Visual odometry

D.A. Forsyth UIUC

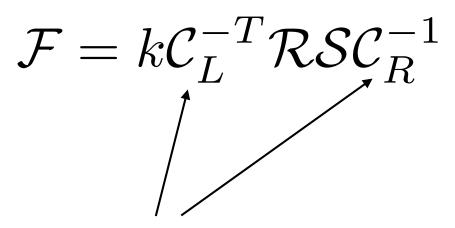
Odometry from two camera geometry

• Idea:

- use calibrated camera
- move; track some points
 - in reading slides
- compute essential matrix (calibrated fundamental matrix) to get
 - rotation
 - translation up to scale
- Options:
 - fix scale later
 - use (say) wheel measurements + Kalman filter to fix
 - use stereo

RECALL: The Fundamental Matrix $\downarrow \mathbf{p_1}^T \mathcal{F} \mathbf{p_2} = 0$

- Can be fit a pair of images using feature correspondences
 - 8 point algorithm
 - robustness is an important issue
 - we'll do this



If we know these

we can recover info about R, T from F

The Essential matrix

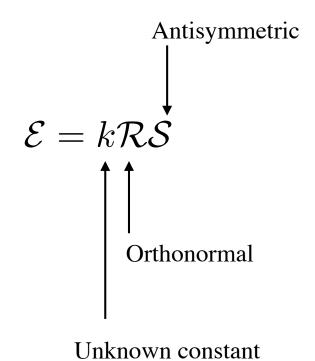
• Assume camera calibration is known

• Cameras are normalized so that C=Id

$$\mathbf{p_1}^T \mathcal{F} \mathbf{p_2} = 0$$
 becomes $\mathbf{p}_1^T \mathcal{E} \mathbf{p}_2 = 0$

$$\mathcal{F} = k \mathcal{C}_L^{-T} \mathcal{RSC}_R^{-1}$$
 becomes $\mathcal{E} = k \mathcal{RS}$
The essential matrix

From fundamental matrix

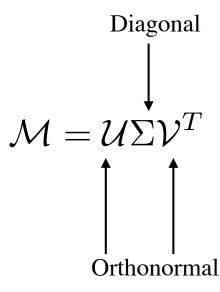


Getting R, S from E

• Recall SVD:

- Notice that, for R a rotation,
 M and PM have the same singular value
 - M and RM have the same singular values
- So singularvalues(E)=singularvalues(S)
 - check:

$$\Sigma(\mathcal{S}) = \left(\begin{array}{rrrr} s & 0 & 0\\ 0 & s & 0\\ 0 & 0 & 0 \end{array}\right)$$



Recovering R, S - I

• Write

 $\mathcal{W} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathcal{R} = \mathcal{U}\mathcal{W}^{-1}\mathcal{V}^{T}$ $\mathcal{S} = \mathcal{V}\mathcal{W}\Sigma\mathcal{V}^{T}$

• Check that

- RS=E
- R is orthonormal
- S is antisymmetric

BUT

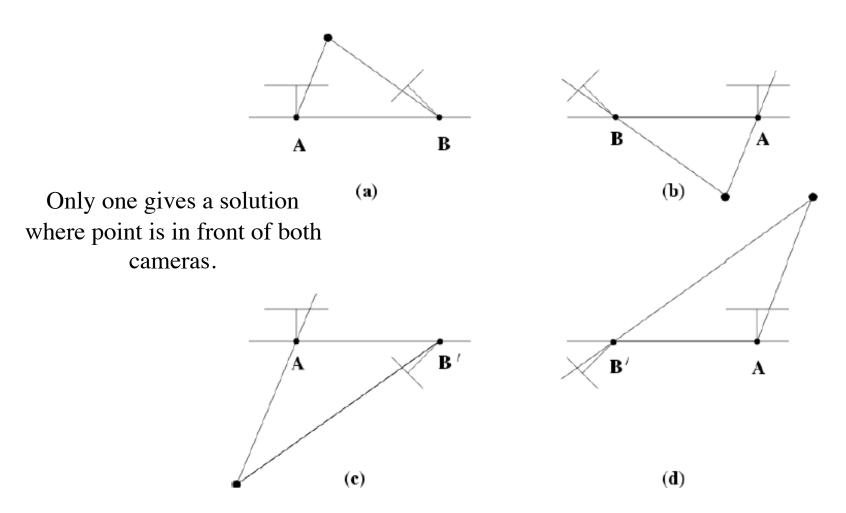
- There are ambiguities
 - check that for any Q of the form
 - square root of identity
 - R', S' as given also work
 - R' is orthonormal
 - S' is antisymmetric
- Four of these don't matter
 - cause det(R')=-1
 - implies camera was reflected as well as rotated
 - and that doesn't happen

