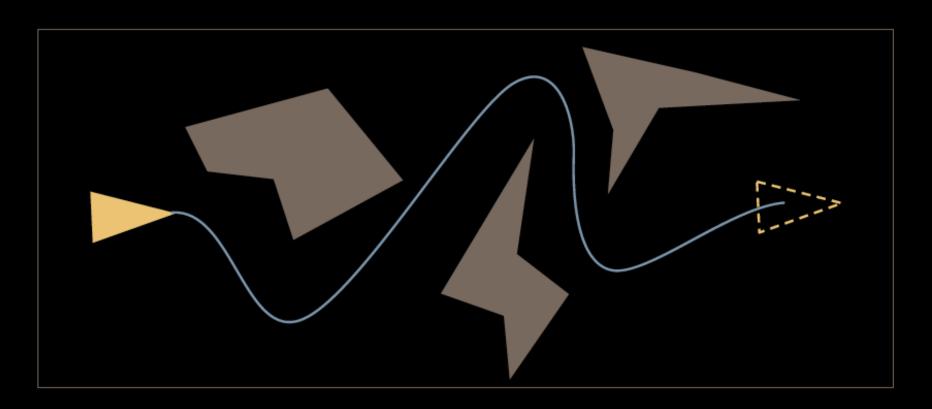
Motion Planning I

D.A. Forsyth (with a lot of H. Choset, and some J. Li)

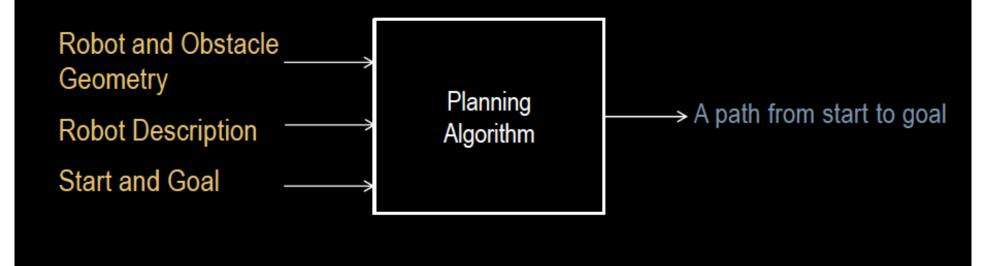
What is motion planning?

- The automatic generation of motion
 - Path + velocity and acceleration along the path



Basic Problem Statement

- Motion planning in robotics
 - Automatically compute a path for an object/robot that does not collide with obstacles.



Why is this not just optimization?

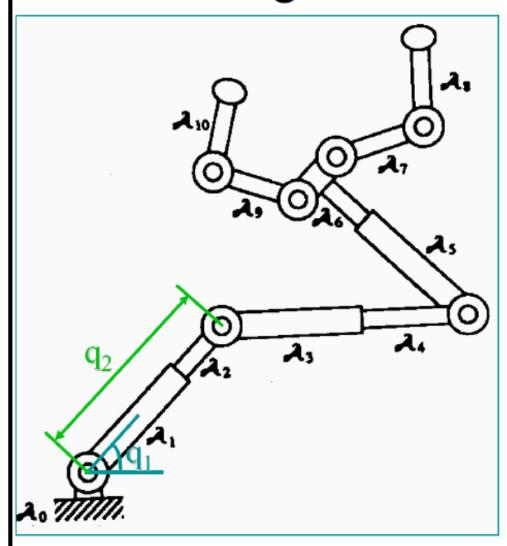
- Find minimum cost set of controls that
 - take me from A to B
 - do not involve
 - collision
 - unnecessary extreme control inputs
 - unnecessary extreme behaviors

minimize
$$f(\mathbf{x})$$
 (1a) subject to (1b) These will have to deal with collisions, etc. $g_i(\mathbf{x}) \leq 0, \quad i=1,2,\ldots,n_{ineq}$ (1c) $h_i(\mathbf{x})=0, \quad i=1,2,\ldots,n_{eq}$ (1d)

Is motion planning hard? **Basic Motion** Planning Problems **EXPSPACE EXPTIME PSPACE** NP NL

