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Key issues

Physical

® what makes a pixel take its brightness values?

Inference

® what can we recover from the world using those brightness values?

Human
e What can people do?
e which suggests problems we might be able to solve



nickwheeleroz



By nickwheeleroz, on Flickr



Processes

® (Cameras

® film: non-linear
® (CCD: linear, with non-linearities made by electronics

® Light
® s reflected from a surface
® oot there from a source

® Many effects when light strikes a surface -- could be:

® absorbed; transmitted; reflected; scattered
® Simplify
® Assume that
® surfaces don’t fluoresce
® surfaces don’t emit light (i.e. are cool)
® all the light leaving a point is due to that arriving at that point



White light tindoor)

UV light (black-light)




Diffuse reflection

® [ight leaves the surface evenly in all directions
® cotton cloth, carpets, matte paper, matte paints, etc.
® most “rough” surfaces
® Parameter: Albedo
® percentage of light arriving that leaves
® range 0-1
® practical range is smaller
® Test:
e surface has same apparent brightness when viewed from different dir’ns



Specularities

® For some surfaces, reflection depends strongly on angle
® mirrors (special case)
® incoming direction, normal and outgoing direction are coplanar
e angle din, normal and angle dout, normal are the same
® specular surfaces
e light reflected in a “lobe” of directions
e cg slightly battered metal surface
® can see light sources specularly reflected

® specularities
din




Flickr, by suzysputnik Flickr, by piratejohnny

® Specularities are relatively easy to detect
® gsmall and bright (usually)



Surfaces and the BRDF

Many effects when light strikes a surface -- could be:
® absorbed; transmitted. reflected; scattered

Assume that

® surfaces don’t fluoresce
® surfaces don’t emit light (i.e. are cool)
® all the light leaving a point is due to that arriving at that point

Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)
the ratio of the radiance in the outgoing direction to the
incident irradiance
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Point source at infinity

® E.g.the sun

® cnergy travels in parallel rays
® cnergy density received is proportional to cos theta

® Write:
p for albedo

S for source vector
N for normal
I for image intensity




Shadows cast by a point source

® A point that can’t see the source 1s in shadow
® For point sources, the geometry 1s simple

Cast

Shadow
Boundary

Point
Source

Self Shadow
Boundary




Cues to shape - shadows

terminator (shadow boundary)

volume

shadow

(attached)

shadow

From Koenderink slides on image texture and the flow of light
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From Koenderink slides on image texture and the flow of light



Interreflections

® [ssue:
® Jocal shading model is a poor description of physical processes that give
rise to images
® because surfaces reflect light onto one another
e This is a major nuisance; the distribution of light (in principle) depends on
the configuration of every radiator; big distant ones are as important as
small nearby ones (solid angle)

The effects are easy to model
It appears to be hard to extract information from these models



Interreflections

From Koenderink slides on image texture and the flow of light



The color of objects

® (Colored light arriving at the camera involves two effects
® The color of the light source
® The color of the surface

e Changes caused by different colored light sources can be large

Receptor response
of k'th receptor class

Jo (WPAE@)dA
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Incoming spectral radiance J
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Spectral albedo
p(A)



Constancy

® You perceive objects 1n terms of their properties
e rather than what they look like in an image

® Examples:
® size constancy
e distant objects are small in pictures, nearby objects bigger
® but you don’t think of them as changing size
® lightness constancy
e dark things in bright rooms can be brighter than light objects in dark
rooms
® but you perceive their lightness (=albedo)
® color constancy
® image color changes when lighting color changes
® but you perceive the surface color
® obiect constancv
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Films on surfaces

® cg water

® Assume:
® film is thin
® not much internal reflection

) . [Nlumination
YOl.l SCC. | Specul.ar Diffuse (ish)
e diffuse + specular reflection reflection reflection
® som
Refracti
ciraction Water

Tar




Interference effects

® Sometimes seen on films

® if the film is the right number of wavelengths thick
® waves will interfere destructively (resp constructively)
® can give rise to intense colors
® oil films on water often do this
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Refraction

® [ight striking an interface changes direction

® between translucent surfaces with different speed-of-light
® (refraction)

