Motion Planning |

D.A. Forsyth
(with a lot of H. Choset, and some J. Li1)

What i1s motion planning?

» The automatic generation of motion

» Path + velocity and acceleration along the path

L1 slides

Basic Problem Statement

 Motion planning in robotics

- Automatically compute a path for an object/robot that does not collide

with obstacles.

Robot and Obstacle
Geometry

Robot Description
Start and Goal

Planning
Algorithm

——> A path from start to goal

L1 slides

Why 1s this not just optimization?

® Find minimum cost set of controls that
e take me from A to B
® do not involve
® collision
® unnecessary extreme control inputs
® unnecessary extreme behaviors

minimize f(x) (1a)
subject to (1b)
These will have to deal gi(x) <0, i=1,2,... Nineg (1c)

with collisions, etc.

hi(x) =0, i=1,2 ... Neq (1d)

Is motion planning hard?

Basic Motion
Planning Problems

EXPSPACE
EXPTIME

L1 slides

Degrees of Freedom

« The geometric configuration of a
As robot is defined by p degrees of
freedom (DOF)

* Assuming p DOFs, the

O O A, geometric configuration A of a
robot is defined by p variables:

A 10 O

As | A(g) with g =(gy,...,,)

O * Examples:

Ay » Prismatic (translational)
DOF: g, is the amount of
translation in some direction
* Rotational DOF: g; is the
amount of rotation about
some axis

QOur car has 3

Examples

0@ /

Allowed to move only Allowed to move in x

In x and y: 2DOF

and y and to rotate:
3DOF (x,y,0)

Choset slides

Configuration Space (C-Space)

A\
7 L/

T~

q = (x.y,0) q=1(919,) |
< R2x set of 2-D rotations G = 2-D rotations x 2-D rotations

« Configuration space G = set of values of q

corresponding to|legal configurations| of the
robot

* Defines the set of possible parameters (the
search space) and the set of allowed paths

Choset slides

Free Space: Point Robot

* G = {Set of parameters q for which

A(q) does not intersect obstacles}
« For a point robot in the 2-D plane: R?
minus the obstacle regions

Choset slides

Free Space: Symmetric Robot

« We still haveGC= R?2 because

orientation does not matter

* Reduce the problem to a point
robot by expanding the obstacles by
the radius of the robot

Choset slides

Free Space: Non-Symmetric Robot

6 = 0° 6 = 90°

=1

 The configuration space is now three-
dimensional (x,y,0)

* We need to apply a different obstacle
expansion for each value of 6

» We still reduce the problem to a point
robot by expanding the obstacles

Choset slides

Any Formal Guarantees? Generic
Piano Movers Problem

« Formal Result (but not terribly useful for practical
algorithms):
— p: Dimension of G
— m: Number of polynomials describing G
— d: Max degree of the polynomials

A path (if it exists) can be found in time
exponential in p and polynomial in m and d

[From J. Canny. “The Complexity of Robot Motion Planning Plans”. MIT Ph.D. Dissertation. 1987]

Choset slides

Observation

Generally, searching a graph is pretty straightforward
® Djjkstra, A*, etc - know how to do this

Strategy

® oct a graph we can search

Roadmaps

~Wars Etﬂgf;é-id Ca"mohﬂ ‘_\ =

Holyrood Rd-~ gagler 51 ™
Renton iy

'''''''

P General idea:
— Avoid searching the entire space

— Pre-compute a (hopefully small) graph (the roadmap)
such that staying on the “roads” is guaranteed to
avoid the obstacles

— Find a path between q,+ and q,., by using the
roadmap

Choset slides

Visibility Graphs

qend

Astart

In the absence of obstacles, the best path
is the straight line between qg,; and q,,

Choset slides

Visibility Graphs

qend

qstart

* Visibility graph G = set of unblocked lines between
vertices of the obstacles + qq, and g,
« A node Pis linked to a node P’if P’is visible from P

 Solution = Shortest path in the visibility graph

Choset slides

Issues

Constructing
e Relatively straightforward with a sweep

algorithm

® Variant (visibility complex) root cause of
early computer games

e Wolfenstein 3D, Doom II, etc

What if configuration space is not 2D
® You can still construct, MUCH harder

MANY locally optimal paths

® topology of free space clearly involved

qend

Choset slides

Visibility Graphs: Weaknesses

« Shortest path but:
— Tries to stay as close as possible to obstacles
— Any execution error will lead to a collision
— Complicated in >> 2 dimensions

« We may not care about strict optimality so
long as we find a safe path. Staying away

from obstacles is more important than
finding the shortest path

* Need to define other types of “roadmaps”

Choset slides

Voronoi Diagrams

O O

* Given a set of data points in the plane:

— Color the entire plane such that the color of any point
In the plane is the same as the color of its nearest
neighbor

Choset slides

Voronol Diagrams

O O

 Voronoi diagram = The set of line segments
separating the regions corresponding to different

colors
* Line segment = points equidistant from 2 data points
 Vertices = points equidistant from > 2 data points

Choset slides

Voronoi Diagrams

« Complexity (in the plane):
* O(Nlog N) time
* O(N) space

(See for example http:// www.cs.cornell.edu/Info/People/chew/Delaunay.html fo
an interactive demo)

Choset slides

Voronoi Diagrams (Polygons)

« Key property: The points on the edges of the Voronoi
diagram are the furthest from the obstacles