Li slides

Degrees of Freedom

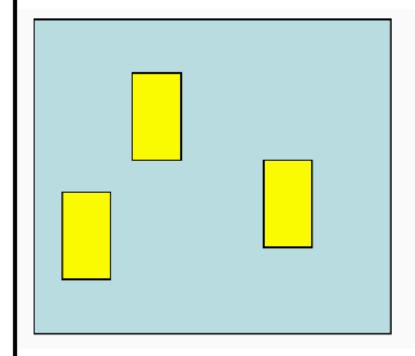


- The geometric configuration of a robot is defined by p degrees of freedom (DOF)
- Assuming p DOFs, the geometric configuration A of a robot is defined by p variables:

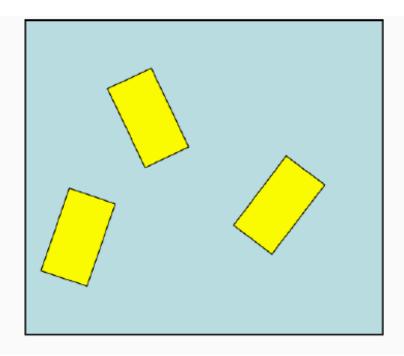
$$A(\mathbf{q})$$
 with $\mathbf{q} = (q_1, ..., q_p)$

- Examples:
 - Prismatic (translational) DOF: q_i is the amount of translation in some direction
 - Rotational DOF: q_i is the amount of rotation about some axis

Examples

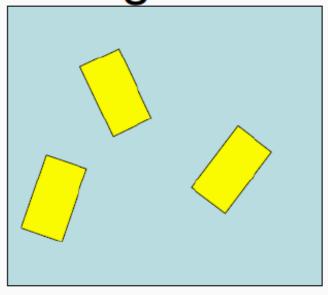


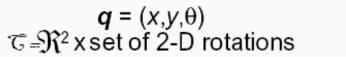
Allowed to move only in x and y: 2DOF

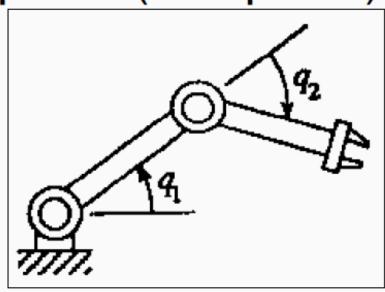


Allowed to move in x and y and to rotate: 3DOF (x, y, θ)

Configuration Space (C-Space)



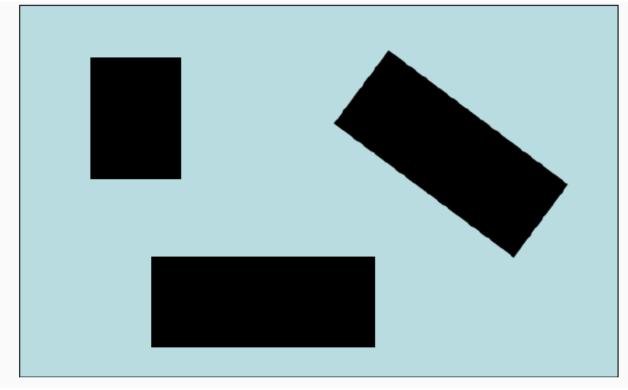




 $\mathbf{q} = (q_1, q_2)$ $\mathbb{G} = 2\text{-D rotations } \times 2\text{-D rotations}$

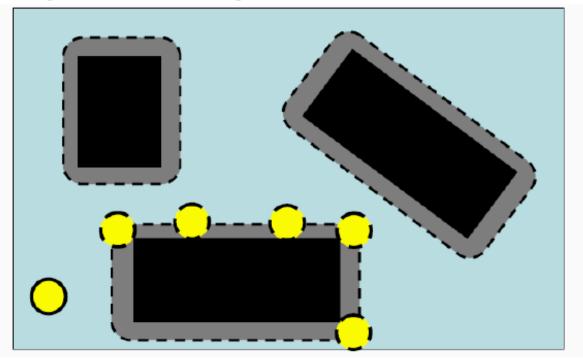
- Configuration space T = set of values of q corresponding to legal configurations of the robot
- Defines the set of possible parameters (the search space) and the set of allowed paths

