
Two cameras
D.A. Forsyth, UIUC

How cameras work

Pinhole camera - an effective abstraction

What happens in two views

3 degrees of freedom

2 measurements
2 measurements

All of Camera Geometry

• From the picture
• two views of a point give four measurements of three DOF
• this means

• correspondence is constrained
• if we have enough points and enough pix we can recover

• points
• cameras

The Epipoles

Camera 1
Camera 2

Epipole

Epipole
Focal point

Focal point

Constraints on correspondence

Camera 1
Camera 2

Constraints on CSP -II

Camera 1
Camera 2

Constraints on CSP - III

Camera 1
Camera 2

Camera 1
Camera 2

Constraints on CSP - III

Epipolar line

Constraints on CSP - IV
Epipolar lines - these

intersect at the epipole,
by construction

Camera 1
Camera 2

Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?

This means:

• A point in camera 1 identifies a line in camera 2
• of all possible corresponding points in camera 2

• Equivalently, there is a map
• from points in camera 1 (resp 2)
• to lines in camera 2 (resp 1)

• Q: what is the form of the map?

Planes in HCs

• Assume four points P1, P2, P3, P4 are coplanar

• Then
• determinant([P1, P2, P3, P4])=0

• Trick:
• equation of plane through three points?
• determinant([P1, P2, P3, X])=0

Form of the map - notation

Camera 1
Camera 2

P1 P2

F1

F2

Form of the map - II

• 3D coordinates of P1 are linear in image coordinates (p1)
• 3D coordinates of P2 are linear in image coordinates (p2)
• so

• linear in p1; linear in p2

• so there is some matrix F (function of cameras) so that

Camera 1
Camera 2

P1 P2

F1

F2

det ([P1, P2, F1, F2])

p1
TFp2 = 0

In HC’s

The Fundamental Matrix

• Easy closed form expression exists
• in terms of rot, trans between cameras, intrinsics
• following slides

• Can be fit a pair of images using feature correspondences
• 8 point algorithm
• robustness is an important issue
• we’ll do this

p1
TFp2 = 0

Camera 1
Camera 2

VV RL

TOrigin

VR = R(VL �T)

Camera rotation

Camera translation

Camera 1
Camera 2

VV RL

TOrigin

VR = R(VL �T)

Camera rotation

Camera translation

S =

0

@
0 �Tz Ty

Tz 0 �Tx

�Ty Tx 0

1

A TTS = 0

Camera 1
Camera 2

VV RL

TOrigin

VR = R(VL �T)

VT
RRSVL = (VL �T)T RTRSVL = VT

LSVL = 0

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

RECALL: The camera matrix - II

• Turn previous expression into HC’s
• HC’s for 3D point are (X,Y,Z,T)
• HC’s for point in image are (U,V,W)

0

@
U
V
W

1

A = C

0

@
1 0 0 0
0 1 0 0
0 0 1 0

1

AW

0

BB@

X
Y
Z
T

1

CCA

Transforms points from object
coordinates into world coordinates
most likely a rotation and translation

Transforms camera coordinates
(f is hidden in here)

Slides to accompany Forsyth and Ponce “Computer Vision - A Modern Approach” 2e by D.A. Forsyth

So…

F = kC�T
L RSC�1

R

If we know these

we can recover info about R, T from F

Fundamental matrix and epipolar lines

• In homogenous coordinates, line in plane is:

• can write:

• But look at

• which can be written

p1
TFp2 = 0

aX + bY + cZ = 0

aTx = 0

pT
1 Fp2 = (FTp1)

Tp2 = 0

Coefficients of a line in image 2
created by F and p_1

The Fundamental Matrix

• A map from
• point in 1 (resp. 2) to line in 2 (resp. 1)

• This is the algebraic version of the picture
• but the picture tells us more

• Any point in 1 maps to a line through the epipole
• MOST lines in 2 are NOT in the image of the map
• only a 1 parameter family of lines IS (the ones through the epipole)

• F has rank 2!
• Left (resp. right) kernel of F is left (resp. right) epipole

p1
TFp2 = 0

The 8 point algorithm

• Find 8 p1, p2 pairs
• this gives 8 homogeneous linear equations in F coefficients
• solve these

• Improvements
• you can do it with seven points and solving a cubic (rank deficient)
• the image coordinate system really matters for the quality of estimate
• this requires robust estimation to work well

• RANSAC

p1
TFp2 = 0

RANSAC (outline)

• Repeat many times
• Find 8 pairs (p1, p2)
• Fit F using 8 point
• record the number of inlying pairs

• pairs p1, p2 where:
• p2 is “close” to (F p1)^T
• p1 is “close” to (F p2)^T
• there’s an appearance match

• Take F with most inlying pairs
• fit to all inliers

• using perpendicular distance from point to line

• Q: repeat how many times?
• A: often enough that you have high prob of seeing 8 inlying pairs

Stereopsis

• Generically:
• recover depth map from two images of scene

• cameras may be calibrated/uncalibrated
• may have large/small baseline
• if uncalibrated, recover from fundamental matrix, above

• do so by
• finding correspondences
• constructing depth map using correspondences

