has terms 62, § and things that don’t depend on #). This
means that P(f|z1) must be a normal distribution, because we can rearrange its
log into the form of the log of a normal distribution.

Now we can show that P(#|D) is normal when there are more measurements.
Assume we have N measurements, =1, ..., zxn. The measurements are IID samples
from a normal distribution conditioned on #. We will assume that each measure-
ment is in its own set of units (captured by a constant ¢;), and each measurement
incorporates noise of different standard deviation (with standard deviation o, ).

So

 — ci6)’
log P(z;|0) = —(mQU—;’) + constant not dependent on z; or 6.

m,i
Now

log P(D|#) = ZlogP(a:,w
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1D

S0 wWe can write

log P(O|D) = logp(zn|0)+ ...+ logp(z2|8) + log p(z1|0) + log p(f) + terms not depending on 6
= logp(zn|0) + ...+ logp(x2|0) + log p(f|z1) + terms not depending on 6
= logp(zn|0) + ...+ logp(f|z1, 22) + terms not depending on 6.

This lays out the induction. We have that P(f|z1) is normal, with known standard
deviation. Now regard this as the prior, and P(z2|6) as the likelihood; we have that
P(8|z1,x2) is normal, and so on. So under our assumptions, P(6|D) is normal. We
now have a really useful fact.

Remember this: A normal prior and a normal likelihood yield a normal
posterior when both standard deviations are known
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In 1D

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter . The prior distribution for
f is normal, with known mean g, and known standard deviation o.
We receive a single data item 2; and a scale ¢;. The likelihood of 2,
is normal with mean ¢;0 and standard deviation o, 1, where oy, 1 is
known. Then the posterior, p(@|z1,¢1,0m 1, ftx,0x), is normal, with

mean - ;
C1T10; + HrxOm 1

2 2.2
Um,l + C10x

p1 =

and standard deviation

T =
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Recursion

Useful Fact: 9.3 Normal posteriors can be updated online

Assume we wish to estimate a parameter #. The prior distribution
for # is normal, with known mean g, and known standard devia-
tion 0. We write x; for the i'th data item. The likelihood for
each separate data item is normal, with mean ¢;# and standard de-
viation 0,,;. We have already received k data items. The posterior
p(0|z1,..., 2k C1,. .., CkyOm 1y - -, Om ks Jix, Ox) is normal, with mean
pr. and standard deviation or. We receive a new data item zp,,. The
likelihood of this data item is normal with mean ¢, 6 and standard
deviation 0., (r+1), Where ck4+1 and 0y, (k+1) are known. Then the
posterior, p(f|z1,...,Zk+1,C1,...,ChyCht1,0m,1,- -, Om, (k+1)> M, Ox),
is normal, with mean

ck+1xk+10]% + “kafn,(k+l)
2 2
T (k1) F Ciy 10k

K41 =

and
2

-
O, (k+1) %k

2
Ok+1 = /3 2-
Or (k1) T CE410%
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Examples

® Dynamical models

® Drifting points
® new state = old state + gaussian noise

e Points moving with constant velocity
® new position=old position + (dt) old velocity + gaussian noise
® new velocity= old velocity+gaussian noise

e Points moving with constant acceleration
® ctc

® Measurement models
® state=position; measurement=position+gaussian noise
® state=position and velocity; measurement=position+gaussian noise
® but we could infer velocity

® state=position and velocity and acceleration;
measurement=nosition+gaussian noise
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FIGURE 11.7: A constant velocity dynamic model for a point on the line. In this case,
the state space is two dimensional, with one coordinate for position, one for velocity. The
figure on the top left shows a plot of the state; each asterisk is a different state. Notice
that the vertical axis (velocity) shows some small change compared with the horizontal
axis. This small change is generated only by the random component of the model, so
the velocity is constant up to a random change. The figure on the top right shows
the first component of state (which is position) plotted against the time axis. Notice
we have something that is moving with roughly constant velocity. The figure on the
bottom overlays the measurements (the circles) on this plot. We are assuming that the
measurements are of position only, and are quite poor; as we see, this doesn’t significantly
affect our ability to track.
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The Kalman Filter

o Dynamic Model €r; ~~ i\"(({j;lfi_ 1, (T(—})

Yi ~ .f\"(m;.z.',».a;‘)”.)

® Notation

mean of P(X;|yo. ..., yi—1)as X,

-1

e fFP(Y. X ae X
mean of P(X;yo,....yi) as X,

the standard deviation of P(X; yp. ..., Yi—1) as o;
of P(X;lyo,-- -, Yi) as 0,»'
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Dynamic Model:

Tj N]V(Dimi—lazd,-)
Yy; ~NMizi,Xm,)

Start Assumptions: T; and X, are known
Update Equations: Prediction

Update Equations: Correction
Ki =Sy MT [MS; MT 45,17

T =T K[y - ME]
xf = [Id — KiM;]Z]

Algorithm 11.3: The Kalman Filter.
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FIGURE 11.9: The Kalman filter for a point moving on the line under our model of constant
velocity (compare with Figure 11.7). The state is plotted with open circles as a function of
the step i. The *s give T, , which is plotted slightly to the left of the state to indicate that
the estimate 1s made before the measurement. The xs give the measurements, and the +s
give T, , which is plotted slightly to the right of the state. The vertical bars around the
*s and the +s are three standard deviation bars, using the estimate of variance obtained
before and after the measurement, respectively. When the measurement 1s noisy, the bars

don’t contract all that much when a measurement is obtained (compare with Figure 11.10).
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Data Association

® Nearest neighbours

® choose the measurement with highest probability given predicted state
® popular, but can lead to catastrophe

® Probabilistic Data Association
® combine measurements, weighting by probability given predicted state
® oate using predicted state
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Applying the Kalman filter

Example: the jerseys
Write a dynamical model

eg constant velocity

Initialize

mark jersey in frame 1, or find interest points

Track by iterating:

Predict state in frame n from previous state, dynamical model
Predict frame n location from frame n state

Search for best patch around that location - this is the measurement
Correct the state estimate using the measurement
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Tracking: Crucial points

® (Careful image descriptions can make tracking easy
® vyou track things with either
® known appearance or
® fixed appearance

® (lean probabilistic model for tracking with
® [inear dynamics
® [inear measurements
® This is the Kalman Filter

® [f dynamics or measurements are not linear
® Representing probability distributions becomes very difficult
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