Point sets, Maps and
Navigation - ||

D.A. Forsyth

Robustness 1s a serious problem

9 g -
o o
o
& g -
o ° - -
L
o -
z o o £ o+
.__9'--
"o
- o
8 - 84 -~
i i
°
o
o | 2
Y Y
T T T T T T T T T T
-40 -20 0 20 40 -40 -20 0 20 40
xv nxv

FIGURE 10.6: On the left, a synthetic dataset with one independent and one ez-
planatory variable, with the regression line plotted. Notice the line is close to the
data points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further
from the line.

Robustness 1s a serious problem

N . N Residuale againat fitted values,
. — wigh sainst hight
all points
.]
§ .
§ -
L]
§ .
§ .
g) : '
£ - k|
H ;
& 3
§ i L]
o -
S -
$‘§ -
.8. T T T T T T T T T T
30 40 50 &0 70 20 100 150 200 280
Height Fitted values

FIGURE 10.7: On the left, weight regressed against height for the bodyfat dataset.
The line doesn’t describe the data particularly well, because it has been strongly
affected by a few data points (filled-in markers). On the right, a scatter plot of the
residual against the value predicted by the regression. This doesn’t look like noise,
which is a sign of trouble.

Key 1ssue:

® Squaring a large number produces a huge number
® A few wildly mismatch points can throw off R, t

e Fixes:
® remove matches with “large” distances
® actually, quite good
® but what happens if new such pairs emerge?
® apply an M-estimator
® deals with new pairs

You should have watched the IRLS movie for regression by now

Robust estimation

* |teratively reweighted least squares (IRLS)
o Estimates weights in every iteration to down-weigh outliers

min||lw(4x — b)||
X

= Non-linear estimation with robust loss function (M-estimators)
o A robust loss function is used that down-weighs the influence of outliers

min) pilllfGxoII?)

min||A(x) — bl|
X

Non-linear estimation with robust loss function

min > pi(lf; ClI?)

= Non-linear optimization
(e.g. Levenberg-Marquard)

» |teration necessary
= No explicit weight |

computation necessary 05l
» | oss function should be 06}
differentiable 0al
» Jacobian needs to be 0.2}
calculated 0

Weighted Least-Squares

= Not all residuals are equally important. Weights define the importance.
= Weights are collected in diagonal weight matrix

min|lw(4x — b)||
X
x = (ATwA)~tATWb

= Still one-step closed form solution.
= But, how to find the weights?

* Online estimation of the weights from robust cost function -> IRLS

Iteratively reweighted least squares (IRLS)

1. Write the problem to solve as a weighted least squares optimization

Clx,w) = 2 w; f; (x) cost function

2. Solve iteratively: At each step define weights
wi = w;(x")

and define update step

xt*1 = argmin C(x, w?)

X
= argminz w! fi (x) x = (ATwA)~tATwb
X .
l

3. Hope that it converges to what you want

How to choose the weights

» Weighted least squares minimizes the following cost
Clew) =) wify(x)
i
* We wish to minimize the cost with robustifier p

Co(0) =) p(fi(x))

= Minima of both cost functions need to be the same

VC(x,w) = 0if and only ifVC,(x) = 0

Vw;fi(x) = Vp(fi(x))
wiVfi(x) = p"(i(x))V fi(x)
w; = p'(fi(x)) required weights

Example L,

* L, norm means absolute distance

fi(x) = d(x,y,)?
p(s) =+/s

Co(0) = Y p(fi) =) ldCx,y)l

» Weight computation:

Wi = P'(fi(x))
~f (x) 712

= Ed(x, yi) ™

|

sum of absolute distances

0.9F

0.8p

0.7

0.6

0.5)

0.4F

0.3

0.2f

0.1F

45H

35F

251

1.5}

0.5p

h(x)

02 0.4 0.6

wiy)

08

m® %)

0.9}

08}

0.7}

06

05}

04

03}

02

0.1

Advantage: Robust

Disadvantage:
* Weights not defined at 0
« Can stop at non-minimum

More robust loss functions

e

Tukoy

loss function p(x)
L, | x|
if |x| <k x2/2
Huber {if x| > k "
k(lxl =)
Tukey {if x| >k | Jk?/6(1~ (1 -(3)
k?/6
Cauchy =

?log(l + (x/k)?)