$$\mathcal{Q} = \operatorname{diag}(\pm 1, \pm 1, \pm 1)$$

$$\mathcal{S}' = \mathcal{QS}$$

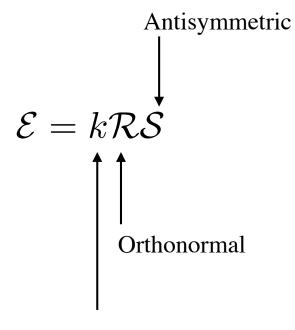
 $\mathcal{R}' = \mathcal{RQ}$

The other four....



S. Weiss' notes on visual odometry from CVPR 14 tutorial

But the unknown constant is unknown...



Unknown constant

Different values of k will lead to different scales of S - equivalently, different scales of translation between cameras - you need extra information to sort this out.

What we have

• Can determine

- the rotation between two cameras
- the translation *up to scale*
- From this, we can recover 3D points
 - up to scale

What we have

• 3D points:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 And $\begin{pmatrix} x_1^t \\ x_2^t \\ x_3^t \end{pmatrix} = \mathcal{R} \begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \mathbf{t}$

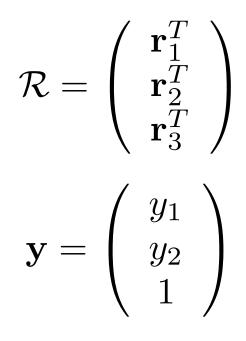
Original point in camera two's coordinate system

• normalized image points:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1/x_3 \\ x_2/x_3 \end{pmatrix} \qquad \begin{pmatrix} y_1^t \\ y_2^t \end{pmatrix} = \begin{pmatrix} x_1^t/x_3^t \\ x_2^t/x_3^t \end{pmatrix}$$

Recovering the point in 3D

• Write



$$x_3 = \frac{(\mathbf{r}_1 - y_1^t \mathbf{r}_3)^T \mathbf{t}}{(\mathbf{r}_1 - y_2^t \mathbf{r}_3)^T \mathbf{y}}$$

And we have everything in 3D!

The effect of scale

$$x_3 = \frac{(\mathbf{r}_1 - y_1^t \mathbf{r}_3)^T \mathbf{t}}{(\mathbf{r}_1 - y_2^t \mathbf{r}_3)^T \mathbf{y}}$$

- Notice that if k changes, t gets bigger or smaller
 - point coordinates scale
 - x_1=y_1 x_3, x_2=y_2 x_3
- So if we can match points across more than two cameras
 - there is only one scale ambiguity in the whole sequence
 - This could be quite easy to sort out
 - eg you know the size of high bay
 - eg you know some reference scale
 - etc

Alternatives

- Filter the scale using estimates from wheels
 - etc
- Stereo odometry
 - If I have two cameras then there is no issue with scale

Pragmatics

- Need
 - good fast feature computation and tracking
 - fast features and good robust methods seem to beat good features
 - reliable camera calibration
 - and robust FM/EM estimation
 - Ransac remains reliable
 - OR good stereo
- See slides+notes