• Huge literature, with multiple important tricks, etc.
• I’ll mention a small set

Pragmatics

• Simplify activities by rectifying to ensure
• That camera image planes are coplanar
• That focal lengths are the same
• That the separation is parallel to the scanlines
• (all this used to be called the epipolar configuration)

Rectification

Original view
Original view

Rectified views

Triangulation

Pragmatics

• Issue
• Match points

• Strategy
• correspondences occur only along scanlines
• represent points from coarse to fine

• scale problems - some scales are misleading

• Issue
• some points don’t have correspondences (occlusion)

• Match left to right, then right to left
• if they don’t agree, break match

Some points don’t have matches

Camera 1

Camera 2

Focal point 1 Focal point 2

Image 1 Image 2

Some points don’t have matches

Camera 1

Camera 2

Intermediate view

Focal point 1

Focal point 2

Intermediate
view focal point

Image 1 Image 2Intermediate image

From Jones and Malik, “A computational framework for determining
Stereo correspondences from a set of linear spatial filters

From Jones and Malik, “A
computational framework for

determining
Stereo correspondences from a

set of linear spatial filters

From Jones and Malik, “A
computational framework for

determining
Stereo correspondences from a

set of linear spatial filters

Stereo as an optimization problem

• Original:
• find q, q’ that match, and infer depth

• Now:
• choose value of depth at q; then quality of match at q’ is cost
• optimize this

Discrete Quadratic Programs

• Minimize:
• x^T A x + b^t x
• subject to: x is a vector of discrete values

• Summary:
• turn up rather often in early vision

• from Markov random fields; conditional random fields; etc.
• variety of cases:

• some instances are polynomial
• most are NP hard

• but have extremely efficient, fast approximation algorithms
• typically based on graph cuts, qv

Stereo as an optimization problem

• Typically:
• quantize depth to a fixed number of levels
• unary cost is color match

• (photometric consistency constraint)
• it can be helpful to match intensity gradients, too

• pairwise cost from smoothness constraint on recovered depths
• eg depth gradient not too big, etc.

• massive discrete quadratic program

Stereo as an optimization problem (II)

• Segment images into regions
• NOT semantic; small, constant color+texture

• Each region is assumed to have a linear disparity
• d(x, y)=a x + b y+c

• Find a quantized “vocabulary” of such disparities
• eg by initial disparity, incremental fitting

• For each region, choose the “best” in the “vocabulary”
• This is a discrete optimization problem
• It’s quadratic

• unary term - does the chosen vocab item “agree” with color data?
• binary term - are neighboring pairs of models “similar” on boundary?

Stereo resources

• Datasets and evaluations:
• Middlebury stereo page has longstanding

• datasets
• evaluations with leaderboards
• datasets with groundtruth
• refs to other such collections

• (but this is the best known, by a long way)
• https://vision.middlebury.edu/stereo/

Optic flow

• Generically:
• a “small” camera movement yields image 2 from image 1
• determine where points in image 1 move

• Assume we’re moving rigidly in a stationary environment
• then points will move along their epipolar lines

• where the epipolar lines follow from fundamental matrix
• so from camera movement

• Main point of contrast with stereo
• Images are not usually simultaneous

• so objects might have moved

f f1 2

Image 1 Image 2Image 1 optic flow

Optical flow

• Generically:
• a “small” camera movement yields image 2 from image 1
• determine where points in image 1 move

• Assume we’re moving rigidly in a stationary environment
• then points will move along their epipolar lines

• where the epipolar lines follow from fundamental matrix
• so from camera movement

• As we saw, HOW FAR they move is determined by depth
• and by their movement!!!

Image 1

Camera 1

Camera 2

Focal point 1

Focal point 2

Image 1 Image 2

There is flow here!

For camera motions in a rigid scene, you can determine ground truth.
Evaluation is then by comparison to ground truth.

Recovering optic flow

• Huge literature
• Initial strategy:

• Assume

dI(x, y, t)

dt
=

@I

@x

@x

@t
+

@I

@y

@y

@t
+

@I

@t
= 0

Image gradients

Flow (which is unknown)

Ixu+ Iyv + It = 0

Recovering optic flow

• Strategies:
• find u(x, y), v(x, y) that minimizes some smoothness cost

• subject to constraint on flow
• what smoothness cost?
• how to impose constraint?

• assume flow has some parametric form within windows (eg. constant)
• choose parameters to minimize error in window
• what parametric model?
• what windows?

• If few or no objects move
• impose a parametric depth model, and use that

Ixu+ Iyv + It = 0

If objects are moving, much harder
 to determine ground truth.

IDEA: Interpolate flow to get
intermediate frame.

Evaluation is then by comparing interpolate
to ground truth frame.

Brox et al 09

Strategy

• Segment into regions, estimate region correspondences
• use to inform flow estimate

Brox et al 09

Optical flow resources

• Datasets and evaluations:
• Middlebury optical flow page has longstanding

• datasets
• evaluations with leaderboards
• datasets with groundtruth
• refs to other such collections

• (but this is the best known, by a long way)
• https://vision.middlebury.edu/flow/

Next up:

