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Program and Context

® CRF’s and MRF’s are important in semantic segmentation

® Work an interesting simple problem to set up
® Have a box on an object, but we’d like tighter boundaries
® What to do?
® FEarly (and very good) techniques
® Grab Cut
® Obj Cut
® Both use MRF/CRF models and inference
® cover that quickly



Markov random field - formal

Definition

Given an undirected graph G = (V, E), a set of random variables X = (X, ),cy indexed by V' form a Markov random
field with respect to G if they satisfy the local Markov properties:

Pairwise Markov property: Any two non-adjacent variables are conditionally independent
given all other variables:

Xy 1L Xy | Xon\{uw)

Local Markov property: A variable is conditionally independent of all other variables given
its neighbors:

Xy L XV\N[v] | XN(v)

where N(v) is the set of neighbors of v, and N[v] = v U N(v) is the closed neighbourhood of
V.

Global Markov property: Any two subsets of variables are conditionally independent given a
separating subset:

Xa Ul Xp | Xs
where every path from a node in A4 to a node in B passes through S.

The Global Markov property is stronger than the Local Markov property, which in turn is stronger than the Pairwise one.

(3] However, the above three Markov properties are equivalent for a positive p1'obability.[4]



MRF - First case for us

@ @ ® The graph is a 2D grid
® FEach random variable is a binary random variable
® cg inside object, outside object

® In this case

]_ N\ A\
p(z) x exp 5 > ) > _ goodness(z;, ;)
U

Look at Ch15 of AML for some examples, BUT that uses different inference procedures and has 1, -1
labels. I’'m using Greig; Porteous; Seheult notation (see web page for paper)



Notice

® [f the goodness of a pair is high, p 1s higher
® Because these are binary, we can simplify

® We want;:

® better for neighbors to agree than disagree
® the goodness for both O is the same as for both 1

® (Can then simplify

]. N\ N\
p(x) ox exp 5 >4 >4 goodness(z;, x;)
)

® To get

n n
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Important

® We want;:

® better for neighbors to agree than disagree
® the goodness for both O is the same as for both 1

® This means

pe) e exp | 5 3 3 Byl + (L= x)(1 = x))

i

This 1s >=0 for 1 neq ]



First model

At each pixel, there 1s an unknown binary label
® (=out, 1=In
These binary labels form an MRF

® where it is cheaper to agree than to disagree

At each pixel, there are measurements
® conditioned on the label
® details to follow

Q: how do we get the MAP set of labels?



Model

® At each pixel we have observations y
® vyields likelihood

1) = T1/Gx) = TLAOI (i)'

® what is f? (later)

o write A = In{f(yID/(y]0)}
® Then

log p(z|y) = ‘é x; + %; g Bi{xx, + (1 — x)(1 — x;)}

+K



To obtain MAP estimate

® Maximise

'Z; AiX; % ‘; 2 Bij {xixj + (1 — x)(d — xj)}

e But how?
® blank search won’t do it (why?)

® In this special case, graph cut works



Graph cut (quick but clean)

Consider a capacitated network comprising n + 2 vertices, being a source s, a sink
t and the n pixels. There is a directed edge (s, i) from s to pixel i with capacity c,; = 4,,
if 4, > 0; otherwise, there is a directed edge (i, ¢) from i to ¢ with capacity ¢, = —4,;.
There is an undirected edge (i, j) between two internal vertices (pixels) i and j with
capacity c¢;; = p;; if the corresponding pixels are neighbours.




Graph cut (quick but clean)

For any binary image x = (x,...,x,) let B = {s} u{iix; =1} and W =
{i: x; = 0} U {¢} define a two-set partition of the network vertices and put

Clx) = ) ) cu-

keB leW




Graph cut (quick but clean)

The set of edges with a vertex in B and a vertex in W is called a cut and C(x) is called
the capacity of the cut.
It'is readily seen that C(x) may be written

Cx) = Z x; max(0, —A,) + Z (1 — x,)max(0, 1,) + = Z Z Bii(x; — x;)°

11]]

which differs from — L(x| y) by a term which does not depend on x;




Graph cut, 11

e SO
® sect up the graph as described, and do a min-cut
® this is polynomial
® [fs, ands, buts
® this only works in the case it is cheaper to agree than to disagree
® more general case, it’s max cut which isn’t funny at all

® this only works for the binary case
® but approximations for some multilabel cases are very good

® More details
® there are *many* min-cut algorithms with different complexities
® adapted to different types of problem
® significant literature on best min-cut algorithm for vision applications
® we’ll ignore - search github



Grab Cut

® Originally for matting

® extracting an object from an image

® Process
® user places box
® orabcut segments intended object
® user perhaps iterates with strokes, etc.

