Learning to control

D.A Forsyth, UIUC

Topics

Scamper through basic reinforcement learning ideas

Imitation learning
® and its variants and problems
® as structure learning

First learned steering controller

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image

30x32 Video
Input Retina

“ ALVINN:

An autonomous Land vehicle in a neural Network, Pomerleau 1989

Markov Decision Process

- Mathematical formulation of the RL problem

- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, R, P, fy)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LFAN O

Fei-Fei+Johnson+Yeung 17

Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s,)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples rewardr,~ R(. | s,, @)

- Environment samples next state s, ~P(.|s, a))

- Agentreceives reward r, and next state s,

A policy mt is a function from S to A that specifies what action to take in
each state

t
Objective: find policy it* that maximizes cumulative discounted reward: Z'Y Tt
>0

Fei-Fei+Johnson+Yeung 17

A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. U I * for each transition
P (e.g.7r=-1)
4. down I

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei+Johnson+Yeung 17

A simple MDP: Grid World

*

+

+

+

.+.

+

B

*

+

+

B

.+_

Random Policy

Fei-Fei+Johnson+Yeung 17

Optimal Policy

The optimal policy n*
We want to find optimal policy t* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7" = arg maxE {Z VtTtlﬂ} with 8o ~ p(80), @z ~ m(:|8¢), 8t41 ~ P(:|8¢, at)
>0

Fei-Fei+Johnson+Yeung 17

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, r,, s;,a,, fy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V™(s) =E Z'ytrt|so =8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z 'yt'rt|sg = 8,ap = a, 7!']

t>0

Fei-Fei+Johnson+Yeung 17

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair: _ _

Q"(s,a) = m7?rlX]E Z’Yt’rdso =S,a0 =Q,T
t>0

Q* satisfies the following Bellman equation:
Q(,0) = Evne [r + ymaxQ"(s',)ls,q

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a)

The optimal policy n* corresponds to taking the best action in any state as specified by Q*

Fei-Fei+Johnson+Yeung 17

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
.
Q’H‘l(sa a’) =E [T T ’YHlaE},XQz(S y 4)|87 CL:|

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Fei-Fei+Johnson+Yeung 17

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg~¢ ['r' + 7 max Q*(s',ad)ls, a]

Forward Pass
Loss function: L;(0;) = Eg a0p() [(¥i = Q(s,056;))?]

;4 lteratively try to make the Q-value
where y; = Eg g [7' + ’)’mae}x Q(s',a’;0i-1)|s,a close to the target value (y) it

should have, if Q-function
corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 6):

Vo,Li(0;) = Eg amp():s/ e ['r + 7y max Q(s',a';0;-1) — Q(s,a;0;))Ve,Q(s,a; 90]

Fei-Fei+Johnson+Yeung 17

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Fei-Fei+Johnson+Yeung 17

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei+Johnson+Yeung 17

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

Z vYire|me

J(0) =E

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei+Johnson+Yeung 17

REINFORCE algorithm

Mathematically, we can write:

J(0) = Errp(rio) [7(7)]
= /T(T)p(’r; 0)dr

Where r(r) is the reward of a trajectory 7 = (30, ap,To,S1y - -)

Fei-Fei+Johnson+Yeung 17

REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) (7))

= [_T(T)p(T; 0)dr

Now let’s differentiate this: V4. (0) =/7‘(T)V9p('r;6’)d7 Intractable! Gradient of an

expectation is problematic when p

T depends on 6

However, we can use a nice trick: v,p(r:) = p(: g)vep(T; 6) _ p(7;0)Vglog p(T;0)
If we inject this back: p(T;0)
VoJ(0) = / (r(7)Velog p(7;0)) p(7;0)dT
T Can estimate with
= E7p(r;0) [r(7)Vglogp(7;0)] Monte Carlo sampling

Fei-Fei+Johnson+Yeung 17

VoJ(0) = / (r(7) Vs log p(7;8)) p(r; 0)dr

REINFORCE algorithm .y r0) [F(7) Vo log p(r:)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;) = HP(8t+1|3taat)W6(at|8t)
£>0

Thus: logp(r;0) = ¥ _ logp(se+1lst, ar) + log me(aclst)

t>0 Doesn’t depend on

And when differentiating: Vologp(r;6) = > Vglogme(acls:) yransition probabilities!
t>0

