Particle Filtering

D.A. Forsyth

Bad likelithoods

In some problems, the likelihood has multiple peaks
® (different states produce about the same image
® traditionally, 3D tracking of human body joint positions

Even with linear dynamics, posterior has multiple peaks

Issue:

® the largest peak may not be the right state
® and it could collapse in the future

® vyou need to keep track of “many” peaks
® and the number could grow

Strategy

® randomized search

Non-linear dynamics are a problem

Many natural dynamic models are non-linear. There are two sources of prob-
lems. Firstly, in models where the dynamics have the form

€T; ~ N(f(wi—lvi);zdi)

(where f is a non-linear function), both P(X;|yq,...,¥;—1) and P(X;|yg,.--,¥y;)
tend not to be normal. As Section 1.1.1 will show, even quite innocuous looking
nonlinearities can lead to very strange distributions indeed. Secondly, P(Y ;| X;)
may not be Gaussian either. This phenomenon is quite common in vision; it leads to
difficulties that are still neither well understood nor easily dealt with (Section 1.1.2).

Xitl p

X.

1

FIGURE 1.1: The non-linear dynamics z:4+1 = z: + 0.1sinz; cause points n the range
((2k)m, (2k + 2)m) move towards (2k + 1)w. As the figure on the left illustrates, this is
because x; + 0.1sin z, is slightly smaller than z, for z, in the range ((2k + 1), (2k + 2)m)
and is slightly larger than z, for z, in the range ((2k)m, (2k + 1)m). In fact, the nonlinearity
of this function looks small — it is hardly visible in a scaled plot. However, as Figure 1.2

shows, its effects are very significant.

30 I T I I I I I T I

25 —

20 —

15 1

60 70 80 90 100

FIGURE 1.2: On the top, we have plotted the time evolution of the state of a set of 100
points, for 100 steps of the process z;;1 = z; + 0.1 * sinz;. Notice that the points all
contract rather quickly to (2k + 1)7, and stay there. We have joined up the tracks of the
points to make it clear how the state changes. On the bottom left we show a histogram
of the start states of the points we used; this is an approximation to P(zo). The histogram
on the bottom center shows a histogram of the point positions after 20 iterations; this
is an approximation to P(xz20). The histogram on the bottom right shows a histogram
of the point positions after 70 iterations; this is an approximation to P(z70). Notice that
there are many important peaks to this histogram — it might be very unwise to model
P(z;) as a Gaussian.

Representing a probability distribution

® Parameters
® gaussian +linear case: Kalman filter is just an easy maintenance process
e there are a few others, but they’re not important in practice

® Samples
® Weak law of large numbers gives:

® Then

It 1s better to weight samples

® The estimate 1s a random variable
® mean is right
® variance doesn’t depend on dimension
® but can be very large, and depends on h
® Strategy:

® weight the samples

Monte Carlo Integration using Importance Sampling Assume that
we have a collection of N points u*, and a collection of weights w'. These points are
independent samples drawn from a probability distribution S(U) — we call this the
sampling distribution; notice that we have broken with our usual convention
of writing any probability distribution with a P. We assume that S(U) has a
probability density function s(U).

The weights have the form w' = f(u')/s(u') for some function f. Now it is
a fact that

E [% zz:g(u")w'] = /g(U)ﬁ((ll]]))s(U)dU

_ / o(U)f(U)dU

where the expectation is taken over the distribution on the collection of N inde-
pendent samples from S(U) (you can prove this fact using the weak law of large

numbers). The variance of this estimate goes down as 1/N, and is independent of
the dimension of U.

Representing Distributions using Weighted Samples If we think
about a distribution as a device for computing expectations — which are integrals
— we can obtain a representation of a distribution from the integration method de-
scribed above. This representation will consist of a set of weighted points. Assume
that f is non-negative, and [f(U)dU exists and is finite. Then

f(X)
THO)d0

1s a probability density function representing the distribution of interest. We shall
write this probability density function as ps(X).

Now we have a collection of N points u' ~ S(U), and a collection of weights
w' = f(u')/s(u'). Using this notation, we have that

E ll Zwi] _ 1£ ((g))s(U)dU

- / f(U)dU

Now this means that

E,, o] = / o(U)p,(U)dU

_ [9)F(©)dU
ff(U)dU
20 g(wi)w;
B E[D i Wi]
~ Zz g(ui)wi
D Wi

(where we have cancelled some N’s). This means that we can in principle represent
a probability distribution by a set of weighted samples (Algorithm 1). There are
some significant practical issues here, however. Before we explore these, we will
discuss how to perform various computations with sampled representations. We
have already shown how to compute an expectation (above, and Algorithm 2).
There are two other important activities for tracking: marginalisation, and turning
a representation of a prior into a representation of a posterior.