Free Space: Point Robot



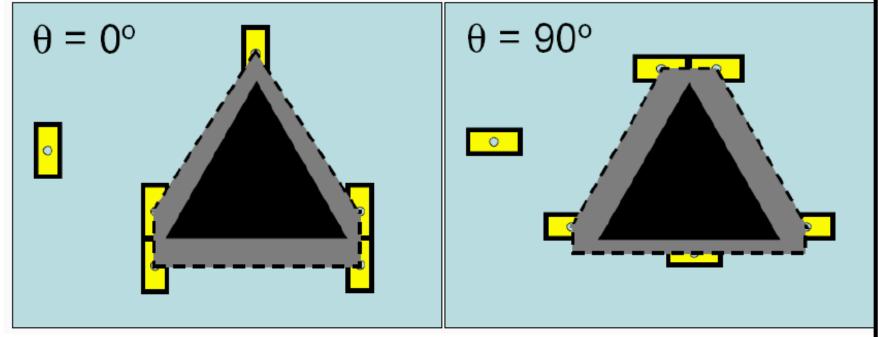
- G_{free} = {Set of parameters q for which
- *A*(*q*) does not intersect obstacles}
- For a point robot in the 2-D plane: R² minus the obstacle regions

Free Space: Symmetric Robot



- We still have G = R² because orientation does not matter
- Reduce the problem to a point robot by expanding the obstacles by the radius of the robot

Free Space: Non-Symmetric Robot



- The configuration space is now three-dimensional (x,y,θ)
- We need to apply a different obstacle expansion for each value of θ
- We still reduce the problem to a point robot by expanding the obstacles

Any Formal Guarantees? Generic Piano Movers Problem

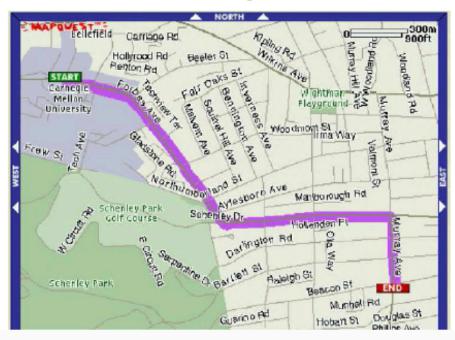
- Formal Result (but not terribly useful for practical algorithms):
 - − p: Dimension of ^C
 - m: Number of polynomials describing \mathcal{T}_{free}
 - d: Max degree of the polynomials
- A path (if it exists) can be found in time exponential in p and polynomial in m and d

[From J. Canny. "The Complexity of Robot Motion Planning Plans". MIT Ph.D. Dissertation. 1987]

Observation

- Generally, searching a graph is pretty straightforward
 - Dijkstra, A*, etc know how to do this
- Strategy
 - get a graph we can search

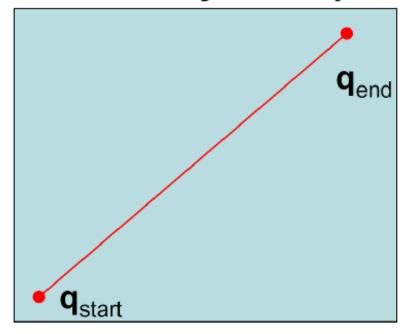
Roadmaps



General idea:

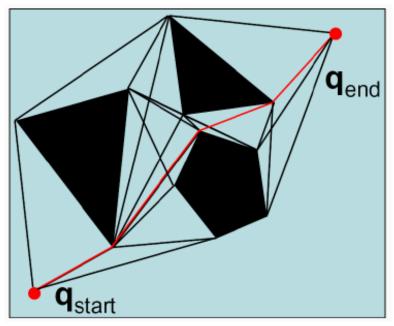
- Avoid searching the entire space
- Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles
- Find a path between q_{start} and q_{goal} by using the roadmap

Visibility Graphs



In the absence of obstacles, the best path is the straight line between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal}