® At critical angle, total internal reflection



From Lynch and Livingstone, Color and Light in Nature
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d/Light in Nature
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From Lynch and Livingstone, Color and Light in Nature
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Minnaert, Light and Color in the outdoors
Heiligenschein

L5
o
ey
e

L




Specular surfaces

® Another important class of surfaces is specular, or mirror-
like.

radiation arriving along a direction leaves along the specular direction
reflect about normal

some fraction is absorbed, some reflected

on real surfaces, energy usually goes into a lobe of directions

can write a BRDF, but requires the use of funny functions

from

point

source A

specular
direction




Scattering

Fundamental mechanism of light/matter interactions

Visually important for

® slightly translucent materials (skin, milk, marble, etc.)
® participating media



Participating media

® for example,
® smoke,
® wet air (mist, fog)
® dusty air
® air at long scales
® [ight leaves/enters a ray travelling through space

® Jeaves because it is scattered out
® cnters because it 1s scattered in

® New visual effects



Light hits a small box of material

Scattering material

o Forward scattered
Incoming light (what we’re accustomed to)

= >

Scattered
out of view



A ray passing through scattering material

In scattering
from other elements

o Forward scattered
Incoming light (what we’re accustomed to)

> >

Scattered
out of view



Airlight as a scattering ettect

Sunlight

Air Inscattered
light, mostly
sunlight

N

Outscattered
light

Y

Eye



original unique filename: 201 8039-»1 41 7_t:naie_des_fourmis.jpg

hosted hy www.carto.net photo ®@ André M. Winter



From Lynch and Livingstone, Color and Light in Nature



HENRIK WANN JENSEN - 2000




From Lynch and Livingstone, Color and Light in Nature




Airlight yields a depth cue

® Assume that airlight is dominant

® (i.e. most of light arriving at camera is airlight)
® then you can recover depth from a single image

® Disadvantages
® requires significant fog (but not too much) or large scales



Nayar and Narasimhan, 1999

(b)




Big (dust, smoke)

Ailr molecules

(b)

%/ Water drops
T

Fig. 2.7C Scattering patterns for different particles'. (a) Largc irregular
particles, lilke those comprising dust and smoke, are irregular in the sensg
that they are not symmetric. They do, however, have a strong forwgr

scattcririg peak and a smaller though st{ll pr.onounce.d backs?at.terfmg)
peak. (b) Ar molecules have a scattering h%nctx(')n that is symmetric or::,1
and aft: thiey scatter the same amount of light in both the for\.vard an

backward irections but lack both the forward and backscaFtermg pc:akCi
(c) Large water drops have a strong f()rwarfi and backscattering pce}k an 7
also show | Strong enhancements at the primary and secondary rainbow
nch and

and Livingstone, Color and Light in Nature

Fro



Fig. 2.7A (LEFT) Aurcole around the sun. The
sun is hidden by a street lamp. To the eye, the
sky appeared clear. '

Fig. 2.7B (RIGHT) The next day the sky was
exceptionally clear and there was no aureole.

From Lynch and Livingstone, Color and Light in Nature






Minnaert, Light and Color in the outdoors

Notice flattened sun,
sparkles




etc.




RENDERED USING DALI = HENRIK WANN JENSEN 2001






HENRIK WANN JENSEN 2001







subsurface scattering in skin (not rendered!)






Paints are films with colored scatterers

etc.
B 5 B

Colorant particle

Translucent medium



Glowing paint from specular refl’ns




Rain has multiple interesting effects

Blur from wet air Puddles

Color shifts Streaks

These are often quite strongly coupled to scene geometry



Rain - multiple extrinsic phenomena,
including smoothing, raindrops, loss of saturation,
glossy/wet surfaces, etc. etc.



Rain - phenomena

-
.-

(a) An image of a drop hanging from a pipette (b) Perspective views created from (a)

Refraction causes each drop to contain a tiny image

Figure 7. Looking at the world through a raindrop. (a) An image of a drop hanging from a pipette and a magnified version. (b) Near-perspective
views computed using the geometric mapping due to refraction. Note that, in the perspective views, straight lines in the scene are mapped to straight
lines in the image.

