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Intrinsic 1images

® (Originally) Maps of an image that explain pixel values
® [ntrinsic properties:
® independent of viewing; “object” or “world” properties
® [Extrinsic properties:
® depend on viewing circumstances

® (Later) Albedo/Shading maps
® [=AXxS
® Albedo (A) is a natural intrinsic
® Shading (S) is a natural extrinsic



No ground truth decompositions

® And there never will be
® rendering is do-able (but hard)
® modelling is hopeless

® (: how do you train an image decomposition method
when you don’t know the right answer?

® Retinex provides clues - spatial statistics are the key



Albedo/shading and Retinex

® Spatial reasoning, Land (59, 59, 77); Land +McCann 71:

® Surface color changes either quickly or not at all
® [ight color changes slowly
® Retinex
® Jarge family of algorithms
® quite hard to know what Retinex does (Brainard+Wandell, 86)




Computer vision versions of Retinex
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Real data 1s hard to collect

® spraypaint, multiple images, etc...

Images from dataset of Gosse et al. 09




Retinex 1s really quite good

Implementation of Retinex Ground truth

due to Kevin Karsch images from dataset of Gosse et al. 09




Human judgements are easier

() Code (Github repository) ® Pre-computed decompositions (release 0, 4.5M)

Intrinsic Images in the Wild & Publications v i Browse + Q Search Logi
MTurk Tasks Bell, Bala, Snavely, 2014

We include previews of our instructions, tutorials, and tasks that were shown to online workers.

Flag transparent/mirror points Compare surface reflectance

Preview: Intructions Tutorial Task Preview: Intructions Tutorial Task
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This gives an evaluation task

e WHDR=Weighted Human Disagreement Ratio

® compute lightness from intrinsic image representation at points

® predict
® A lighter than B
® B lighter than A
® [ightness match

® compute weighted estimate of accuracy
® weights low where human judgements are uncertain, high otherwise

® There are 1ssues, but allows evaluation
® and competition



Modern strategies - Optimization

® Apply the priors that
® albedo is piecewise constant
® there are “few” albedo values
® albedo and shading explain image

® Solve
® cg Bell 14, Nestmeyer 17, B1 15



Modern strategies - Regression

® Regression of ground truth against image

® use training set from WHDR data (Narihira et al 2015)
® and perhaps rendered data

® surprisingly, rendered data is very helpful
® [ietal 18;Bietal 18; Fanetal 18; etc

® Surprising because
® Albedo in renderings isn’t like albedo in the world
® [llumination in renderings *really* isn’t like illumination in the world



Recent history

IAGLE |
Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with [IW and threshold selection using IIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [12]. For our method, we report the held-out threshold value of WHDR. We report two figures for
[13], because we found two distinct figures in the literature. Key: *: method uses IIW training data to set scale or threshold ONLY. +: [14] build models
of albedo and shading from CGl, but do not use them for direct supervision. a: [15] use patches of registered images from MegaDepth.

Class Method Source | IIW labels | CGI labels | Flattening | Test WHDR
*Zhao et al. "12 [16] [12] N N N 26.4
*Shen and Yeo "11 [17] [12] N N N 26.1
Yu and Smith "19 [15] ibid N N N 21.4 (a)
Z. Retinex (rescaled; color/gray) [12] N N N 19.5*/18.69*
*Bell et al '14 [11] [12] N N Y 18.6
Liu et al "20 [14] ibid N Y+ N 18.69
Bi et al "15 [13] ibid N N Y 18.1
Bi et al "15 [13] [18] N N Y 17.69
w Liu et al 20 [14] ibid N Y+ N 18.69
Shi et al. 17 [19] [18] N Y N 54.44
Zhou et al "15 [20] [18] Y N Y 19.95
*Narihira et al [12] ibid N N N 18.1
O Bi et al "18 [18] ibid N Y Y 17.18
Zhou et al "15 [21] ibid Y N Y 15.7
Li and Snavely "18 [1] ibid Y Y Y 14.8
Fan et al "18 [22] ibid Y N Y 14.45




WHDR 1s tricky - I

From Fan 18
Methods WHDR (mean)
Baseline (const shading) 51.37
Baseline (const reflectance) 36.54
Shen er al. 2011 [17] 36.90
Retinex (color) [ 1] 26.89
Retinex (gray) [ 1] 26.84
Garces et al. 2012 [Y] 25.46
Zhao et al. 2012 [20] 23.20
L, flattening [*] 20.94
Bell er al. 2014 [] 20.64
Zhou et al. 20152 1] 19.95
Nestmeyer ef al. 2017 (CNN) [16] 19.49
Zoran et al. 2015% |22 17.85
Nestmeyer er al. 2017 [16] 17.69
Bieral 2015([7] 17.67
Ours w/o D-Filter 15.40
Ours w/o joint training 14.52
Ours 14.45

Table 1. Quantitative results on the IIW benchmark. All the results
are evaluated on the test split of [15], except for the one marked
with * which is evaluated on their own test split and is not directly
comparable with other methods.

