
EKF and EKF SLAM
D.A. Forsyth, UIUC



Big goal

• Robot moving on the plane
• position, orientation

• There are landmarks
• in fixed positions (for the moment….)

• We start in some configuration 
• (0, 0, 0)
• and move

• Report posterior estimates of 
• robot pos’n, orientation
• landmark positions in original coord frame
• when new landmarks appear, insert them

From Burgard et al slides



From Burgard et al slides



From Burgard et al slides



From Burgard et al slides



State

x =


R
M

�
=

2

664

R
L1

. . .
Ln

3

775

Position and orientation of the robot

All landmark positions
in original coordinate

frame

Landmark 1 position in OCF



A movement model

OK Not OK

Formally:  car is non-holonomic



A movement model
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A movement model
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THIS ISN’T LINEAR!



A movement model
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These two are limits of previous model (\delta \theta ->0; R->0)



One kind of measurement model

• Landmark is at:
• in global coordinate system

• We record distance and heading:
• measurement


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Another kind of measurement model

• Landmark is at:
• in global coordinate system

• We record position in vehicle’s frame:
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Linearization and noise

• we have noise

• this means                is a random variable

• Write

• Then

• So (approximately)

n ⇠ N (0,⌃)

f(x+ n)

f(x+ n) ⇡ f(x) + Jf,xn
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f(x+ n) ⇠ N (f(x), Jf,x⌃J
T
f,x)



Linearization and noise

• we have noise

• So (approximately)

n ⇠ N (0,⌃)

f(x,n) ⇠ N (f(x,0), Jf,n⌃J
T
f,n)



The Kalman filter

Difference between
predicted and observed 

measurement

Assumption: state update
and measurement are linear

with normal noise



The extended Kalman filter

• What happens if state update, measurement aren’t linear?
• particle filter
• linearize and approximate (EKF)

xi = f(xi�1,n)

yi = g(xi,n)

Noise - normal, mean 0, Cov known



The extended Kalman filter

• Linearize:
xi = f(xi�1,n)
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The extended Kalman filter

• Linearize: yi = g(xi,n)
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In principle, now easy

• BUT
• F_x is much simpler than it might look

• the landmarks do not move!
• F_n ditto

• there is no noise in the landmark updates
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More simplifications

• BUT
• G_x is much simpler than it might look

• each set of measurements affected by only one landmark!
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More simplifications

• BUT
• G_n is usually much simpler than it might look

• noise is usually additive normal noise 

GT
n⌃n,iGn ! ⌃n,i

Block diagonal



Landmarks

• Which measurement comes from which landmark?
• data association - 

• for the moment, assume 
• we use a bipartite graph matcher
• or draw independent samples from posterior on landmark 

• given measurement
• ideally, we’d average over all matchings - put that off



Landmarks

• No measurement from a landmark?
• structure of EKF means you can process landmarks one by one
• don’t update that landmark

• New landmark?
• full observation (eg range+bearing, lidar)
• partial observation (eg bearing, vision)



Full observation

• Must make estimates of 
• landmark mean state

• invert the observation of the landmark

• landmark covariance 
• with itself
• with others
• use jacobians of inverted observation



Range and bearing


d
�

�
=

 p
(x� u)2 + (y � v)2

atan2(y � u, x� v)� ✓

�
Observation

Vehicle state

Landmark position

Here use the current estimate of vehicle state
These are measurements
of new landmark ONLY


u
v

�
=


x+ d sin(�+ ✓)
y + d cos(�+ ✓)

�
= h(x�

i ,yi) = h(x�
i , l)



Range and bearing

• but the measurement may be affected by noise
• additive noise, normal, zero mean, covar

• So I should have written

• And I need to do some surgery 
• on the state vector
• and on the covariance matrix
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Range and bearing - state vector surgery

• Because the noise has zero mean
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Range and bearing - covariance surgery

• So

• and 


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Range and bearing - covariance surgery
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Bearing only (sketch)

• Cannot determine landmark in 2D from measurement
• it’s on a line!
• you must come up with a prior

• after that, it’s easy
• find mean posterior location, covariance
• plug in

• Big Issue
• True prior should have infinite covariance

• can’t work with that
• so linearization may fail