Garg and Nayar 07



Backscatter

® Refraction in drops causes backscatter of headlight light
® makes driving in rain at night harder

® Neat trick

® (Tamburo et al 14)
® Do not illuminate raindrops by
® having headlights that are highly steerable (multiple micro mirrors)
® very fast exposure with usual illumination identifies raindrops
® too fast for driver to resolve
® now direct light between drops
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Fig.7. A: Our headlight has unprecedented resolution over space and time so that
beams of light may be sent in between the falling snow. Illustration adapted from [11].
B: Artificial snowflakes brightly illuminated by standard headlight. C: Our system
avoids illuminating snowflakes making them much less visible.

Tamburo et al 14



Rain - phenomena

Drops move fast, and so create motion blur (streaks)

i

Drop @
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(a) Short exposure time (1 ms)  (b) Normal exposure time (30 ms) (a) Average irradiance at a pixel (b) Intensity at a pixel

Figure 9. (I) Raindrops and motion-blur. An image of a scene taken in rain with (a) a short exposure time of 1 ms and (b) with typical exposure
time of a camera (30 ms). (II) The intensities produced by motion-blurred raindrops. II (a) The average irradiance at the pixel due to the raindrop
is E, and that due to the background scene is Ej. Note that E, > Ej. The drop projects onto a pixel for time T < 1.18 ms, which is far less than
the typical exposure time T of a camera. (b) Intensities of a pixel in three frames. A drop stays over the pixel in only a single frame and produces a
positive intensity fluctuation of unit frame width.

Garg and Nayar 07



Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects
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Figure 13. Dynamic weather and visibility: (I)(a) Frame from a video of a scene where rain is visible. The intensity variation due to rain is high.
(b) Frame from a video of the same scene taken with camera parameters to reduce the visibility due to rain. The intensity at the same pixel shows low
variance over time. (II) The change in intensity produced by a falling raindrop as a function of the drop’s distance z from the camera. The change in
intensity A/ does not depend on z for drops that are close to the camera (z < z,,). While for raindrops far from the camera (z > z,,), Al decreases as
1/z and for distances greater than R z,,, A[ is too small to be detected by the camera. Therefore, the visual effects of rain are only due to raindrops

that lie close to the camera (z < Rz,,) which we refer to as the rain visible region.

Garg and Nayar 07



Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects
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Figure 1: (a) An example real photo that demonstrates the
scene visibility variation with depth, and the presence of
rain streaks and fog; and (b) a plot of rain streak intensity
(t,-) against scene depth (d) based on the model in [13].

Huetal 19



Deraining - strategies

® [Essentially

® obtain images with/without rain (with rain by synthetic)
® train network to reproduce without rain image from with rain

e starts with Eigen et al 13

From Eigen et al. 13

Figure 1. A photograph taken through a glass pane covered in rain,
along with the output of our neural network model, trained to re-
move this type of corruption. The irregular size and appearance of
the rain makes it difficult to remove with existing methods. This
figure is best viewed in electronic form.



Rainy windows
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From Eigen et al. 13



Rain streaks

Figure 7: Visual comparison of different rain streak removal methods on real example images.

Lietal 16




Streaks

Figure 6: Real rain streaks removal experiments under different scenarios. From left to right are input image, results of

DSC[26], LP [24], CNN [10], DID-MDN[31] and ours. Demarcated areas in each image are amplified at a 3 time large:
scale.

Wei et al 19



Single i1mage dehazing

® [Essentially
® obtain images with/without haze (with haze by synthetic)
® train network to reproduce without haze image from with haze

- 13.35 15.45 16.37 14.50 19.42 00

- 16.70 16.76 15.97 14.23 19.86 00
:é;.{:f
‘;‘JM;~. 4% : .
- 15.42 11.28 13.27 17.64 00
(a) HAZY (b) DCP [15] (c) AOD-Net [20] (d) GRID-Net [24] (e) FFA-Net [26] (f) OURS (g) GT

Figure 6. Qualitative comparisons with different state-of-the-art dehazing methods for indoor synthesis hazy images. The top two rows are
from SOTS, the third row is from TestA dataset and the bottom three rows are from MiddleBury dehazing dataset. The numbers below

image are PSNR (dB) value of each image.
Shen et al 19



Both rain streaks and haze

’

rar

Figure 7. Examples of JORDER-R-DEVEIL on heavy rain (left two images) and mist images (right two images).