WHDR (%) | Error Rate (%)
Ours (HSC) 20.9 24.5
Ours (CNN) 18.3 22.3
Ours (CNN-ImageNet) 18.1 22.0
CRF [4] (rescaled) 18.6 22.3
Retinex-Color [10] (rescaled) 19.5 23.3
Retinex-Gray [10] (rescaled) 19.8 23.8
Shen and Yeo [22] (rescaled) 23.2 26.1
Zhao et al. [26] (rescaled) 22.8 26.4
CRF [4] 20.6 25.6
Retinex-Color [10] 26.9 32.4
Retinex-Gray [10] 26.8 32.3
Shen and Yeo [22] 32.5 35.1
Zhao et al. [26] 23.8 28.2

Table 1. Intrinsic Images in the Wild benchmark results. For
each algorithm, we display the weighted human disagreement rate
(WHDR, lower is better), as well as the error rate on classify-
ing the sign of lightness change between pairs of points labeled
in the ground-truth. We include our own re-evaluation of com-
peting methods, which closely matches the performance reported
in [4]. In addition, we report performance of a rescaled version of
competing methods, which specifically optimizes their output for
the pairwise classification task. Our algorithm is on par with the
CRF approach developed by [4] for state-of-the-art performance.
We refer the reader to [4] for comparison to an expanded set of
prior work.

Narihira et al 15



WHDR 1s tricky - 11

® Predict by
® f(ml,m2)>t -> 1islighter
® -t<f(ml, m2)<t ->same
® f(ml,m2)<-t ->2islighter
® [ssues:
® choice of f
® ml-m2
® Jog(ml/m2)-1
® choice of m
® lightness potential
® predicted albedo
® choice of threshold
® interacts with scale



Input Bietal [3] Nestmeyereral [10] Ours

Fan 18 - current SOTA WHDR of 14.45%



WHDR is tricky - IV

Bi et al, 2018 - this image WHDR 6.61%

Shading

Reflectance

WHDR: 75.70% WHDR: 36.03% WHDR: 11.48%
Shietal.[2017] Narihira et al. [2015] Zhou et al. [2015]

® Note:

® odd colors
® “colored paper” effect
® “indecision”

Shading

Reflectance

WHDR: 7.35% WHDR: 6.61%
Nestmeyeretal.[2017]  Bj et al 2018



Spatial models

Albedo

DAF 21



Various options
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Choosing paradigms

® Albedo paradigm captures:
® albedos piecewise constant
® reasonable color distribution
® many edges; no orientation bias; some vertices with degree>3

® Shading paradigm captures:
® mostly smooth, but some sharp edges
® some dark/light spots
® uniform color
® Samples from a spatial model
® chosen by best guess; doesn’t seem to matter much



A regression network

Paradigm

. Albedo

Images —>»
‘ Real Shading

U-Net with skip connections




Easy losses

® Paradigms should be correctly decomposed

® with small residual [.osses on

® Composing decomposed images Paradigm N
1k

® should have small residual
Paradigm

Albedo
i

Losses on Real
Real Shading
U-Net with skip connections L(A*S9=) Lad(f‘ ’ S)
F:

DAF 21




Training constraints

® Real images should

® have albedo that locally “looks like” paradigms
® have shading that locally “looks like” paradigms
® have small residual

Locally = PatchGAN like trick



Side topic - Adversarial losses

® [ssue:
® we are making pictures should have a strong structure
® albedo piecewise constant, etc.
® but we don’t know how to write a loss that imposes that structure

® Strategy:
® build a classifier that tries to tell the difference between
® true examples
® cxamples we made
® use that classifier as a loss



Generative
Adversarial
Network

e

X

real-world
image

OR

discriminator

X — (:'(Z;)

generator

N —p —

code vector

Grosse slides



@ Let D denote the discriminator’s predicted probability of being data

e Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Exp[—log D(x)] + E;[— log(1 — D(G(2)))]

Notice: we want the discriminator to make a 1 for real data, O for fake data
@ One possible cost function for the generator: the opposite of the

discriminator's

Je =—Jb
= const + K, [log(1 — D(G(z)))]

@ This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

Solution (if exists, which i1s uncertain; and if max min ,7 D
can be found, ditto) is known as a saddle point. D

It has strong properties, but not much worth
talking about, as we don’t know if it is there or

whether we have found it. Grosse slides



Quote from the original paper on GANs:

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to
improve their methods until the counterfeits are
indistinguishable from the genuine articles."