Therefore when sampling a trajectory z, we can estimate J(0) with

VeJ(0) = Z r(7)Velog me(at|st)

t>0

Fei-Fei+Johnson+Yeung 17

Intuition

Gradient estimator: Vg J () ~ Z r(7)Velog mg(at|st)
t>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Fei-Fei+Johnson+Yeung 17

Variance reduction
Gradient estimator: VJ(6) & ZT(T)VQ log mg(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) ~ Z (Z rt/) Vo log g (at|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ (0 Z (Z 'yt “tp,) Vo log mg(as|st)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VeJ(0) ~ Z (Z A Tty — b(st)) Vo log mg(a|ss)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17

How to choose the baseline?

VoJ (0 T (T ~ "ty — b(st)) Vi log mg(a:|st)

t>0 >t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

Fei-Fei+Johnson+Yeung 17

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.
Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q™ (s, a:) — V7 (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(0) ~ Z(Q”e(st, ar) — V7™ (s¢))Velogmg(at|st)
t>0

Fei-Fei+Johnson+Yeung 17

Actor-Critic Algorithm

Problem: we don’'t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,0) = Q7 (s,0) — V™ (s)

Fei-Fei+Johnson+Yeung 17

Why so many RL algorithms?

* Different tradeoffs
* Sample efficiency

» Stability & ease of use

fit a model/
. . ﬁ estimate return
* Different assumptions

generate

» Stochastic or deterministic?

samples (i.e.

* Continuous or discrete? run the policy)

* Episodic or infinite horizon?

t improve the

olic
* Different things are easy or hard in i

different settings
» Easier to represent the policy?
* Easier to represent the model?

Levine, ND

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.

- Good: simplest, cheapest form of supervision
- Bad: High sample complexity
Where is it successful so far?

- In simulation, where we can afford a lot of trials, easy to parallelize

* not in robotic systems:
1. action execution takes long
2. we cannot afford to fall

3. safety concerns
Crusher robot

Fragkiadaki, ND

Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the
‘black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Fragkiadaki, ND

Learning from demonstrations a.k.a. Imitation Learning:

Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

a) coming up with a reward that would generate such behavior,
b) coding up the desired policy directly.

Fragkiadaki, ND

The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.

Does this remind us of something...?

GANs! Generative Adversarial Networks (on state-action trajectories)

Generator Discriminator
& g Generated Real
2 3 Example Fake
Real
|
FG Example FD

Fragkiadaki, NByerative Adversarial Networks., Goodfellow et al. 2014

The Imitation Learning problem: Challenge

Actions along the trajectories are interdependent, as actions determine
state transitions and thus states and actions down the road.

interdependent labels -> structure prediction

Action interdependence in time:

Algorithms developed in Robaotics for imitation learning found
applications in structured predictions problems, such as, sequence

Fragglgaggia}h@\/labelling e.g. parsing.

Imitation Learning

For taking this structure into account, numerous formulations have
been proposed:

» Direct: Supervised learning for (mapping states to actions)
using the demonstration trajectories as ground-truth(a.k.a.
behavior cloning) + ways to handle the neglect of action
Interdependence.

» Indirect: Learning the latent /goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (next lecture)

Experts can be:

- Humans

- Optimal or near Optimal Planners/Controllers
Fragkiadaki, ND

Imitation Learning as supervised Learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

mo(ue|oy)
Behavior Cloning=Imitation Learning as Supervised learning
- Assume actions in the expert trajectories are 1.i.d.

- Train a classifier or regressor to map observations to actions at each
time step of the trajectory.

supervised

training learning

data

7\'()([11 |0t)

Fl‘agk}lflllgz%(bnlc\lI]E)veMg for Self-Driving Cars, Bojarski et al. 2016

Classifier or regressor?

Because multiple actions u may be plausible at any given observation o,
policy network P (ut|0t) usually is not a regressor but rather:

- Aclassifier (e.g., softmax output and cross-entropy loss, after
discretizing the action space)

m K
J(O0) == D Ly@=k10g[P(y) = klz(); 0)]
i=1 k=1
- A GMM (mixture components weights, means and variances are
parametrized at the output of a neural net, minimize GMM loss, (e.g.,
Hand writing generation Graves 2013)

- A stochastic network (previous lecture)

Fragkiadaki, ND

Independent in time errors

error at time t with probability
E[Total errors] = T

Fragkiadaki, ND

Compounding Errors

L

-—-** As you get further off the path, the probability
/ S~ of making an error grows, cause the classifier

thinks this state is rare

error at time t with probability

E[Total errors] = &(T + (T-1) + (T-2) + ...+ 1) & T2

Fragkiadaki, ND

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image Simulasted Road Image

30x32 Video
Input Retina

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989

Fragkiadaki, ND

Data Distribution Mismatch!