Yang et al 17



‘Boeing Autonomy data




Standard semantic segmenter
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Special features: rich appearance variation




Special features: rich appearance variation




Intrinsic 1mages

® (Originally) Maps of an image that explain pixel values
® [ntrinsic properties:
® independent of viewing; “object” or “world” properties
® Extrinsic properties:
® depend on viewing circumstances

o (Later) Albedo/Shading maps
® [=AXS
® Albedo (A) is a natural intrinsic
® Shading (S) is a natural extrinsic



No ground truth decompositions

® And there never will be

® rendering is do-able (but hard)
® modelling is hopeless

® (: how do you train an image decomposition method
when you don’t know the right answer?

® Retinex provides clues - spatial statistics are the key



Albedo/shading and Retinex

® Spatial reasoning, Land (59, 59, 77); Land +McCann 71:

e Surface color changes either quickly or not at all
® Light color changes slowly
® Retinex
e large family of algorithms
® quite hard to know what Retinex does (Brainard+Wandell, 86)




Computer vision versions of Retinex
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Real data 1s hard to collect

® spraypaint, multiple images, etc...

Images from dataset of Gosse et al. 09




Retinex 1s really quite good

Implementation of Retinex Ground truth

due to Kevin Karsch images from dataset of Gosse et al. 09




Human judgements are easier

() Code (Github repository) ® Pre-computed decompositions (release 0, 4.5M)

Intrinsic Images in the Wild & Publications v i Browse + Q Search Logi
MTurk Tasks Bell, Bala, Snavely, 2014

We include previews of our instructions, tutorials, and tasks that were shown to online workers.

Flag transparent/mirror points Compare surface reflectance

Preview: Intructions Tutorial Task Preview: Intructions Tutorial Task

Instructions: Click on all points that are on a fransparent or mirres surface. {image 1 of 5) x ‘ ’mmmh-nmwmun

‘ Highlight paints (H) H Instructons {0 Bock 3 m
Zoom Out (2

@ Reset all points H @ Zoom in " Jl About the some (5) J Cenfidence:

-

@

> 4L




This gives an evaluation task

e WHDR=Weighted Human Disagreement Ratio

® compute lightness from intrinsic image representation at points
® predict
® A lighter than B
® B lighter than A
® Lightness match
® compute weighted estimate of accuracy
® weights low where human judgements are uncertain, high otherwise

® There are issues, but allows evaluation
e and competition



Modern strategies - Optimization

® Apply the priors that

® albedo is piecewise constant
® there are “few” albedo values
® albedo and shading explain image

® Solve
e cg Bell 14, Nestmeyer 17, Bi 15



Modern strategies - Regression

® Regression of ground truth against image
® use training set from WHDR data (Narihira et al 2015)
e and perhaps rendered data
® surprisingly, rendered data is very helpful
® Jietal 18;Bietal 18; Fan et al 18; etc

® Surprising because
® Albedo in renderings isn’t like albedo in the world
® [llumination in renderings *really* isn’t like illumination in the world



Recent history

Method Source | Training uses | Training uses | Flattening | Test WHDR
[TW labels C
Shi et al. "17 [26] [27] N Y N 444
Zhou et al "15 [28] [27] Y N Y 19.95
Narihira et al [29] ibid N N N 18.1
Bi et al "18 [27] ibid N Y Y 17.18
Zhou et al "15 [30] ibid Y N Y 157
Li and Snavely 18 [31] ibid Y Y Y 14.8
Fan et al 18 [32] ibid Y N Y 14.45
*Zhao et al. "12 [14] [29] N N N 26.4
Shen and Yeo "11 [23] [29] N N N 26.1
Yu and Smith "19 [33] ibid N N N 21.4 (a)
Retinex (rescaled; color/gray) [29] N N N 19.5*/18.69*
Bell et al "14 [34] [29] N N Y 18.6
Liu et al "20 [35] ibid N Y+ N 18.69
Bi et al "15 [36] ibi N N Y 18.1
Bi et al 15 [36 N N Y 17.69

Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with lIW and threshold selection using lIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [29]. For our method, we report the held-out threshold value of WHDR. We report two figures
for [36], because we found two distinct figures in the literature. Key: * - method usss IIW training data to set scale or threshold ONLY. + - [35] build
models of albedo and shading from CGI, but does not use them for direct supervision. a - [33] use patches of registered images from MegaDepth.