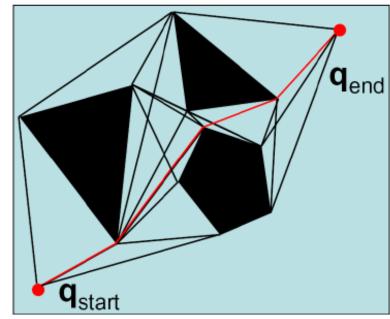
Visibility Graphs



- Visibility graph $G = \text{set of unblocked lines between vertices of the obstacles} + <math>\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal}
- A node P is linked to a node P' if P' is visible from P
- Solution = Shortest path in the visibility graph

Issues

- Constructing
 - Relatively straightforward with a sweep algorithm
 - Variant (visibility complex) root cause of early computer games
 - Wolfenstein 3D, Doom II, etc
- What if configuration space is not 2D
 - You can still construct, MUCH harder
- MANY locally optimal paths
 - topology of free space clearly involved



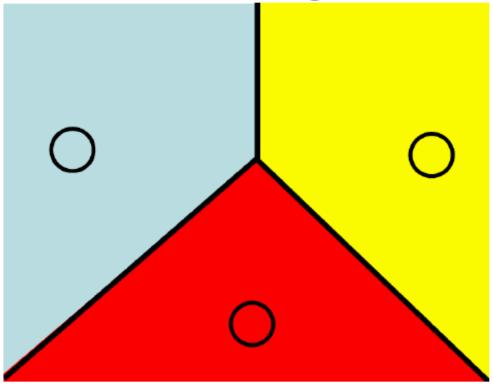
Visibility Graphs: Weaknesses

- Shortest path but:
 - Tries to stay as close as possible to obstacles
 - Any execution error will lead to a collision
 - Complicated in >> 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"

Voronoi Diagrams

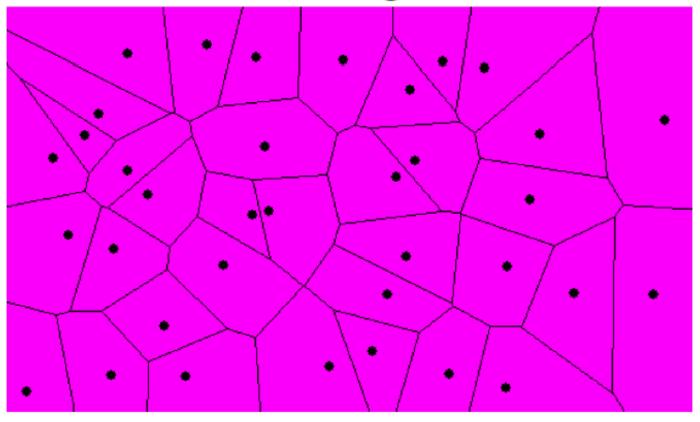
- Given a set of data points in the plane:
 - Color the entire plane such that the color of any point in the plane is the same as the color of its nearest neighbor