P~ (075) 7é Pro (Ot)

Expert trajectory
Learned Policy

—
\o.‘.'.‘.'-'-".""ﬂ- e, "
. -.'0"\“ — \...'o
No data on / "

how to recover = i ("-.‘I

Fragkiadaki, ND

Data Distribution Mismatch!

supervised learning +

supervised learning control (NAIVE)

SL succeeds when training and test data distributions match, that is a
Fragkiddakianpntal assumption.

Demonstration Augmentation: ALVINN 1989

Road follower

Road Intensity 45 Direction
Feedback Unit Output Units

e
A Q\' 29
'W’ Hidden
S Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

« Using graphics simulator for road images and corresponding steering angle
ground-truth

« Online adaptation to human driver steering angle control
« 3 layers, fully connected layers, very low resolution input from camera and lidar..

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:

Fra g‘igzi%u (’c)l oir:rﬁﬁ.and vehicle in a neural Network, Pomerleau 1989

Demonstration Augmentation: NVIDIA 2016

Rt:co@ed
@ Mfei?r:r‘vgle | Adjust for shift Desired steering command
and rotation
Network
: - . steering
[Center camera }—; R;:;dg:‘atsjg::‘ > CNN —vcommand (—)l
f
Back propagation | | Error - .
ey il el Additional, left and right
cameras with automatic
E grant-truth labels to
- recover from mistakes
J i

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...",

Fragki%&hleiENEeaming for Self-Driving Cars , Bojarski et al. 2016

Data Augmentation (3): Trails 2015

Deep Network Outputs

Neural
Network
BL s

Tum Co Turmn
Lok Straight Right

trail

s_cam
|_cam

W

Top view

Fragkiadél&'l,we Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data Dﬂ* — {01,U1, ...,ON,UN}

| run mo(uelor) to get dataset D, =

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Execute current policy and Query Expert
oy i New Data

Steering g—
from expert oo @D \ ’ @
S
’ @
N\
Nz 4§
g "AW
- Aggregate
New ‘ A= Dataset [~ All previous data h
Policy ’ ‘
¢ =
-—JC
- J
Supervised Leamning

Fl’agkiadaki s NIA Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut|0t) from human data DW* — {01,U1, ...,ON,uN}

A run 7Té?(ut|0t) to get dataset Dﬂ = {01, OM}

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

\Notice you might not actually need
a human here - if your states are
discretized, and you have enough data,

5. GOTO step 1. you might get this by matching

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Fragkladakl s NIA Reduction of Imitation Learning and Structured Predictior

Initialize D « 0.

Initialize 7, to any policy 1n 11

for: =1to N do
Letm; = ;7" + (]_ — Bz)ﬁz
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by 7
and actions given by expert.
Aggregate datasets: D «— D D;.
Train classifier ;51 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

Fragkiadaki, ND

Structured prediction

Structured prediction: a learner makes predictions over a set of interdependent
output variables and observes a joint loss.

Example: part of speech tagging

he monster ate the sandwich
t

NN Vb Dt NN

A structured prediction problem consists of an input space X, an output space

Y, a fixed but unknown distribution D over X X Y. and a non-negative loss
function 1(y*,4) — RZ° which measures the distance between the true y*and
predicted g outputs. The goal of structured learning is to use N

samples (x;, yz)fil to learn a mapping f : X —)Y that minimizes the expected
structured loss under D.