WHDR 1s tricky - I

From Fan 18
Methods WHDR (mean)
Baseline (const shading) 51.37
Baseline (const reflectance) 36.54
Shen er al. 2011 [17] 36.90
Retinex (color) [ 1] 26.89
Retinex (gray) [ 1] 26.84
Garces et al. 2012 [Y] 25.46
Zhao et al. 2012 [20] 23.20
L, flattening [*] 20.94
Bell er al. 2014 [] 20.64
Zhou et al. 20152 1] 19.95
Nestmeyer ef al. 2017 (CNN) [16] 19.49
Zoran et al. 2015% |22 17.85
Nestmeyer er al. 2017 [16] 17.69
Bieral 2015([7] 17.67
Ours w/o D-Filter 15.40
Ours w/o joint training 14.52
Ours 14.45

Table 1. Quantitative results on the IIW benchmark. All the results
are evaluated on the test split of [15], except for the one marked
with * which is evaluated on their own test split and is not directly
comparable with other methods.

WHDR (%) | Error Rate (%)
Ours (HSC) 20.9 24.5
Ours (CNN) 18.3 22.3
Ours (CNN-ImageNet) 18.1 22.0
CRF [4] (rescaled) 18.6 22.3
Retinex-Color [10] (rescaled) 19.5 23.3
Retinex-Gray [10] (rescaled) 19.8 23.8
Shen and Yeo [22] (rescaled) 23.2 26.1
Zhao et al. [26] (rescaled) 22.8 26.4
CRF [4] 20.6 25.6
Retinex-Color [10] 26.9 32.4
Retinex-Gray [10] 26.8 32.3
Shen and Yeo [22] 32.5 35.1
Zhao et al. [26] 23.8 28.2

Table 1. Intrinsic Images in the Wild benchmark results. For
each algorithm, we display the weighted human disagreement rate
(WHDR, lower is better), as well as the error rate on classify-
ing the sign of lightness change between pairs of points labeled
in the ground-truth. We include our own re-evaluation of com-
peting methods, which closely matches the performance reported
in [4]. In addition, we report performance of a rescaled version of
competing methods, which specifically optimizes their output for
the pairwise classification task. Our algorithm is on par with the
CRF approach developed by [4] for state-of-the-art performance.
We refer the reader to [4] for comparison to an expanded set of
prior work.

Narihira et al 15



WHDR 1s tricky - 11

® Predict by
® f(ml,m2)>t -> 1islighter
® -t<f(ml, m2)<t ->same
® f(ml,m2)<-t ->2islighter

® [ssues:

® choice of f
® ml-m2
® Jog(ml/m2)-1
® choice of m
® lightness potential
e predicted albedo
® choice of threshold
® interacts with scale



Input Bietal [3] Nestmeyereral [10] Ours

Fan 18 - current SOTA WHDR of 14.45%



WHDR 1s tricky - IV

Bi et al, 2018 - this image WHDR 6.61%

Shading

Reflectance

WHDR: 75.70% WHDR: 36.03% WHDR: 11.48%
Shietal.[2017] Narihira et al. [2015] Zhou et al. [2015]

® Note:

® odd colors
® “colored paper” effect
® “indecision”

Shading

Reflectance

WHDR: 7.35% WHDR: 6.61%
Nestmeyeretal.[2017]  Bj et al 2018



One approach (local!)

Skip connections
—>
Albedo
Image
8 —>
Shading
Skip connections




Training - I

Our albedo paradigm uses a surface color model and
a spatial model. The qualitative properties it is intended
to capture are: albedoes are piecewise constant; the color
distribution should reflect likely surface colors; there should
be a profusion of edges with no strong orientation bias;
there should be at least some vertices with degree greater
than three. Surface color is modelled by drawing color
samples uniformly and at random from the IIW training
set. These must be adjusted for presumed illumination. We
do so by assuming the range of illumination intensity is
approximately the same as the range of lightnesses, and so
dividing by the square root of intensity.

