Point sets, Maps and Navigation - III

D.A. Forsyth

Localization

- We can now robustly register a point set to a point set
 - This is localization
 - Look at LIDAR
 - register to map
 - I know where I am
- Q:
 - how to make the map?
 - registration + bundle adjustment
 - how to incorporate movement estimates and model uncertainty?
 - next big topic

Bundle adjustment

- The problem:
 - Register B to A, C to B, D to C
 - -> then you know D->A, but it isn't very good...

Q: Why not C->A?

Bundle adjustment

- Loop closure problems
 - Why is this happening?

$$\mathcal{T}_{C o B}$$
 $\mathcal{T}_{B o A}$
 $\mathcal{T}_{B o C}$
 $\mathcal{T}_{D o C}$

$$\mathcal{T}_{D \to A} = \mathcal{T}_{B \to A} \circ \mathcal{T}_{C \to B} \circ \mathcal{T}_{D \to C}$$

But this isn't the one that minimizes the D, A overlap errors!

Strategies

- (Pretty much always)
 - Fix one set of points
 - Register in sequence
 - usually defined by (say) time
 - Now fix the resulting estimates
 - these are a start point

Fixing the maps - I

$$\mathcal{T}_{C o B}$$
 $\mathcal{T}_{B o A}$
 $\mathcal{T}_{B o A}$
 $\mathcal{T}_{D o C}$
 $\mathcal{T}_{B o A}$
 $\mathcal{T}_{C o A}$
 $\mathcal{T}_{D o A}$
 $\mathcal{T}_{D o A}$

 $\mathcal{T}_{D \to A} = \mathcal{T}_{B \to A} \circ \mathcal{T}_{C \to B} \circ \mathcal{T}_{D \to C}$

Fixing the maps - II

Simplest

- Repeat:
 - Fix N-1, use ICP/IRLS to est. last
- + Closed form solutions
- - Convergence issues
- - Inefficient

Cleaner

- One least squares optimization problem
 - in all maps
 - Newton's method
- + Efficient
- - Local minima
- - Can be very large optimization