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Program and Context

® CRF’s and MRF’s are important in semantic segmentation

® Work an interesting simple problem to set up
® Have a box on an object, but we’d like tighter boundaries
® What to do?
® FEarly (and very good) techniques
® Grab Cut
® Obj Cut
® Both use MRF/CRF models and inference
® cover that quickly



Markov random field - formal

Definition

Given an undirected graph G = (V, E), a set of random variables X = (X, ),cy indexed by V' form a Markov random
field with respect to G if they satisfy the local Markov properties:

Pairwise Markov property: Any two non-adjacent variables are conditionally independent
given all other variables:

Xy 1L Xy | Xon\{uw)

Local Markov property: A variable is conditionally independent of all other variables given
its neighbors:

Xy L XV\N[v] | XN(v)

where N(v) is the set of neighbors of v, and N[v] = v U N(v) is the closed neighbourhood of
V.

Global Markov property: Any two subsets of variables are conditionally independent given a
separating subset:

Xa Ul Xp | Xs
where every path from a node in A4 to a node in B passes through S.

The Global Markov property is stronger than the Local Markov property, which in turn is stronger than the Pairwise one.

(3] However, the above three Markov properties are equivalent for a positive p1'obability.[4]



MRF - First case for us

@ @ ® The graph is a 2D grid
® FEach random variable is a binary random variable
® cg inside object, outside object

® In this case
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p(z) x exp 5 > ) > _ goodness(z;, ;)
U

Look at Ch15 of AML for some examples, BUT that uses different inference procedures and has 1, -1
labels. I’'m using Greig; Porteous; Seheult notation (see web page for paper)



Notice

® [f the goodness of a pair is high, p 1s higher
® Because these are binary, we can simplify

® We want;:

® better for neighbors to agree than disagree
® the goodness for both O is the same as for both 1

® (Can then simplify
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® To get
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Important

® We want;:

® better for neighbors to agree than disagree
® the goodness for both O is the same as for both 1

® This means

pe) e exp | 5 3 3 Byl + (L= x)(1 = x))
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This 1s >=0 for 1 neq ]



First model

At each pixel, there 1s an unknown binary label
® (=out, 1=In
These binary labels form an MRF

® where it is cheaper to agree than to disagree

At each pixel, there are measurements
® conditioned on the label
® details to follow

Q: how do we get the MAP set of labels?



Model

® At each pixel we have observations y
® vyields likelihood

1) = T1/Gx) = TLAOI (i)'

® what is f? (later)

o write A = In{f(yID/(y]0)}
® Then

log p(z|y) = ‘é x; + %; g Bi{xx, + (1 — x)(1 — x;)}

+K



To obtain MAP estimate

® Maximise

'Z; AiX; % ‘; 2 Bij {xixj + (1 — x)(d — xj)}

e But how?
® blank search won’t do it (why?)

® In this special case, graph cut works



Graph cut (quick but clean)

Consider a capacitated network comprising n + 2 vertices, being a source s, a sink
t and the n pixels. There is a directed edge (s, i) from s to pixel i with capacity c,; = 4,,
if 4, > 0; otherwise, there is a directed edge (i, ¢) from i to ¢ with capacity ¢, = —4,;.
There is an undirected edge (i, j) between two internal vertices (pixels) i and j with
capacity c¢;; = p;; if the corresponding pixels are neighbours.




Graph cut (quick but clean)

For any binary image x = (x,...,x,) let B = {s} u{iix; =1} and W =
{i: x; = 0} U {¢} define a two-set partition of the network vertices and put

Clx) = ) ) cu-

keB leW




Graph cut (quick but clean)

The set of edges with a vertex in B and a vertex in W is called a cut and C(x) is called
the capacity of the cut.
It'is readily seen that C(x) may be written

Cx) = Z x; max(0, —A,) + Z (1 — x,)max(0, 1,) + = Z Z Bii(x; — x;)°

11]]

which differs from — L(x| y) by a term which does not depend on x;




Graph cut, 11

e SO
® sect up the graph as described, and do a min-cut
® this is polynomial
® [fs, ands, buts
® this only works in the case it is cheaper to agree than to disagree
® more general case, it’s max cut which isn’t funny at all

® this only works for the binary case
® but approximations for some multilabel cases are very good

® More details
® there are *many* min-cut algorithms with different complexities
® adapted to different types of problem
® significant literature on best min-cut algorithm for vision applications
® we’ll ignore - search github



Grab Cut

® Originally for matting

® extracting an object from an image

® Process
® user places box
® orabcut segments intended object
® user perhaps iterates with strokes, etc.

® For us:
® secgments using graph cuts

® clever iterative model of interior/exterior £
® ecxtremely simple shape prior on object




Simplest case: grey level image

Their paper [Boykov and Jolly 2001] addresses the segmentation
of a monochrome image, given an initial trtmap 7. The image 1s

an array Z = (21,...,2n,---,2N) Of grey values, indexed by the (sin-
gle) index n. The segmentation of the image 1s expressed as an
array of “opacity” values o = (0q,...,04) at each pixel. Gener-

ally 0 < oy, < 1, but for hard segmentation o, € {0,1}, with O for
background and 1 for foreground. The parameters 6 describe image

foreground and background grey-level distributions, and consist of
histograms of grey values:

6 ={h(z;a),oc=0,1}, (1)

one for background and one for foreground. The histograms are
assembled directly from labelled pixels from the respective trimap
regions 1g,7r. (Histograms are normalised to sum to 1 over the
grey-level range: [.h(z;o) = 1))



Grey level image, 11

An energy function E i1s defined so that its minimum should cor-
respond to a good segmentation, in the sense that it 1s guided both
by the observed foreground and background grey-level histograms
and that the opacity is “coherent”, reflecting a tendency to solidity
of objects. This 1s captured by a “Gibbs” energy of the form:

E(QQ~Z) — U(Q.Q.Z) +V(Q,Z) g (2)

The data term U evaluates the fit of the opacity distribution ¢ to the
data z, given the histogram model 6, and 1s defined to be:

U(et,0,z) =) —logh(zn;0) . (3)

n
The smoothness term can be written as

V(Qaz) =Y 2 (I’is(m,n)_l [OC,, % am] exp —f3 (Zm —Zn)za 4)
(m,n)eC

where [¢] denotes the indicator function taking values 0,1 for a
predicate ¢, C 1s the set of pairs of neighboring pixels, and where
dis(-) 1s the Euclidean distance of neighbouring pixels. This energy



Notice

Z:: Aix; + % Zn: Z:: ﬁij {xi'xj + (1 — x)(d — xj)}

V(Qﬁz) =Y 2 diS(]H,II)_l [an * (Xm]exp _B (Zm — Zn)zs
(m,n)eC

They’re minimizing, and GPS are maximizing;
this means they use a cost (not goodness) for
disagreeing (not agreeing)



Improving this

Where does trimap come from?

® start with
® inside: a bunch of pixels in “deep interior” of box
® outside: a bunch of pixels outside box

Histograms for color images are clumsy

® too big

Initial trimap is messy

® reestimate using segmentation



Replace histograms

® Use mixture of normals
® have some interior, some exterior pixels
® build mixture of normal model for each case
® AML ch 9 if you’ve forgotten
® now you can compute p(yl 1), etc. from this



Re-estimation

® Use 1nitial trimap to make GMM
® Segment with graph cut

® Now you have a trimap

® Re-estimate GMMs, and iterate