DAF 20




Training - 11

Local
Adversary




Inference

® Network is trained on 128 x 128 tiles of image

® We want equivariance properties from albedo, shading
® g translate, rotate, scale image
® albedo for translated (etc) image should be translated albedo
® shading for translated (etc) image should be translated shading

® This doesn’t come naturally



Equivariance must be imposed

BR Rescale Flip

TL Model 1 Model 0




Imposing equivariance

® Translation:
® cover image with many, shifted, overlapping tiles
® for each, recover albedo, shading
® albedo at pixel is weighted average of all overlapping tiles

® Scale:

® rescale image up, down
® for each, recover albedo/shading using translation averaging
® then rescale back

® average results

® Rotation

® average estimates from above over 8 flips



Averaging very strongly suppresses error

BR Rescale Flip

BBAF

Model 1 Model 0




Results

Method Source | Training uses | Training uses | Flattening | Test WHDR
[TW labels C

Shi et al. "17 [26] [27] N Y N 444
Zhou et al "15 [28] [27] Y N Y 19.95
Narihira et al [29] ibid N N N 18.1
Bi et al "18 [27] ibid N Y Y 17.18
Zhou et al "15 [30] ibid Y N Y 157
Li and Snavely 18 [31] ibid Y Y Y 14.8
Fan et al 18 [32] ibid Y N Y 14.45
*Zhao et al. "12 [14] [29] N N N 26.4
Shen and Yeo "11 [23] [29] N N N 26.1

Yu and Smith "19 [33] ibid N N N 21.4 (a)

Retinex (rescaled; color/gray) [29] N N N 19.5*/18.69*

Bell et al "14 [34] [29] N N Y 18.6
Liu et al "20 [35] ibid N Y+ N 18.69
Bi et al "15 [36] ibid N N Y 18.1
Bi et al "15 [36] [27] N N Y 17.69

Our BBA N N N 17.04*

Our BBAF N N N 17.11*

TABLE 1

Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with lIW and threshold selection using lIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [29]. For our method, we report the held-out threshold value of WHDR. We report two figures
for [36], because we found two distinct figures in the literature. Key: * - method usss IIW training data to set scale or threshold ONLY. + - [35] build
models of albedo and shading from CGI, but does not use them for direct supervision. a - [33] use patches of registered images from MegaDepth.



Indoor shadow Backscatter Folds Dark shadow

Albedo

Fig. 2. Qualitative examples, from our best model (BBAF), showing (L to R): suppression of indoor shadows; suppression of backscatter from shiny
bathroom fittings; suppression of fast shading effects from clothing folds; correctly handled dark shadow (couch back).



Bi et al, 2018 - this image WHDR 6.61%

Shading

Reflectance

WHDR: 75.70% WHDR: 36.03% WHDR: 11.48%

Shi et al. [2017] Narihira et al. [2015] Zhou et al. [2015]

Shading

Reflectance

WHDR: 7.35% WHDR: 6.61%

Image Albedo Shading Ours Nestmeyeretal.2017]  Bi et al 2018

Fig. 6. Qualitative comparison to [27], [26], [48], [45] and [62], using parts of Figure 1 of [27]. As [27] remark, the methods of [26] and [48] are trained
on rendered data alone, and face difficulties due to the difference between rendered data and real images. As [27] remark, the methods of [48] and
[45] face difficulties due to the deep shadows in the scene. The albedo produced by our method does not show the “colored paper” effect seen in
other methods and does not produce odd colors; this is an advantage (text). Our method reports albedo and shading up to image boundaries, that
of [27] appears not to (the crop of the figures is as in the original paper; for our method, we show the whole image).



Smoothing 1s important
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Fig. 8. Smoothing, averaging and postprocessing are important. Without adversarial smoothing (NoSmo), performance is comparable to Retinex.
Aaversarial smoothing alone (Nolnt) is surprisingly well behaved. Averaging makes a very significant difference (compare blue/black bars and
purple/green bars) and averaging over a larger number of tiles is better (cf. BBA and Base). Discrete image averaging results in improvements (cf.
BBA and BBAF), and is clearly better than discrete tile averaging (cf. BBAF and BBAT). Key: Fixed thresholds: shown in boxplots of WHDR values
for 50 simulated test sets for the two fixed thresholds, and green bars are the value for the standard test set. Oracle thresholds: heavy black bar.
Held out threshold: heavy red bar. Oracle threshold without smoothing: heavy blue dashed bar. Fixed threshold without smoothing: heavy purple
bar. Boxplots: horizontal bar = median; notch = fraction of interquartile range outside which a difference in medians is significant; bottom and top of
the box = 25 and 75 percentiles resp.; whiskers extend to the most extreme data points that are not outliers; outliers — greater than 1.5 times the
interquartile range outside top and bottom — are '+'. Best viewed in color.