® For us:
® secgments using graph cuts

® clever iterative model of interior/exterior £
® ecxtremely simple shape prior on object




Simplest case: grey level image

Their paper [Boykov and Jolly 2001] addresses the segmentation
of a monochrome image, given an initial trtmap 7. The image 1s

an array Z = (21,...,2n,---,2N) Of grey values, indexed by the (sin-
gle) index n. The segmentation of the image 1s expressed as an
array of “opacity” values o = (0q,...,04) at each pixel. Gener-

ally 0 < oy, < 1, but for hard segmentation o, € {0,1}, with O for
background and 1 for foreground. The parameters 6 describe image

foreground and background grey-level distributions, and consist of
histograms of grey values:

6 ={h(z;a),oc=0,1}, (1)

one for background and one for foreground. The histograms are
assembled directly from labelled pixels from the respective trimap
regions 1g,7r. (Histograms are normalised to sum to 1 over the
grey-level range: [.h(z;o) = 1))



Grey level image, 11

An energy function E i1s defined so that its minimum should cor-
respond to a good segmentation, in the sense that it 1s guided both
by the observed foreground and background grey-level histograms
and that the opacity is “coherent”, reflecting a tendency to solidity
of objects. This 1s captured by a “Gibbs” energy of the form:

E(QQ~Z) — U(Q.Q.Z) +V(Q,Z) g (2)

The data term U evaluates the fit of the opacity distribution ¢ to the
data z, given the histogram model 6, and 1s defined to be:

U(et,0,z) =) —logh(zn;0) . (3)

n
The smoothness term can be written as

V(Qaz) =Y 2 (I’is(m,n)_l [OC,, % am] exp —f3 (Zm —Zn)za 4)
(m,n)eC

where [¢] denotes the indicator function taking values 0,1 for a
predicate ¢, C 1s the set of pairs of neighboring pixels, and where
dis(-) 1s the Euclidean distance of neighbouring pixels. This energy



Notice

Z:: Aix; + % Zn: Z:: ﬁij {xi'xj + (1 — x)(d — xj)}

V(Qﬁz) =Y 2 diS(]H,II)_l [an * (Xm]exp _B (Zm — Zn)zs
(m,n)eC

They’re minimizing, and GPS are maximizing;
this means they use a cost (not goodness) for
disagreeing (not agreeing)



Improving this

Where does trimap come from?

® start with
® inside: a bunch of pixels in “deep interior” of box
® outside: a bunch of pixels outside box

Histograms for color images are clumsy

® too big

Initial trimap is messy

® reestimate using segmentation



Replace histograms

® Use mixture of normals
® have some interior, some exterior pixels
® build mixture of normal model for each case
® AML ch 9 if you’ve forgotten
® now you can compute p(yl 1), etc. from this



Re-estimation

® Use 1nitial trimap to make GMM
® Segment with graph cut

® Now you have a trimap

® Re-estimate GMMs, and iterate



An alternative strategy

® Variational inference
® High level:
® come up with simpler model that is “most like” intractable model
® cxtract information from that

® Currently:
® chose x_i (each O or 1) to maximize expression below

n

log plaly) = ¥ 4, ,+§§ % Byfx + (1= x)(1 = %)

i=1

+K



New setup

® H - hidden variables, 1 or -1

® used to write x
® X - observations

known known

log p(H|X) = ZwH +ZHUHH —log Z
1

Unknowable,
but not depending

® We want to maximize this by choice of H on H
® notice the -1, 1 trick



15.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good 1dea, because intractable models are often quite natural. The discrete Markov
random field model of an image 1s a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so 1s to choose a
tractable parametric family of probability models Q(H;8), then adjust 6 to find
parameter values 9 that represent a distribution that is “close” in the right sense
to P(H|X). One then extracts information from Q(H;#). This process is known
as variational inference. What is remarkable is that (a) it is possible to find a
Q(H ;) without too much fuss and (b) information extracted from this distribution
1s often accurate and useful.



