MRF’s, CRF’s and Refining Localization

D.A. Forsyth
Program and Context

• CRF’s and MRF’s are important in semantic segmentation

• Work an interesting simple problem to set up
 • Have a box on an object, but we’d like tighter boundaries
 • What to do?
 • Early (and very good) techniques
 • Grab Cut
 • Obj Cut
 • Both use MRF/CRF models and inference
 • cover that quickly
Markov random field - formal

Definition

Given an undirected graph $G = (V, E)$, a set of random variables $X = (X_v)_{v \in V}$ indexed by V form a Markov random field with respect to G if they satisfy the local Markov properties:

Pairwise Markov property: Any two non-adjacent variables are conditionally independent given all other variables:

$$X_u \perp X_v \mid X_{V \setminus \{u, v\}}$$

Local Markov property: A variable is conditionally independent of all other variables given its neighbors:

$$X_v \perp X_{V \setminus N[v]} \mid X_{N(v)}$$

where $N(v)$ is the set of neighbors of v, and $N[v] = v \cup N(v)$ is the closed neighbourhood of v.

Global Markov property: Any two subsets of variables are conditionally independent given a separating subset:

$$X_A \perp X_B \mid X_S$$

where every path from a node in A to a node in B passes through S.

The Global Markov property is stronger than the Local Markov property, which in turn is stronger than the Pairwise one. However, the above three Markov properties are equivalent for a positive probability.
MRF - First case for us

- The graph is a 2D grid
- Each random variable is a binary random variable
 - eg inside object, outside object
- In this case

\[p(x) \propto \exp \left[\frac{1}{2} \sum_i \sum_j \text{goodness}(x_i, x_j) \right] \]

Look at Ch15 of AML for some examples, BUT that uses different inference procedures and has 1, -1 labels. I’m using Greig; Porteous; Seheult notation (see web page for paper)
Notice

- If the goodness of a pair is high, \(p \) is higher
- Because these are binary, we can simplify
- We want:
 - better for neighbors to agree than disagree
 - the goodness for both 0 is the same as for both 1
- Can then simplify

\[
p(x) \propto \exp \left[\frac{1}{2} \sum_{i} \sum_{j} \text{goodness}(x_i, x_j) \right]
\]

- To get

\[
p(x) \propto \exp \left[\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\} \right]
\]
Important

• We want:
 • better for neighbors to agree than disagree
 • the goodness for both 0 is the same as for both 1
• This means

\[p(x) \propto \exp \left[\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\} \right] \]

This is \(\geq 0 \) for \(i \neq j \)
First model

- At each pixel, there is an unknown binary label
 - 0=out, 1=in
- These binary labels form an MRF
 - where it is cheaper to agree than to disagree
- At each pixel, there are measurements
 - conditioned on the label
 - details to follow
- Q: how do we get the MAP set of labels?
Model

- At each pixel we have observations \(y \)
 - yields likelihood

\[
l(y|x) = \prod_{i=1}^{n} f(y_i|x_i) = \prod_{i=1}^{n} f(y_i|1)^{x_i} f(y_i|0)^{1-x_i}.
\]

- what is \(f \)? (later)

- write \(\lambda_i = \ln\{f(y_i|1)/f(y_i|0)\} \)

- Then

\[
\log p(x|y) = \sum_{i=1}^{n} \lambda_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\} + K
\]
To obtain MAP estimate

- Maximise

\[
\sum_{i=1}^{n} \lambda_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\}
\]

- But how?
 - blank search won’t do it (why?)

- In this special case, graph cut works
Graph cut (quick but clean)

Consider a capacitated network comprising $n + 2$ vertices, being a source s, a sink t and the n pixels. There is a directed edge (s, i) from s to pixel i with capacity $c_{si} = \lambda_i$, if $\lambda_i > 0$; otherwise, there is a directed edge (i, t) from i to t with capacity $c_{it} = -\lambda_i$. There is an undirected edge (i, j) between two internal vertices (pixels) i and j with capacity $c_{ij} = \beta_{ij}$ if the corresponding pixels are neighbours.
Graph cut (quick but clean)

For any binary image $x = (x_1, \ldots, x_n)$ let $B = \{s\} \cup \{i: x_i = 1\}$ and $W = \{i: x_i = 0\} \cup \{t\}$ define a two-set partition of the network vertices and put

$$C(x) = \sum_{k \in B} \sum_{l \in W} c_{kl}.$$
Graph cut (quick but clean)

The set of edges with a vertex in B and a vertex in W is called a cut and $C(x)$ is called the capacity of the cut.

