Semantic segmentation

D.A. Forsyth
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Variants: Semantic Instance Segmentation

® Tag every pixel,
e BUT different instances of the same class get different tags

instance-level labelling

pixel-level labelling



Variants: 3D semantic segmentation

Figure 5. Results for terrestrial laser scans. Top row: urban street in St. Gallen (left), market square in Feldkirch (right). Bottom row:
church in Bildstein (left), cathedral in St. Gallen (right) with classes: man-made terrain, natural terrain, high vegetation, .
buildings, remaining hard scape and scanning artefacts. Hackel et al



Variants: Map to Scene model

Fig. 6: Semantic image segmentation: The top row shows
the input street-level images and the middle row shows
the output of the CRF labeller. The bottom row shows the
corresponding ground truth for the images.

Fig. 3: Bundle adjustment results, showing camera centres
and 3D points, registered manually to the Google map.

Sengupta et al



Variants: Map to Scene model

Fig. 4: Volumetric surface reconstruction. Top figure shows
the 3D surface reconstruction over 250 frames (KITTI se-
quence 15, frames 1-250) with street image shown at the
bottom. The arrow highlights the relief of the sidewalk which
is correctly captured in the 3D model.

Pavement Car Building

Signage Poles

Pedestrian

Fig. 8: Semantic model of the reconstructed scene overlayed
with the corresponding Google Earth image. The inset image
shows the Google earth track of the vehicle.

Sengupta et al



Variants: Stixels
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Figure 1: The multi-layer Stixel World result as output of the optimization. The captured scene is
segmented into planar Stixel segments that correspond to either ground or object. The color represents

the distance to the obstacle with red being close and green far away. Grey pixels belong to the ground
surface.

Pfeiffer + Franke



Why bother?

Driving (maybe - why everything?)



Why bother?

Medical applications (compelling)



Important variants

Partial semantic segmentation
® some pixels unlabelled

Thing segmentation
® Jabel “things”

® count nouns (car, person, dog...)
Stuff segmentation

® label “stuff™
® mass nouns (grass, sky, water...)

Panoptic segmentation
® cach pixel gets a label

® cach instance of a count noun gets a different label (person-a, etc)
® [ *think* MS-COCO and Cityscapes use the term differently



Issues

® ][.abel distributions are skewed
® Pascal 2010

® from Mottaghi et al 14
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Figure 2. Distribution of pixels and images for the 59 most frequent categories. See text for the statistics.



Issues

® Some ambiguity in labelling
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Spatial structure 1s an 1ssue

Geometric
models

Pix

Road
class

Lane
markers

Mansinghka et al 13



Small things are important

Input: car front bumper and cardboard box Input: tire and square timber

on

Pinggera et al 16



More 1ssues

Data

Spatial models

Appearance models
Managing scale, context, etc.



Contrast with segmentation

Learning a semantic segmenter should be *MUCH?* easier
cause you KNOW what label each pixel should have
and labels transfer across images



Evaluation

To assess performance, we rely on the standard Jaccard Index, commonly known as
the PASCAL VOC intersection-over-union metric loU = TP / (TP+FP+FN) [1], where
TP, FP, and FN are the numbers of true positive, false positive, and false negative
pixels, respectively, determined over the whole test set. Owing to the two semantic
granularities, i.e. classes and categories, we report two separate mean

performance scores: 10U ategory and 10Ujass. In either case, pixels labeled as void do
not contribute to the score.

Cityscapes



Evaluation, II

It is well-known that the global loU measure is biased toward object instances that
cover a large image area. In street scenes with their strong scale variation this can be
problematic. Specifically for traffic participants, which are the key classes in our
scenario, we aim to evaluate how well the individual instances in the scene are
represented in the labeling. To address this, we additionally evaluate the

semantic labeling using an instance-level intersection-over-union metric iloU = iTP /

(iTP+FP+iFN). Again iTP, FP, and iFN denote the numbers of true positive, false
positive, and false negative pixels, respectively. However, in contrast to the standard
loU measure, iTP and iFN are computed by weighting the contribution of each pixel by
the ratio of the class’ average instance size to the size of the respective ground truth
instance. It is important to note here that unlike the instance-level task below, we
assume that the methods only yield a standard per-pixel semantic class labeling

as output. Therefore, the false positive pixels are not associated with any instance and
thus do not require normalization. The final scores, iloUcategory and iloU|ass, are

obtained as the means for the two semantic granularities.

Cityscapes



(Some) Datasets

Cityscapes

® https://www.cityscapes-dataset.com/benchmarks/
Pascal VOC 2010 context

® https://cs.stanford.edu/~roozbeh/pascal-context/

Kitti

® http://www.cvlibs.net/datasets/kitti/eval_semantics.php
® also see other annotations at bottom of page

Mapillary vistas
® https://research.mapillary.com/img/publications/ICCV 17a.pdf
MS COCO

® http://cocodataset.org/#panoptic-2018




Early 1deas

® [abel pixel using oar” §
. softmax layer
® its appearance :
® features for context, etc. fully connected layer(s)
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Procedure

Fully convolutional network

® with very large receptive fields
® some skip connections

Train with cross-entropy loss

forward /inference

-

backward /learning

Long et al



Procedure, 11

“tabby cat”
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Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Long et al



Procedure, 111
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Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from poo13, at stride 8, provide further precision.

Long et al



Procedure, IV

FCN-32s FCN-16s FCN-8s Ground truth

| 4
O

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Long et al



Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [ 17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a

failure case: the net sees lifejackets in a boat as people.
Long et al



Current SOTA

Semantic Segmentation on Cityscapes test
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More SOTA

Kitti
® http://www.semantic-kitti.org/tasks.html

Robust Vision
® http://www.robustvision.net/leaderboard.php?benchmark=semantic




Spatial constraints on regions

® (: do we need them?
® A: (Jury is out)

® Yes:
® thing regions need to form structures
® stuff regions need to be coherent

® No:
® pixel appearance is dispositive
® anyhow, the model learns a prior from all the data it sees

® (Q: how do we impose them?
® A: Fully connected CRF’s
® A: Mask machinery