Fragkiadaki, ND

Traditional strategy
® Construct a parametric cost function H (X, Y; 9)

® So that, for training X*

argmax

v H(X*,Y;0)

® js close to correct Y*

® (see movies for some details on construction)

Fragkiadaki, ND

Sequence labelling:

Part of speech tagging

= the monster ate the sandwich

Dt \Ig Vb Dt \[g

Fragkiadaki, ND

HMM: Making scribal Latin searchable

® Goal: make the ink 1in a handwritten text searchable
® [ssue: not a good 1dea to transcribe

® Strategy:
® compute log P(inklknown sequence)
® for aline
® known sequence can be a regular expression
® c¢g (character)* mihi (character)*
® ecx: check you can do this w/ DP
® rank lines by this, report

HMM: Making scribal Latin searchable

® Goal: make the ink in a handwritten text searchable

® [ssue: few examples of glyphs
® hard to label

® Strategy:
® doesn’t really matter
® like a substitution cypher - letter frequencies are what’s important
® AND you can grow the pool of examples:
® when you see “interrogave?unt” you know it’s “interrogaverunt”
® 5o you can get another glyph

Lmimem acmparan. nume hge plane & o noaa .
£ quo Crphic bane ob cam e mol €
leevum veferre ur merom pofiic oosdae-

Sl cognoftef” e ey e bane noface .

occuparac- nunc hge pla

Figure 1: Left, a full page of our manuscript, a 12°th century manuscript of Terence’s
Comedies obtained from [1]. Top right, a set of lines from a page from that document and
bottom right, some words in higher resolution. Note: (a) the richness of page layout; (b)
the clear spacing of the lines; (c) the relatively regular handwriting.

abedefigbtimnopqrfouuxy

michi: Spe incerta cerfum mihi

laborem sustuli,

Svpc e ermm HM

laborem firftuls .

mihi: Faciuntne intellegendo ut nil intellegant?

{ ﬁam\b t‘w mulhgmdo uv }n:Hk “T(tu’lglllt .

michi: Nonnumquam conlacrumabat. placuit tum id mihi.

Hon numquam onlacrimabac- placure wm d "+H

mihi: Placuit: despondi. hic nuptiis dictust dies.

?laauc-dd'pond*'an t;upmf di&ufeft duef.

michi: Sto exspectans siquid mi imperent. venit una, "heus tu" inquit "Dore,

Sto exfpeltant awmmmmhﬂfm mque bore.

mihi: Meam ne tangam? CH. Prohibebo inquam. GN. Audin tu? hic furti se adligat:

&cam mmgmf'mxl\ulnbﬁo:tnqtm-au&m

mH fm‘dfcangt.

michi: Quando nec gnatu’ neque hic mi quicquam obtemperant,

guando nec nauf” negp b n+|:H

quicquam obemperant -

mihi: Habet, ut consumat nunc quom nil obsint doli;

baber ur confiumat nunc.cum *\1

-

H

[obfine dolx .

Figure 7: The handwritten text does not fully correspond to the transcribed version; for
example, scribes commonly write “michi” for the standard “mihi”. QOur search process
reflects the ink fairly faithfully, however. Left the first four lines returned for a search on
the string “michi”; right the first four lines returned for a search on the string “mihi”,
which does not appear in the document. Note that our search process can offer scholars
access to the ink in a particular document, useful for studying variations in transcription,

efc.

tu: Quid te futurum censes quem adsidue exedent? tu: Quae ibi aderant forte unam aspicio adulescentulam

Qud w fn._ TL\un_;mfchuan affidue evedens ¢ | Quge bt adeamcforee unam afprao dddtRnHam

Figure 8: Searches on short strings produce substrings of words as well as words (we show
the first two lines returned from a search for “tu”).

Optimizing Graphical Models for Structured prediction

Graph labelling (77 /
° / | ‘ / | ° ° | Labeling image
* Encode output labels as a MRF /LR F TR T ‘
* Learn parameters of that model to: R P
E: . : X7 ,":" : o E D) Input variables
* maximize p(true labels | input) OIOIOIOIS.

* minimize loss(true labels, predicted labels)

Let G = (V, E) be a graph such that

Y = (Y,).cv, so that Y is indexed by the vertices of G. Then (X, Y") is a conditional random field when
the random variables Y;,, conditioned on X, obey the Markov property with respect to the graph:
p(Yy| X, Yy, w # v) = p(Yy| X, Yy, w ~ v), where w ~ v means that w and v are neighbors in G.

Fragkiadaki, ND

Optimizing Graphical Models for Structured prediction

* Encode output labels as a MRF

v Labeling image

* Learn parameters of that model to:
* maximize p(true labels | input) GOGHGIICOIE v

* minimize loss(true labels, predicted labels)

* Assumed Independence assumptions may not hold

« Computationally intractable with too many “edges” or non-
decomposable loss functions (that involve many ys)

Fragkiadaki, ND

Instead: Decomposition of label

Sequence generation/labelling:

We can define an ordering and generate labels one at a time, where each
output generated depends on all previous ones. E.g., sequential data admits
the natural sequential ordering.