Voronoi Diagrams



- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from > 2 data points

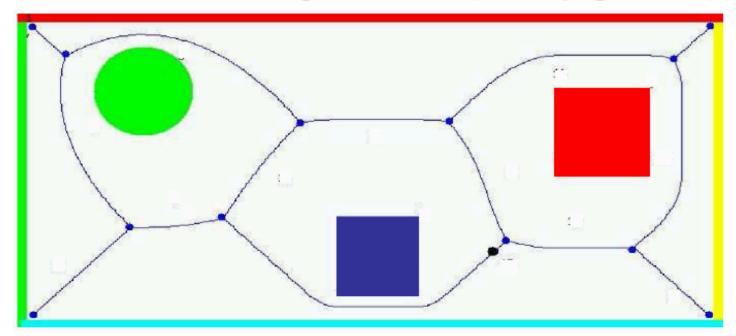
Voronoi Diagrams



- Complexity (in the plane):
- O(N log N) time
- O(*N*) space

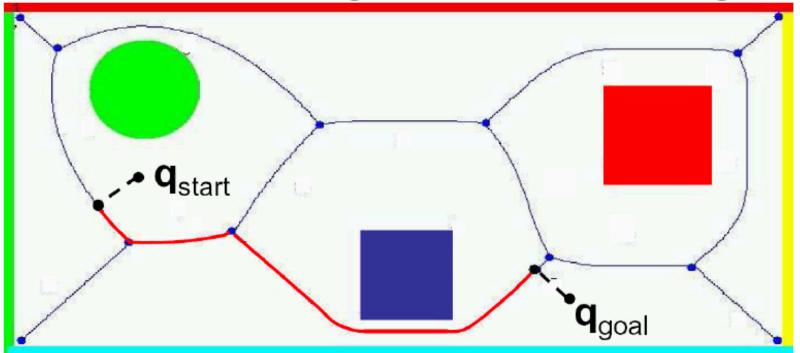
(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for an interactive demo)

Voronoi Diagrams (Polygons)



- Key property: The points on the edges of the Voronoi diagram are the furthest from the obstacles
- Idea: Construct a path between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal} by following edges on the Voronoi diagram
- (Use the Voronoi diagram as a roadmap graph instead of the visibility graph)

Voronoi Diagrams: Planning

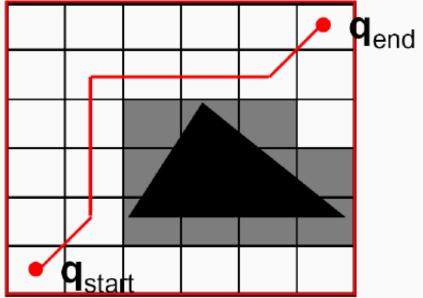


- Find the point q*_{start} of the Voronoi diagram closest to q_{start}
- Find the point q*_{goal} of the Voronoi diagram closest to q_{goal}
- Compute shortest path from q*_{start} to q*_{goal} on the Voronoi diagram

Voronoi: Weaknesses

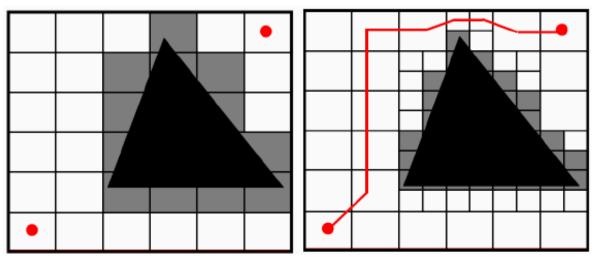
- Difficult to compute in higher dimensions or nonpolygonal worlds
- Approximate algorithms exist
- Use of Voronoi is not necessarily the best heuristic ("stay away from obstacles") Can lead to paths that are much too conservative

Approximate Cell Decomposition



- Define a discrete grid in C-Space
- Mark any cell of the grid that intersects $\mathfrak{T}_{\text{obs}}$ as blocked
- Find path through remaining cells by using (for example) A* (e.g., use Euclidean distance as heuristic)
- Cannot be complete as described so far. Why?

Approximate Cell Decomposition



- Cannot find a path in this case even though one exists
- Solution:
- Distinguish between
 - Cells that are entirely contained in Tobs (FULL) and
 - Cells that partially intersect [™]Cobs (MIXED)
- Try to find a path using the current set of cells
- If no path found:
 - Subdivide the MIXED cells and try again with the new set of cells

