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The SLAM Problem

" SLAM stands for simultaneous localization and
mapping

" The task of building a map while estimating
the pose of the robot relative to this map

" Why is SLAM hard?
Chicken-or-egg problem:

" a map is needed to localize the robot and
a pose estimate is needed to build a map

From Burgard et al slides



Why is SLAM a hard problem?
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations

From Burgard et al slides



From Burgard et al slides



Data Association Problem
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= A data association is an assignment of

observations to landmarks
= In general there are more than ("’)

m

(n observations, m landmarks) possible
associations

= Also called "assignment problem”

From Burgard et al slides



State

All landmark positions
in original coordinate
frame

Position and orientation of the robot

Landmark 1 position in OCF



A movement model
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Formally: car is non-holonomic



A movement model
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A movement model

THIS ISN’T LINEAR!
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A movement model
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One kind of measurement model

[.andmark is at: { u }

® in global coordinate system

We record distance and heading:
® measurement

Lﬂ:[ V(e —u)? + (y —v)? }

atan2(y —u,x —v) — 0

THIS ISN’T LINEAR!



Another kind of measurement model

® [andmark is at: u
® in global coordinate system

® We record position in vehicle’s frame:

THIS ISN’T LINEAR!



[_inearization and noise

we have noise n ~ N(0,3)
this means f(x+n) 1s a random variable
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Then

f(x+n)~ f(x)+ Jr.n
So (approximately)

fx+mn) ~ N(f(x), Jy257f )



[_inearization and noise

® we have noise

® So (approximately)

f(x,n) ~ N(f(x,0), Jf,nEJ;?F,n)

n ~ N(0,%)



The Kalman filter

Assumption: state update
Dynamic Model: and measurement are linear

AT 1ith normal noi
z; ~ N(Dizi_1,%q,) with normal noise

Yy; o~ ;NT(JM'ill:is 2m,—)

Start Assumptions: T, and X, are known
Update Equations: Prediction

- — .=t
;lz — D‘l_ €Tr i— 1

]

Update Equations: Correction

}Ci - Zz_JM;T [JW;ZI_./M? + Znu] -

x; =T, +K; [y, — MiT; |«
st = [Id — KiM)E] Difference between
predicted and observed
measurement

Algorithm 11.3: The Kalman Filter.



The extended Kalman filter

® What happens if state update, measurement aren’t linear?
e particle filter
® linearize and approximate (EKF)

Xi = f(Xz'—la ?)

Noise - normal, mean 0, Cov known

!
Yi = g(Xian)



The extended Kalman filter

® Linearize: x; = f(xi—1,n)
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Posterior covariance of x_{i-1}

x; ~ N(f(xi-1,0), Fo X\ FL + F X o FF

Noise covariance T




Dynamic Model:

Yi ~ N(M;z;, Xm;)

Start Assumptions: T, and X, are known
Update Equations: Prediction T.
1

X ~ N(f(Xi—fﬁ

Update Equations: Correction
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Algorithm 11.3: The Kalman Filter.




The extended Kalman filter

® Linearize: y; = g(x;,n)
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Dynamic Model:

y; ~NMzi,Xn,)

Start Assumptions: T, and X, are known

Update Equations: Prediction . E_
)

x; ~ N(f(

o <

Xi_1,0), Fu X\ FL 4+ Fu X o FF

Update Equations: Correction

Ki = Ei_,'\/l? [,;\/[,izi—_/\/(;l" + Zm,«]_l <

fEi

nt
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=T, + KCi [yi - “M"‘l_’i_]
= [Id — }Ci-’Mi] ZI_

Algorithm 11.3: The Kalman Filter.

This is the
inverse of
the covariance
of y_i



Dynamic Model:

Y; o~ NY(JM-iiUis Zmi)

Start Assumptions: T, and X, are known

Update Equations: Prediction 7.

1
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x; ~ N(f(xi_1,0), Fo i\ FL 4+ Fn3n i Fr

Update Equations: Correction

}Ci — ZT_JM?T [JM;Z:JM? + Zmi] -

T, =7, +K; [y; - MiT; ]
F = [Id— KiM;) 2]
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Algorithm 11.3: The Kalman Filter.