15.2.1 The KL Divergence

Assume we have two probability distributions P(X) and Q(X ). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written

P(X)
Q(X)
(you've clearly got to be careful about zeros in P and @ here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P | @) is the same as D(Q | P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisty the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

dX

D(PI @) = [ P(X)1og

KL divergence has some nice properties, however. First, we have
DP|Q) =0

with equality only if P and @ are equal almost everywhere (i.e. except on a set of
measure Zzero).

Remember this: The KL divergence measures the similarity of two
probability distributions. It is always non-negative, and is only zero if the
two distributions are the same. However, it is not symmetric.




KL divergence and Maximum likelihood

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that X; are IID samples from some unknown P(X), and
we wish to fit a parametric model Q(X |f) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P(X),
defined by

H(P)=— / P(X)log P(X)dz = —Epllog P].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P| Q) =Ep[log P] — Ep[log Q]



KL divergence and Maximum Likelihood

Then
£(6) = > logQUXile) ~ [ POO0gQXI)AX = Epo)log Q(X6)]
= —H(P)-D(P| Q)(9).
Equivalently, we can write
L(0) +D(P| Q)() = —H(P).

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when £(6) goes up, D(P | Q)(#) must go down. When
L(0) is at a maximum, D(P | Q)(#) must be at a minimum. All this means that,
when you choose € to maximize the likelihood of some dataset given € for a para-
metric family of models, you are choosing the model in that family with smallest

KL divergence from the (unknown) P(X).



15.2.2 The Variational Free Energy

We have a P(H|X) that is hard to work with (usually because we can’t evaluate
P(X)) and we want to obtain a Q(H) that is “close to” P(H|X). A good choice

of “close to” is to require that
D(Q(H)| P(H|X))
1s small. Expand the expression for KL divergence, to get

D(Q(H)| P(H|IX)) = Eg[logQ]—Eq[log P(H|X)]
= Eq[log Q] — Eqg[log P(H, X)] + Eq[log P(X)]
= Eq[logQ] —Eq[log P(H, X)] + log P(X)

which at first glance may look unpromising, because we can’t evaluate P(X). But
log P(X) is fixed (although unknown). Now rearrange to get

log P(X) = D(QH)| P(H|X)) — (Eq[log Q] — Eq[log P(H, X)])
= D(Q(H)| P(H|X)) — Eq-

Here

Eq = (Eq[log Q] — Eqllog P(H, X)])
is referred to as the variational free energy. We can’t evaluate D(Q(H) || P(H|X)).
But, because log P(X) is fixed, when Eg goes down, D(Q(H)| P(H|X)) must

go down too. Furthermore, a minimum of Eg will correspond to a minimum of

D(Q(H)| P(H|X)). And we can evaluate Eg.



Variational Inference

We now have a strategy for building approximate Q(H ). We choose a family of
approximating distributions. From that family, we obtain the Q(H ) that minimises
Eo (which will take some work). The result is the Q(H ) in the family that minimizes
D(Q(H)| P(H|X)). We use that Q(H) as our approximation to P(H|X), and

extract whatever information we want from Q(H ).

® (Questions:
® what Q(H)?
® hard, case by case basis; essentially, so that calculations go through
® How to minimize?
® straightforward (long, dull) calculation
® (AML Chl5 for easiest example)



Variational Inference

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) ...qn(Hy). We will then assume that all but one of the
terms in ) are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The 7’th factor in () 1s a probability distribution over the two possible values
of H;, which are 1 and —1. There is only one possible choice of distribution. Each
g; has one parameter m; = P({H; = 1}). We have

(1+H;) (1—H;)

gi(H;)=(m) = (1-—m) 2

Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether H; is 1
or —1. So ¢;(1) = m; and g;(—1) = (1 — m;). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

Eo = (Eg[log Q] — Eg[log P(H, X))).