Approximate Cell Decomposition: Limitations

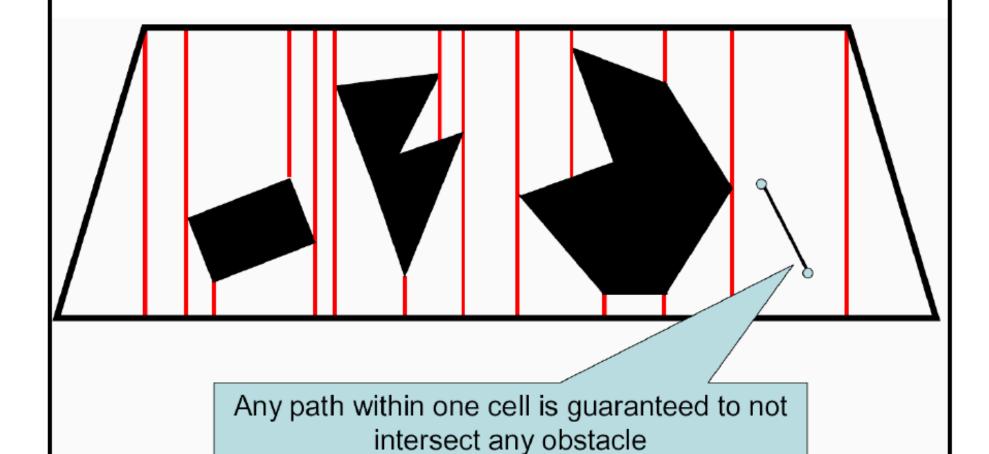
Good:

- Limited assumptions on obstacle configuration
- Approach used in practice
- Find obvious solutions quickly

Bad:

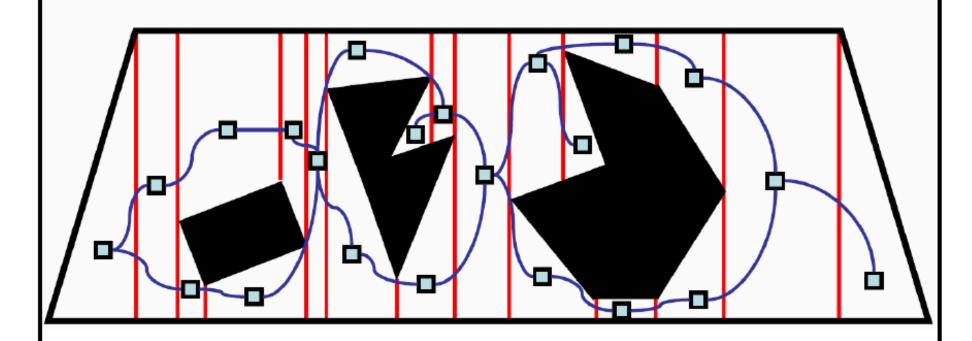
- No clear notion of optimality ("best" path)
- Trade-off completeness/computation
- Still difficult to use in high dimensions

Exact Cell Decomposition



Choset slides

Exact Cell Decomposition

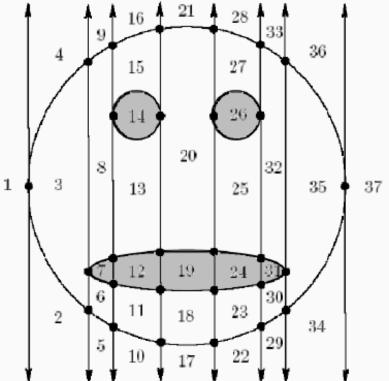


The graph of cells defines a roadmap

Exact Cell Decomposition $\mathbf{q}_{\mathrm{start}}$ $\mathbf{q}_{\mathsf{end}}$

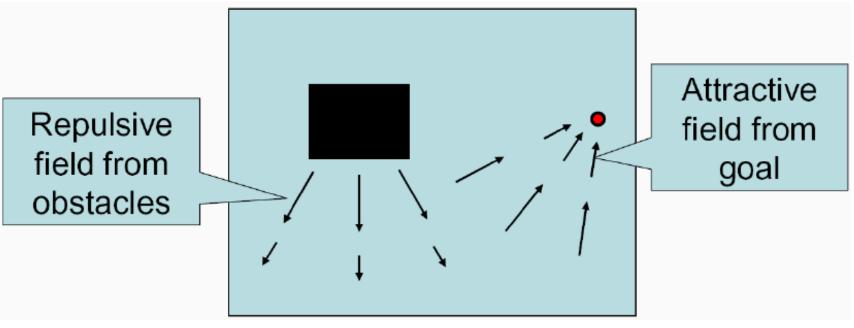
 The graph can be used to find a path between any two configurations