Difference between
predicted and true
measurement



Dynamic Model:

Y; o~ *Nr(JM'i:B‘is Zml—)

Start Assumptions: T, and X, are known

Update Equations: Prediction 7. Z_
1 .
/ / 7)
+ T T
Update Equations: Correction

}Ci — E,Z_JM;I—‘ [JM;ZI_JM;T + Z?Tt{] -

?1+ =T; +K; ['yz‘ - J’Mifi_]
F = [Id — KiM;] ]
<

Algorithm 11.3: The Kalman Filter.

Linear measurement
model



Dynamic Model:
x; = f(Xi—1,1)

Yi — g(Xi7 Il)

Start Assumptions: T, and X, are known
Update Equations: Prediction T. E_
)

/Z — T sl T
X N(f(xi_l,O),foi_l]:x -+ FnEn,ZFn

Update Equations: Correction

K, =3 MT [G.E; G, + Qan,igﬂ_l

=) =7, +K; [Yi —g(x; Oﬂ
5+ = [Id - K;G, 1 =7

Algorithm 11.3: The Kalman Filter.




In principle, now easy

e BUT

e F_x is much simpler than it might look
® the landmarks do not move!
e F n ditto
® there is no noise in the landmark updates

N=Number of landmarks
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More simplifications

o BUT

® G_x 1s much simpler than it might look
® cach set of measurements affected by only one landmark!

N N=Number of landmarks
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More simplifications

e BUT

® G_n is usually much simpler than it might look
® noise is usually additive normal noise

Block diagonal

ggzn,zgn — Zn,’i



Landmarks

® Which measurement comes from which landmark?

® data association -
® for the moment, assume
® we use a bipartite graph matcher
® or draw independent samples from posterior on landmark
® gjven measurement
® jdeally, we’d average over all matchings - put that off



Landmarks

® No measurement from a landmark?

® structure of EKF means you can process landmarks one by one
® don’t update that landmark

® New landmark?

® full observation (eg range+bearing, lidar)
® partial observation (eg bearing, vision)



Full observation

® Must make estimates of
® Jandmark mean state
® invert the observation of the landmark

® Jandmark covariance
® with itself
® with others
® use jacobians of inverted observation



Range and bearing

Landmark position

l
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Observation »[ Z ] _ [ V(e —u)? 4 (y—v)? ]

atan2(y — u,x —v) — 0

T

T

Vehicle state

BB

Here use the current estimate of vehicle state

[ = hixvi) -

h(x;
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These are measurements
of new landmark ONLY



Range and bearing

® but the measurement may be affected by noise
e additive noise, normal, zero mean, covar Y,

® So [ should have written

w | _ | z+d+sin(¢+C+0) | _, - o
[U]_[y+(d+£)cos(¢+g+9) = hX;,y:,§,¢) = h(X;,1,n)

® And I need to do some surgery

® on the state vector
® and on the covariance matrix



Range and bearing - state vector surgery

® Because the noise has zero mean
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Range and bearing - covariance surgery

] _ [ r+ (d+ &) sin(¢p + ¢ +0)

Y+ (d+ &) cos(¢p+ ¢+ 0) = h(X;,y:,&,¢) = h(X; ,1,n)

Covariance of vehicle state

with 1tself
® So ’]_[ Z:—x:cHT + ’]_[ Z’]-[T «—— Covariance of
T landmark with itself

Jacobian of landmark position
wrt vehicle state

® and l

H Z i RM <+— Covariance of landmark with everything else

|

1’th posterior covariance of location with all other landmarks



Range and bearing - covariance surgery

st (M., RM)T
(”H zmM) Ho S, HE + HaSHE

1,TX




Bearing only (sketch)

® (Cannot determine landmark 1n 2D from measurement
® it’s on a line!
® you must come up with a prior
® after that, it’s easy
® find mean posterior location, covariance
® plugin
® Big Issue
® True prior should have infinite covariance
® can’t work with that
® 5o linearization may fail