It is readily seen that $C(x)$ may be written

$$C(x) = \sum_{i=1}^{n} x_i \max(0, -\lambda_i) + \sum_{i=1}^{n} (1 - x_i) \max(0, \lambda_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} (x_i - x_j)^2$$

which differs from $-L(x|y)$ by a term which does not depend on x;
Graph cut, II

- **SO**
 - set up the graph as described, and do a min-cut
 - this is polynomial

- **Ifs, ands, buts**
 - this only works in the case it is cheaper to agree than to disagree
 - more general case, it’s max cut which isn’t funny at all
 - this only works for the binary case
 - but approximations for some multilabel cases are very good

- **More details**
 - there are *many* min-cut algorithms with different complexities
 - adapted to different types of problem
 - significant literature on best min-cut algorithm for vision applications
 - we’ll ignore - search github
Grab Cut

• Originally for matting
 • extracting an object from an image

• Process
 • user places box
 • grabcut segments intended object
 • user perhaps iterates with strokes, etc.

• For us:
 • segments using graph cuts
 • clever iterative model of interior/exterior
 • extremely simple shape prior on object
Simplest case: grey level image

Their paper [Boykov and Jolly 2001] addresses the segmentation of a monochrome image, given an initial trimap \(T \). The image is an array \(z = (z_1, \ldots, z_n, \ldots, z_N) \) of grey values, indexed by the (single) index \(n \). The segmentation of the image is expressed as an array of “opacity” values \(\alpha = (\alpha_1, \ldots, \alpha_N) \) at each pixel. Generally \(0 \leq \alpha_n \leq 1 \), but for hard segmentation \(\alpha_n \in \{0, 1\} \), with 0 for background and 1 for foreground. The parameters \(\theta \) describe image foreground and background grey-level distributions, and consist of histograms of grey values:

\[
\theta = \{ h(z; \alpha), \alpha = 0, 1 \},
\]

(1)

one for background and one for foreground. The histograms are assembled directly from labelled pixels from the respective trimap regions \(T_B, T_F \). (Histograms are normalised to sum to 1 over the grey-level range: \(\int h(z; \alpha) = 1 \).)
Grey level image, II

An energy function E is defined so that its minimum should correspond to a good segmentation, in the sense that it is guided both by the observed foreground and background grey-level histograms and that the opacity is “coherent”, reflecting a tendency to solidity of objects. This is captured by a “Gibbs” energy of the form:

$$E(\alpha, \theta, z) = U(\alpha, \theta, z) + V(\alpha, z). \quad (2)$$

The data term U evaluates the fit of the opacity distribution α to the data z, given the histogram model θ, and is defined to be:

$$U(\alpha, \theta, z) = \sum_n -\log h(z_n; \alpha_n). \quad (3)$$

The smoothness term can be written as

$$V(\alpha, z) = \gamma \sum_{(m,n) \in C} \frac{1}{\text{dis}(m,n)} \left[\alpha_n \neq \alpha_m \right] \exp -\beta (z_m - z_n)^2, \quad (4)$$

where $[\phi]$ denotes the indicator function taking values 0, 1 for a predicate ϕ, C is the set of pairs of neighboring pixels, and where $\text{dis}(\cdot)$ is the Euclidean distance of neighbouring pixels. This energy
Notice

\[
\sum_{i=1}^{n} \lambda_i x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \{x_i x_j + (1 - x_i)(1 - x_j)\}
\]

\[
V(\alpha, z) = \gamma \sum_{(m,n) \in \mathcal{C}} \text{dis}(m,n)^{-1} [\alpha_n \neq \alpha_m] \exp -\beta (z_m - z_n)^2,
\]

\[
U(\alpha, \theta, z) = \sum_{n} -\log h(z_n; \alpha_n).
\]

They’re minimizing, and GPS are maximizing; this means they use a cost (not goodness) for disagreeing (not agreeing)
Improving this

• Where does trimap come from?
 • start with
 • inside: a bunch of pixels in “deep interior” of box
 • outside: a bunch of pixels outside box

• Histograms for color images are clumsy
 • too big

• Initial trimap is messy
 • reestimate using segmentation
Replace histograms

- Use mixture of normals
 - have some interior, some exterior pixels
 - build mixture of normal model for each case
 - AML ch 9 if you’ve forgotten
 - now you can compute p(y|1), etc. from this
Re-estimation

- Use initial trimap to make GMM
- Segment with graph cut
 - Now you have a trimap
- Re-estimate GMMs, and iterate