-Goodfellow et. al., "Generative Adversarial Networks" (2014)

Thakar slides



Important, general 1ssue

If either generator or discriminator “wins” -> problem

Discriminator “wins”’

® it may not be able to tell the generator how to fix examples
® discriminators classify, rather than supply gradient

Generator “wins”
® likely the discriminator is too stupid to be useful

Very little theory to guide on this point



Updating the discriminator:

D(x)

update the discriminator
T weights using backprop

on the classification objective

X OR x=0G(z)

real-world 1
image generator

t

| Z \ code vector

—_ - R --

Grosse slides



Updating the generator:

D(x)
backprop the derivatives,
but don't modify the
f discriminator weights
flip the sign
of the derivatives

update the generator
f weights using backprop

Grosse slides



One must be careful about losses...

@ We introduced the minimax cost function for the generator:
Je = Ez[log(1 — D(G(z)))]

@ One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

o “Logistic 4+ squared error’ gets a weak gradient signal
o “Logistic + cross-entropy” gets a strong gradient signal

@ Here, if the generated sample is really bad, the discriminator’'s
prediction is close to 0, and the generator's cost is flat.

Grosse slides



One must be careful about losses...

e Original minimax cost: modified
cost
Jc = E,[log(1 — D(G(2)))]

e Modified generator cost:

minimax
J6 = Ez[—log D(G(2))] cost
@ This fixes the saturation problem. 4o 02 o4 06 08 10
s
DI(G(z))
(how well it fooled
the discriminator)

Grosse slides



Alternative losses

e Hinge:
® Discriminator makes D(im)
® want
® real images -> -1
® fake ->1

® Discriminator loss: Z max((), 1 — yzD(Iz))

fakes and real

® where y_i=-1 for real, y_i=1 for fake

> D(IL)

fakes

® (Generator loss:
°



Adversarial loss

Adversarial loss

discriminator

Estimated Albedo

Paradigm Albedo

Image

Grosse slides



Training constraints

® Real images should

® have albedo that locally “looks like” paradigms
® have shading that locally “looks like” paradigms
® have small residual

Local
Adversary

Locally = PatchGAN like trick



PatchGAN trick

® Gen. albedos look like examples only at short scales
® Discriminator should NOT see the whole example or it will win easily

® Trick

Convolutional
layer, leaky ReLU,
Stride=2

Convolutional
layer, leaky ReLU,
Stride=2

—

Convolutional
layer, leaky ReLU,
Stride=2

Compute loss
and average



Adversarial Smoothing

Our Decompositions

® Repeat: - '
® Adjust adversary to distinguish between o o -
paradigms and network outputs |
® Adjust network outputs to fool adversary
® Origins in GAN’s (Goodfellow et al A
15), BUT > | Local i
® adversary sees paradigms, network outputs Advers ary
only locally S —
® paradigms are short scale models

® adjust discriminator so that output is
mean of per-tile losses

- Paradigm Samples




Adversarial Smoothing

e BUT:

® GAN *“theory” doesn’t apply
® 1o reason to believe that distributions can match
® there may not be a saddle point
® 5o this isn’t really a loss, and doesn’t really converge!

® Stopping training at different points -> different albedos!

Image Model 1 Model 0




Inference

® Network is trained on 128 x 128 tiles of image

® We want equivariance properties from albedo, shading
® cg translate, rotate, scale image
® albedo for translated (etc) image should be translated albedo
® shading for translated (etc) image should be translated shading

® This doesn’t come naturally



Equivariance must be imposed

BR Rescale Flip

TL Model 1 Model 0




Imposing equivariance

® Translation:
® cover image with many, shifted, overlapping tiles
® for each, recover albedo, shading
® albedo at pixel is weighted average of all overlapping tiles

® Scale:

® rescale image up, down
® for each, recover albedo/shading using translation averaging
® then rescale back

® average results

® Rotation
® average estimates from above over 8 flips



Averaging very strongly suppresses error

BR Rescale Flip

BBAF

Model 1 Model 0




Results

IAGLE |
Summary comparison to recent high performing supervised (above) and unsupervised (below) methods, all evaluated on the standard IIW test set;
sources indicated. We distinguish between training with [IW and threshold selection using IIW. WHDR values computed for Retinex use the most
favorable scaling, using the rescaling experiments of [12]. For our method, we report the held-out threshold value of WHDR. We report two figures for
[13], because we found two distinct figures in the literature. Key: *: method uses IIW training data to set scale or threshold ONLY. +: [14] build models
of albedo and shading from CGl, but do not use them for direct supervision. a: [15] use patches of registered images from MegaDepth.