» Idea: Construct a path between g, and g, by
following edges on the Voronoi diagram

* (Use the Voronoi diagram as a roadmap graph instead
of the visibility graph)

Choset slides

Voronoi Diagrams: Planning

e
qgoal \'
* Find the point g*,; of the Voronoi
diagram closest to q,

 Find the point q*,,, of the Voronol
diagram closest 0 g,

» Compute shortest path from g to
q”,.a ON the Voronoi diagram

Choset slides

Voronol: Weaknesses

Difficult to compute in higher dimensions|or

nonpolygonal worlds
Approximate algorithms exist

Use of Voronoi is not necessarily the best
heuristic (“stay away from obstacles”) Can lead
to paths that are much too conservative

Can be unstable - Small changes in obstacle
configuration can lead to large changes in the
diagram

Choset slides

Approximate Cell Decomposition

end

Define a discrete grid in C-Space
Mark any cell of the grid that intersects G, as

blocked

Find path through remaining cells by using (for
example) A* (e.g., use Euclidean distance as
heuristic)

Cannot be complete as described so far. Why?

Choset slides

Approximate Cell Decomposition

—1 e

/

° o

Cannot find a path in this case even though one exists
Solution:

Distinguish between
— Cells that are entirely contained in G, (FULL) and
— Cells that partially intersect G, (MIXED)

Try to find a path using the current set of cells

If no path found:

— Suﬁ)divide the MIXED cells and try again with the new set of
cells

Choset slides

Approximate Cell Decomposition:
Limitations

« (Good:

— Limited assumptions on obstacle
configuration

— Approach used in practice
— Find obvious solutions quickly

« Bad:

— No clear notion of optimality (“best” path)
— Trade-off completeness/computation
— Still difficult to use in high dimensions

Choset slides

Exact Cell Decomposition

\

Any path within one cell is guaranteed to not
intersect any obstacle

Choset slides

Exact Cell Decomposition

» The graph of cells defines a roadmap

Choset slides

qstart

Exact Cell Decomposition

b

» The graph can be used to find a path
between any two configurations

qend

Choset slides

Exact Cell Decomposition

33

4

Y L | vy '

« A version of exact cell decomposition can be extended

to higher dimensions and non-polygonal boundaries
(“cylindrical cell decomposition”)

* Provides exact solution - completeness

Choset slides

Potential Fields

J Attractive
Repulsive L - ~ ® field from
=a

field from ~ goal

obstacles =/ l \ - / /
/ | \

« Stay away from obstacles: Imagine that the
obstacles are made of a material that generate a
repulsive field

« Move closer to the goal: Imagine that the goal

location is a particle that generates an atfractive
field

Choset slides

Repulsive Field

Combined Field

Attractive Field

Move toward
lowest potential
Steepest descent
(Best first search)
on potential field

Choset slides

U,(q)=d(q.9,,.)

Distance to goal state

1

U,(q) =

—
—

Distance to nearest obstacle point.
Note: Can be computed efficiently by
using the distance transform

U(q)=U,(q)+AU,(q)

A controls how far we
stay from the obstacles

Choset slides

Potentlal Fields: Limitations

qm

Can you spot ‘
the problem? |

Potential field Zoomed in view

« Completeness?
» Problems in higher dimensions

Choset slides

Local Minimum Problem

X qgoal

Local minimum
of potential

 Potential fields in general exhibit local minima

« Special case: Navigation function

- U(qgoal) =0
— For any q different from q,,, there exists a
neighbor q such that U(q') < U(q)

Choset slides

Getting out of Local Minima |

* Repeat

—If U(q) = 0 return Success

—|f too many iterations return Failure

—Else:

- Find neighbor q, of g with smallest U(q,,)
- If U(q,,) < U(q) OR q, has not yet been

visited
~Move to q, (g € q,)

—Remember q,

May take a long
time to explore

region “around”
local minima

Choset slides

Getting out of Local Minima |

» Repeat
—If U(q) = 0 return Success
—If too many iterations return Failure
—Else:
» Find neighbor q, of g with smallest U(q,,)
- If U(q,) < U(q) OR q, has not yet been
visited
~Move to q, (q € q,)
—Remember q,

May take a long
time to explore

region “around”
local minima

® Think of this the following way:
® impose a grid
® do depth first search on the potential
® Idea:
® other kinds of search
® randomization should help a lot
® (Concern:
® what if q has lots of neighbors?

Getting out of Local Minima I

* Repeat
— If U(q) = 0 return Success
— If too many iterations return Failure
— Else:
 Find neighbor g, of g with smallest U(q,)

- It U(q,) < U(q) Similar to stochastic search
—Move to q, (9 € q,) and simulated annealing:
We escape local minima
. Else faster

— Take a random walk for T steps starting at q,

— Set g to the configuration reached at the end of
the random walk

Choset slides

Getting out of Local Minima |l

« Repeat
—If U(q) = 0 return Success
— If too many iterations return Failure
— Else:
« Find neighbor q,, of g with smallest U(q,,)

- If U(q,) < U(q)
—~Move to g, (q € q,)

Similar to stochastic search
and simulated annealing:
We escape local minima
faster

 Else

— Take a random walk for T steps starting at q,

— Set g to the configuration reached at the end of
the random walk

® Intuition:
® random walk should get you out of local minima
® then slide down the potential function
® (Concern:
® what if dimension is high?
® random walk may not get out of local minima efficiently