Represent a probability distribution

f(X)

pf(X) = ff(U)dU

by a set of N weighted samples o
{(u',w')}

where u* ~ s(u) and w* = f(u')/s(u?).

Algorithm 1: Obtaining a sampled representation of a probability distribution

We have a representation of a probability distribution

f(X)
[f(U)dU

pr(X) =

by a set of weighted samples o
{(u',w')}

where u' ~ s(u) and w* = f(u')/s(u'). Then:

iy g(uw!

N .
Doy W

/ g(U)ps(U)dU ~

Algorithm 2: Computing an expectation using a set of samples

Why do we want to marginalize?

Tracking as induction - induction step

Given P(Xi1lygs - -, Yi_1)-

Prediction
Prediction involves representing
g Notice this is 1-1
P(XilYyg: -5 Y1)
current state based

Our independence assumptions make it possible to write measurements

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

Marginalizing a Sampled Representation

An attraction of sampled representations is that some computations are par-
ticularly easy. Marginalisation 1s a good and useful example. Assume we have a
sampled representation of ps(U) = ps((M, N)). We write U as two components
(M, N) so that we can marginalise with respect to one of them.

Now assume that the sampled representation consists of a set of samples which
we can write as

{((m*,n’),w")}

In this representation, (m*,n’) ~ s(M,N) and w* = f((m*,n"))/s((m*,n?)).
We want a representation of the marginal ps(M) = [ps(M,N)dN. We

will use this marginal to estimate integrals, so we can derive the representation by
thinking about integrals. In particular

/ g(M)ps(M)dM = / g(M) / ps(M,N)dNdM

_ / / o(M)p;(M, N)dNdM

N . .
~ 2uiz 9(m)w!

~J N A
Zi:l w'

meaning that we can represent the marginal by dropping the n' components of the
sample (or ignoring them, which may be more efficient!).

Assume we have a sampled representation of a distribution
ps(M,N)

given by o '
{((m*,n"),w")}
Then o
{(m",w")}

1s a representation of the marginal,

/pf(M,N)dN

Algorithm 3: Computing a representation of a marginal distribution

Transforming a Sampled Representation of a Prior into a Sampled
Representation of a Posterior

Appropriate manipulation of the weights of a sampled distribution yields rep-
resentations of other distributions. A particularly interesting case is representing a

posterior, given some measurement. Recall that

p(V = vo|U)p(U)
J p(V =vo|U)p(U)dU

= =p(V = wo[U)p(U)

p(UV = vo) =

where vg 1s some measured value taken by the random variable V.
Assume we have a sampled representation of p(U), given by {(ui, w’)} We
can evaluate K fairly easily:

K = /p(V = vo|U)p(U)dU

—E [Zil p(V = vo|u')w’

Now let us consider the posterior.

/ sV = 00)dU = / g(U)p(V = vo|U)p(U)dU
1Y g@h)p(V = vludwt
K Efil w?
~ Ziil g(ut)p(V = vol|u)w'
Zﬁ\; p(V = vo|u?)w?

(where we substituted the approximate expression for K in the last step). This
means that, if we take {(u", w’)} and replace the weights with

w" = p(V = volu")w'

the result {(ui, w’i)} is a representation of the posterior.

Assume we have a representation of p(U) as

{(u',w)}

Assume we have an observation V' = wvg, and a likelihood model p(V |U). The
posterior, p(U|V = vg) is represented by

{(ui, wli)}

where . -
w" = p(V = vo|u*)w'

Algorithm 4: Transforming a sampled representation of a prior into a sampled repre-
sentation of a posterior.

1.2.2 The Simplest Particle Filter

Assume that we have a sampled representation of P(X;_1|yg,...,¥;_1), and we
need to obtain a representation of P(X;|yg,...,y;). We will follow the usual two
steps of prediction and correction.

We can regard each sample as a possible state for the process at step X;_1.
We are going to obtain our representation by firstly representing

P(Xi, Xi-1|yos---,¥i-1)

and then marginalising out X;_; (which we know how to do). The result is the
prior for the next state, and, since we know how to get posteriors from priors, we
will obtain P(X ;|yg,...,y;)-

Prediction Now

(X, Xi—1|yo, -+, ¥i—1) = p(Xi| Xic1)p(Xi—1|yo, - - -y i)

Write our representation of p(Xi—1|yg,...,y;_1) as

{(wiy,wiy)}

(the superscripts index the samples for a given step 7, and the subscript gives the
step).