Paradigms beat graphics

20— é é— — Retinex-tolor
__ ::_—:::_:::_::%::::::é:: = N e
e GO =

| | | | | | | | | | | |
Base .l Base.165 Dark.l Dark 165 AIbF.1 AIbF.165 ShaF.1 ShaF.165 CGI.1 CGI.165 CGIT.1 CGIT .165 CGITD .1CGITD .165 BBAF .1 BBAF .165

Fig. 9. Varying the details of the paradigm has some effect; a Dark shading paradigm creates notable difficulties, but varying the size of shading
(ShaF) and albedo (ShaF) fragments seems to have only minor effects. Using tiles excerpted from CGlntrinsics [47] leads to significant fall off in
performance (CGI - tiles extracted from CGlintrinsics at original scale; CGIT — extracted from images shrunk so that tiles contain more detaile;
CGITD - dependency between shading and albedo preserved). Graphical conventions as in Figure 5. Best viewed in color.



Scale matters
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Fig. 10. Varying the scale of the discriminator has an important effect on performance. SD the discriminator sees 10 x 10 patches; BBAF as in other
figures our best model, 22 x 22; 1D 29 x 29; MD 48 x 48; and BD 128 x 128. The scale of ID was chosen by interpolating oracle WHDR for the
others, then choosing the scale that produced the best predicted WHDR. The red boxes show the scale of the discriminator patches with respect to
the tile (black boxes) for each model. Graphical conventions as in Figure 5. Best viewed in color.



Indecisiveness remains (aargh!)

Fig. 13. Our method suffers indecisiveness, as do others; this is a persis-
tent problem in intrinsic image methods. Figures show a decomposition
of an outdoor image, using our method. Note the pronounced shadow
leaves effects in both albedo and shading fields; versions of this effect
for other methods can be seen in Figure 6. Best viewed in color.



Other Possible Intrinsics

Surface relief and material properties
® and perhaps many of them

Surface mechanical properties
Surface glossiness
Texture flow



Relief - intrinsic, because
small local shadows do not
move with 1llumination
(at least Koenderink+Van Doorn, 77)
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Relief - intrinsic, because
small local shadows do not

move with illumination
(at least Koenderink+Van Doorn, 77)




Fur - intrinsic, because
small local shadows do not
move with 1llumination
(at least Koenderink+Van Doorn, 77)




Relief - intrinsic (at least at this scale),
because small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)
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777 - intrinsic, because
mostly not a property of viewing
circumstances (?)



Iridescence
creating intrinsic gloss effects
intrinsic because the color effects will be
there for almost all illumination



77?7 - intrinsic, the specularities
move but are always there




77?7 - intrinsic, the specularities
move but are always there




Other Possible Extrinsics

Glossy reflected component
Luminaires

Lens flare

Rain effects

etc.



Gloss/specular - clearly extrinsic,
when the light moves, this moves




Lens flares - clearly intrinsic,
product of viewing circumstances




Luminaires -
extrinsic or intrinsic?
worth knowing about, anyhow
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Rain - multiple extrinsic phenomena,
including smoothing, raindrops, loss of saturation,
glossy/wet surfaces, etc. etc.



Albedo Shading
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Fig. 12. The method can be extended to capture thin and thick bars of darkness by extending the decomposer to have four heads (albedo, shading,
thin bars, thick bars), and extending the paradigms (bottom left shows examples). The advantage of doing so is that a decomposition will then
capture the thin bars of darkness associated with grooves separately from albedo (example decomposition shown here). Qualitatively, these thin
bars do appear to be associated with grooves (but note the thin dark paint bars on the ceiling, which also appear in this map). The cost in WHDR
(top right compares to BBAF) is noticeable, but may be tolerable in some applications. Best viewed in color.



No ground truth decompositions

® And there never will be

® rendering is do-able (but hard)
® modelling is hopeless

® (: how do you train an image decomposition method
when you don’t know the right answer?

® Retinex provides clues - spatial statistics are the key