Exact Cell Decomposition

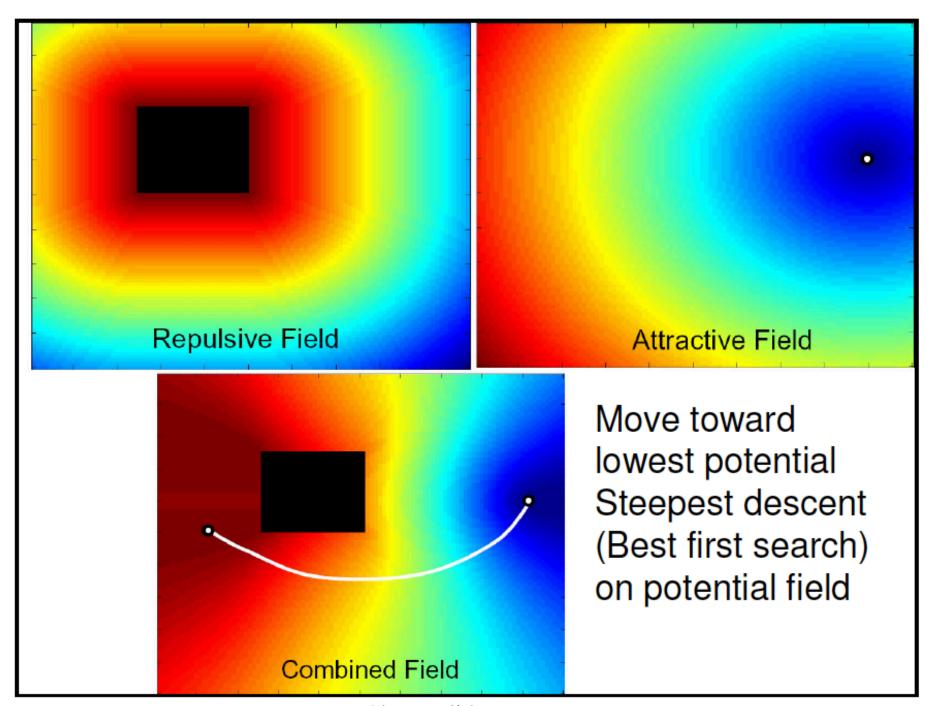


- A version of exact cell decomposition can be extended to higher dimensions and non-polygonal boundaries ("cylindrical cell decomposition")
- Provides exact solution → completeness
- Expensive and difficult to implement in higher dimensions

Potential Fields



- Stay away from obstacles: Imagine that the obstacles are made of a material that generate a repulsive field
- Move closer to the goal: Imagine that the goal location is a particle that generates an attractive field



Choset slides

$$U_g(\mathbf{q}) = d^2(\mathbf{q}, \mathbf{q}_{goal})$$

Distance to goal state

$$U_o(\mathbf{q}) = \frac{1}{d^2(\mathbf{q}, Obstacles)}$$

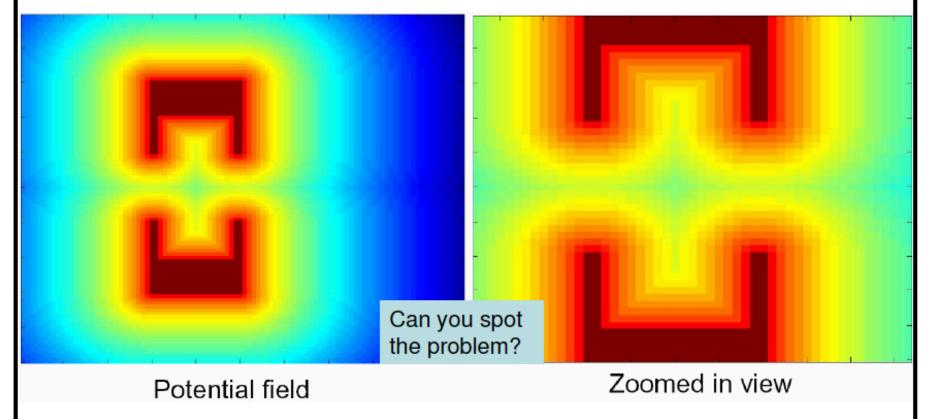
Distance to nearest obstacle point.