Now for any given sample u* |, we can obtain samples of p(X ;| X;—1 = u¥_,)
fairly easily. This i1s because our dynamic model 1s

x; = f(xi—1) + &

where &; ~ N(0,%,,.). Thus, for any given sample u* ;, we can generate samples

of p(X;|Xi—1 = u¥) as
{(Fuiy) +&,1)}

where & ~ N(0,%,,.). The index [indicates that we might generate several such
samples for each u¥ ;.

We can now represent p(X;, X;—1|yg,---,Y;—1) as

{((f(u’f—l) + lea u?—l)a w?—l)}

(notice that there are two free indexes here, k and [; by this we mean that, for each

sample indexed by k, there might be several different elements of the set, indexed
bv 1).

Because we can marginalise by dropping elements, the representation of

P(milyO) ce 7yi—1)
1s given by
{(f(uf—l) +€£,wf_1)}

(we walk through a proof in the exercises). We will reindex this collection of samples
— which may have more than N elements — and rewrite i1t as

{(uh™wf)}

assuming that there are M elements. Just as in our discussion of Kalman filters,
the superscript ‘—’ indicates that this our representation of the i’th state before a
measurement has arrived. The superscript k gives the individual sample.

Correction Correction 1s simple: we need to take the prediction, which
acts as a prior, and turn it into a posterior. We do this by choosing an appropriate
weight for each sample, following Algorithm 4. The weight is

k,—\ k,—
p(Y:=y;|X:= S;)wi

(you should confirm this by comparing with Algorithm 4). and our representation
of the posterior is

{57 p(¥i =yl X = sf T ul))

The Tracking Algorithm In principle, we now have most of a tracking
algorithm — the only missing step is to explain where the samples of p(X) came
from. The easiest thing to do here is to start with a diffuse prior of a special form
that is easily sampled — a Gaussian with large covariance might do it — and give
each of these samples a weight of 1. It i1s a good 1dea to implement this tracking
algorithm to see how it works (exercises!); you will notice that it works poorly
even on the simplest problems (Figure 1.3 compares estimates from this algorithm
to exact expectations computed with a Kalman filter). The algorithm gives bad
estimates because most samples represent no more than wasted computation. In
jargon, the samples are called particles.

15F - 15F .

05F . o5 T

-
e
e
e

-

-

-

e

ostP

-15}

FIGURE 1.3: The simple particle filter behaves very poorly, as a result of a phenomenon
called sample impoverishment, which is rather like quantisation error. In this example, we
have a point on the line drifting on the line (i.e., z; ~ N(zi—1,0°)). The measurements are
corrupted by additive Gaussian noise. In this case, we can get an exact representation of
the posterior using a Kalman filter. In the figure on the left, we compare a representation
obtained exactly using a Kalman filter with one computed from simple particle filtering.
We show the mean of the posterior as a point with a one standard deviation bar (previously
we used three standard deviations, but that would make these figures difficult to interpret).
The mean obtained using a Kalman filter is given as an x; the mean obtained using a
particle filter is given as an o; we have offset the standard deviation bars from one another
so as to make the phenomenon clear. Notice that the mean is poor, but the standard
deviation estimate is awful, and gets worse as the tracking proceeds. In particular, the
standard deviation estimate woefully underestimates the standard deviation — this could
mislead a user into thinking the tracker was working and producing good estimates, when
in fact it is hopelessly confused. The figure on the right indicates what is going wrong;
we plot the tracks of ten particles, randomly selected from the 100 used. Note that
relatively few particles ever lie within one standard deviation of the mean of the posterior;
in turn, this means that our representation of P(z;11|yo,...,¥0) will tend to consist of
many particles with very low weight, and only one with a high weight. This means that
the density is represented very poorly, and the error propagates.

15F

05

-05

15 F

- X

_4>*

bibygith-
¢$¢¢¢@ ¢$¢$$¢$¢??f??$¢¢

31

NSLALH

X X

%j

~

1
15

1
35

Measurement
(from forward looking sensor)

Bad case

B o]

Measurement
(from forward looking sensor)

Resampling the Prior At each step 7z, we have a representation of

P(X'i—1|y07 RN yi—l)

via weighted samples. This representation consists of NV (possibly distinct) samples,
each with an assoclated weight. Now in a sampled representation, the frequency
with which samples appear can be traded off against the weight with which they
appear. For example, assume we have a sampled representation of P(U) consisting

of N pairs (s, wr). Form a new set of samples consisting of a union of Ny copies

of (sg, 1), for each k. If
N

Zka B

this new set of samples is also a representation of P(U) (you should check this).
Furthermore, if we take a sampled representation of P(U) using N samples,
and draw N’ elements from this set with replacement, uniformly and at random,
the result will be a representation of P(U), too (you should check this, too). This
suggests that we could (a) expand the sample set and then (b) subsample it to get
a new representation of P(U). This representation will tend to contain multiple
copies of samples that appeared with high weights in the original representation.