Image generation/labelling:

Here again we can define an ordering:

Pixel Recurrent Neural Networks, van den Oord et al

Fragkiadaki, ND

Structured prediction as sequential decision making

S ? decision
ProjMd] Vb | Dt Nn fcladfe]g
decision

ProfMd| Vb] Dt | Nn felaiifelg

decision

M]Eﬂaction

Fragkiadaki, ND

Structured prediction as sequential decision making

4
-
4
- |
d
<%

Fragkiadaki, ND

Structured prediction as sequential decision making

= the monster ate the sandwich
= Dt \[g Vb Dt Nn

- Example: Sequence labelling

- State: captures input sequence x and whatever labels (here part of
speech tags) we have produced so far

- Actions: Next label to output

- Policy: a mapping of the input x and labels generated so far to the next
label

- Reward: agreement of the predicted \nat{y} with ground-truth y*: ¢(e) = ¢(y*,y.)

Fragkiadaki, ND

Recurrent Neural Networks

- RNNSs tie the weights at each time step

- Condition the neural network on all previous inputs

- In principle, any interdependencies can be modeled between inputs
and outputs, as well as between output labels.

- In practice, limitations from SGD training, capacity, initialization etc.

Fragkiadaki, ND

Recurrent Neural Networks

For sequence labelling problems, actions of the labelling policies are Y, e.g.,
part of speech tags

eoee| (eeee| (eoeo

For sequence generation, actions of the labelling policies are ¥t = T¢+1, e.g.,
word in answer generation P(zi1 = vjlae, ... 71) = G5

o, 1 i
ht—l ht ht+1
: W O W O
O O
—— > > —>
o O O
o O O

Fragkiadaki, ND

Recurrent Neural Networks

The network is typically trained to maximize the log-likelihood of the ou jput

sequences given the input sequences of a training set D = {(z RIETION
* (2) ,.(2)
f* = arg mg,xlog Z Py(y'*, z'\V)
(z(3) y())eD

If the likelihood of an example decomposes over individual time steps:

log Pa(ylz) =) " log Po(ye|h:)
t

Else loss is computed at the end of the sequence and is back
propagated through time.

A learned policy is the inference function of the model:
O(hy) = argmax P(y: = y|h¢: 0)
y
The reference policy is the policy that always outputs the true labels:

* —
Fragkiadaki, ND 0 (h't) = Ut

Recurrent Neural Networks

The regular training procedure of RNNs treat true labels Yt as actions
while making forward passes. Hence, the learning agent follows
trajectories generated by the reference policy rather than the learned
policy. In other words, it learns:

A5P = arg Irbin En~d. . [lo(h)]

However, our true goal is to learn a policy that minimizes error under
Its own induced state distribution:

) = arg m@in En~a,|lo(h)]

Fragkiadaki, NBnitation Learning with Recurrent Neural Networks, Nyuyen 2016

DAGGER for sequence labelling/generation with RNNs

1: function TRAIN(N, @)
2: Intialize o = 1.
3: Initialize model parameters 6.
4: fori=1..N do
5: Seta =a - p.
6: Randomize a batch of labeled examples.
7: for each example (z, %) in the batch do
8: Initialize ho = ®(X).
9: Initialize D = {(hg, %0)}-
10: fort=1...|Y|do
11: Uniformly randomize a floating-number 3 € [0,1).
12: if o < [3 then
13: Use true label gt—l = Yt-1
14: else
15: Use predicted label: §;_, = argmax, P(y | ht—1;8).
16: end if
17: Compute the next state: hy = fo(hy—1,5t—1).
18: Add example: D = DU {(h¢, y¢)}-
19: end for
20: end for
21: Online update ¢ by D (mini-batch back-propagation).

22: end for
23: end function

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Bengio(Samy) et al.
Fragki adaki, Nitation Learning with Recurrent Neural Networks, Nyuyen 2016

Imitation Learning

Two broad approaches :

+ Direct: Supervised training of policy (mapping states to
actions) using the demonstration trajectories as ground-

truth (a.k.a. behavior cloning)

* Indirect: Learn the unknown reward function/goal of the
teacher, and derive the policy from these,
a.k.a. Inverse Reinforcement Learning

Fragkiadaki, ND