Note: Can be computed efficiently by using the distance transform

$$U(\mathbf{q}) = U_g(\mathbf{q}) + \lambda U_o(\mathbf{q})$$

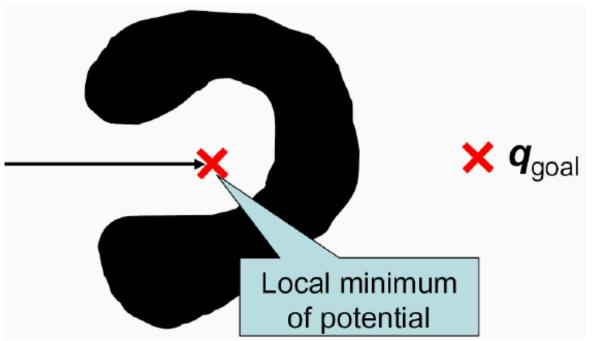
λ controls how far we stay from the obstacles

Potential Fields: Limitations



- Completeness?
- Problems in higher dimensions

Local Minimum Problem



- Potential fields in general exhibit local minima
- Special case: Navigation function
 - $-U(\boldsymbol{q}_{\text{goal}})=0$
 - For any \boldsymbol{q} different from \boldsymbol{q}_{goal} , there exists a neighbor \boldsymbol{q} such that $U(\boldsymbol{q}) < U(\boldsymbol{q})$

Getting out of Local Minima I

- Repeat
 - $-If U(\mathbf{q}) = 0 return Success$
 - If too many iterations return Failure
 - -Else:
 - Find neighbor \mathbf{q}_n of \mathbf{q} with smallest $U(\mathbf{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$ OR \boldsymbol{q}_n has not yet been visited
 - -Move to \mathbf{q}_n ($\mathbf{q} \leftarrow \mathbf{q}_n$)
 - –Remember **q**_n⁻

May take a long time to explore region "around" local minima

Getting out of Local Minima I

- Repeat
 - $-If U(\mathbf{q}) = 0 return Success$
 - If too many iterations return Failure
 - -Else:
 - Find neighbor \boldsymbol{q}_n of \boldsymbol{q} with smallest $U(\boldsymbol{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$ OR \boldsymbol{q}_n has not yet been visited
 - -Move to \mathbf{q}_{n} ($\mathbf{q} \leftarrow \mathbf{q}_{\mathrm{n}}$)
 - -Remember **q**_n

May take a long time to explore region "around" local minima

- Think of this the following way:
 - impose a grid
 - do depth first search on the potential
- Idea:
 - other kinds of search
 - randomization should help a lot
- Concern:
 - what if q has lots of neighbors?

Getting out of Local Minima II

- Repeat
 - If $U(\mathbf{q}) = 0$ return Success
 - If too many iterations return Failure
 - Else:
 - Find neighbor \mathbf{q}_n of \mathbf{q} with smallest $U(\mathbf{q}_n)$
 - If $U(\boldsymbol{q}_{\mathsf{n}}) < U(\boldsymbol{q})$
 - Move to $\mathbf{q}_n (\mathbf{q} \leftarrow \mathbf{q}_n)$

Similar to stochastic search and simulated annealing:
We escape local minima faster

- Else
 - Take a random walk for T steps starting at q_n
 - Set q to the configuration reached at the end of the random walk

Getting out of Local Minima II

- Repeat
 - If $U(\mathbf{q}) = 0$ return Success
 - If too many iterations return Failure
 - Else:
 - Find neighbor \mathbf{q}_n of \mathbf{q} with smallest $U(\mathbf{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$
 - Move to \mathbf{q}_n ($\mathbf{q} \leftarrow \mathbf{q}_n$)

Similar to stochastic search and simulated annealing: We escape local minima

- Else
 - Take a random walk for T steps starting at q_n
 - Set q to the configuration reached at the end of the random walk

faster

• Intuition:

- random walk should get you out of local minima
- then slide down the potential function

• Concern:

- what if dimension is high?
 - random walk may not get out of local minima efficiently