Wk

This procedure is equivalent to the rather simpler process of making N draws
with replacement from the original set of samples, using the weights w; as the
probability of drawing a sample. Each sample in the new set would have weight
1; the new set would predominantly contain samples that appeared in the old set
with large weights. This process of resampling might occur at every frame, or only
when the variance of the weights is too high.

Initialization: Represent P(X) by a set of N samples

{(30’_>wg’_)}

where

s ~ Py(S) and wh ™ = P(sy7)/Py(S = sp7)

Ideally, P(X) has a simple form and sg’_ ~ P(Xyp) and wg’_ = 1.
Prediction: Represent P(X;|yy,y;_1) by

{CanTan)

where
s; = f(si}) +&F and w” = w2 and & ~ N(0,%4,)

Correction: Represent P(X;|y,,y;) by

{(sFF,wlh)}

where
3'?’+ = sf’_ and wf’+ - P(Yi = yz‘|Xi - Sf’_)w"c’_

(3 13

Resampling: Normalise the weights so that). wf"" = 1 and compute the vari-
ance of the normalised weights. If this variance exceeds some threshold, then con-
struct a new set of samples by drawing, with replacement, N samples from the old
set, using the weights as the probability that a sample will be drawn. The weight
of each sample is now 1/N.

Algorithm 5: A practical particle filter resamples the posterior.

o5

oF

betd

¢
*”¢’ ’*f”*”¢§+f¢§¢ 4

¢
¢¢j

-

oslbgd P boty

-1F

15 - 15 -

FIGURE 1.4: Resampling hugely improves the behavior of a particle filter. We now show
a resampled particle filter tracking a point drifting on the line (i.e., z; ~ N (mi_1,02)).
T'he measurements are corrupted by additive Gaussian noise, and are the same as for
Figure 1.3. In the figure on the left, we compare an exact representation obtained using
a Kalman filter with one computed from simple particle filtering. We show the mean of
the posterior as a point with a one standard deviation bar. The mean obtained using
a Kalman filter is given as an ‘x’; the mean obtained using a particle filter is given as
an ‘0’; we have offset the standard deviation bars from one another so as to make the
phenomenon clear. Notice that estimates of both mean and standard deviation obtained
from the particle filter compare well with the exact values obtained from the Kalman filter.
The figure on the right indicates where this improvement came from; we plot the tracks
of ten particles, randomly selected from the 100 used. Because we are now resampling
the particles according to their weights, particles that tend to reflect the state rather well
usually reappear in the resampled set. This means that many particles lie within one
standard deviation of the mean of the posterior, and so the weights on the particles tend
to have much smaller variance, meaning the representation is more efficient.

15

05

-15

_4>¢¢’¢¢

4 b
¢¢#¢ ¢¢¢¢#¢¢*¢¢¢¢# b

$4¢

Ry
44
AN

]

~

15

-15

10

15 20 25 30 35 40

Bad case, improved

Measurement
(from forward looking sensor)

(from forward looking sensor)

(from forward looking sensor)

o> L

Measurement
(from forward looking sensor)

Features

Can (in principle) produce any expectation of posterior
Works for any observation model, any motion model
Embarrassingly parallel

Work (in principle) for any dimension

Easy to make

Problems: Loss of diversity

® [oss of diversity
® repeated resampling can cause serious problems

duplicates

(a) Two rooms with equal probability (b) The same filter, after repeated resampling

Fixes

Skip resampling

® if (say) variance/entropy of weights hasn’t changed much

Use low variance resampling

® next slide

Add particles

® casy; often helps;

® push more particles than required through dynamics; weight+sample

Inject uniform samples
® vyuck - only in desperation

Low variance resampling

= M = nuipber of particles

[1] [2]
i W

N A A A O A

roortM I r2M 7
Figure 4.7 Principle of the low variance resampling procedure. We choose a random
number r and then select those particles that correspond touw = r + (m — 1) - M ™"
wherem =1, ..., M. 1

))

= re[0, 1/M]

= Advantages:
= More systematic coverage of space of samples
= If all samples have same importance weight, no samples are lost

= Lower computational complexity

Problem: Accurate observations (!?!)

P(obslstate)

state

Problem: Accurate observations (!?!)

P(obslstate)

state

What 1s going on?

® We are searching a sharply peaked function
® using a proposal that is broad
® this can’t work well
® Fix
® use a different proposal process
® particles don’t *HAVE* to come from dynamics
® cg generate samples from observation
® reweight with dynamics
® can be hard to do
® more particles
o iffy
e smooth observation model
® aaargh!

Other nuisances

® Performance measurement can be hard

® (Can be quite demanding computationally
® if distributions are unimodal use Kalman filter (or EKF)

® Not deterministic