Class Method Source | IIW labels | CGI labels | Flattening | Test WHDR
*Zhao et al. "12 [16] [12] N N N 26.4
*Shen and Yeo "11 [17] [12] N N N 26.1
Yu and Smith "19 [15] ibid N N N 21.4 (a)
Z Retinex (rescaled; color/gray) [12] N N N 19.5*/18.69*
*Bell et al 14 [11] [12] N N Y 18.6
Liu et al "20 [14] ibid N Y+ N 18.69
Bi et al "15 [13] ibid N N Y 18.1
Bi et al "15 [13] [18] N N Y 17.69
wn Liu et al 20 [14] ibid N Y+ N 18.69
A~ Our best N N N 16.86*
Shi et al. 17 [19] [18] N Y N 54.44
Zhou et al "15 [20] [18] Y N Y 19.95
*Narihira et al [12] ibid N N N 18.1
O Bi et al "18 [18] ibid N Y Y 17.18
Zhou et al "15 [21] ibid Y N Y 15.7
Li and Snavely "18 [1] ibid Y Y Y 14.8
Fan et al "18 [22] ibid Y N Y 14.45




Fig. 3. Albedo and shading estimates for a subset of IIW images, curated for qualitative effects. Note: strong suppression of shading on material folds
(a, b); strong suppression of smooth shadows and glint (c, d, e, f); suppression of reflected smooth shadows (d - in mirror); error at sharp shadow
boundaries (f, g - ceiling); apparent flattening (c, e, h). Shading fields are mostly smooth, but have some higher contrast edges.

DAF 21



Indecisiveness remains (aargh!)

Fig. 13. Our method suffers indecisiveness, as do others; this is a persis-
tent problem in intrinsic image methods. Figures show a decomposition
of an outdoor image, using our method. Note the pronounced shadow
leaves effects in both albedo and shading fields; versions of this effect
for other methods can be seen in Figure 6. Best viewed in color.



Other Possible Intrinsics

Surface relief and material properties
® and perhaps many of them

Surface mechanical properties
Surface glossiness
Texture flow



Relief - intrinsic, because
small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)
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Relief - intrinsic, because
small local shadows do not

move with illumination
(at least Koenderink+Van Doorn, 77)




Fur - intrinsic, because
small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)




Relief - intrinsic (at least at this scale),
because small local shadows do not
move with illumination
(at least Koenderink+Van Doorn, 77)
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79?7 - intrinsic, because
mostly not a property of viewing
circumstances (?)



Iridescence
creating intrinsic gloss effects
intrinsic because the color effects will be
there for almost all illumination



77?7 - intrinsic, the specularities
move but are always there




77?7 - intrinsic, the specularities
move but are always there




Other Possible Extrinsics

Glossy reflected component
Luminaires

Lens flare

Rain effects

etc.



Gloss/specular - clearly extrinsic,
when the light moves, this moves




Lens flares - clearly intrinsic,
product of viewing circumstances




Luminaires -
extrinsic or intrinsic?
worth knowing about, anyhow

© 2013 PHION Gt wm




Rain - multiple extrinsic phenomena,
including smoothing, raindrops, loss of saturation,
glossy/wet surfaces, etc. etc.



Albedo Shading

Retinex ColorT|
'_(rcxalcd)

sojdures wiSipereg

'-_ i
-

Thin Thick

Fig. 12. The method can be extended to capture thin and thick bars of darkness by extending the decomposer to have four heads (albedo, shading,
thin bars, thick bars), and extending the paradigms (bottom left shows examples). The advantage of doing so is that a decomposition will then
capture the thin bars of darkness associated with grooves separately from albedo (example decomposition shown here). Qualitatively, these thin
bars do appear to be associated with grooves (but note the thin dark paint bars on the ceiling, which also appear in this map). The cost in WHDR
(top right compares to BBAF) is noticeable, but may be tolerable in some applications. Best viewed in color.



No ground truth decompositions

® And there never will be
® rendering is do-able (but hard)
® modelling is hopeless

® (: how do you train an image decomposition method
when you don’t know the right answer?

® Retinex provides clues - spatial statistics are the key



