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Goal: Road Layout Map 

• With minimal/no 
labelling


• In nasty geometries

Wang et al 19



Road layout maps

• A prediction of the layout of the main scene in front

• distinguish between 


• transients (cars, pedestrians, etc)

• and persistent (road, walkways, bicycle lanes, buildings)


• including

• intersections

• lane boundaries


• Potential cues

• streetview

• openmaps 

• layout is stylized

• persistent categories have coherent (but variable) appearance

• scene flow/photometric consistency



Road layout map

Geiger et al



Cues

• Incidental data

• streetview+openmaps 


• layout is stylized


• persistent categories have coherent appearance


• scene flow/photometric consistency





Labelling - I

• Match panoramas to roads

• panorama center location, orientation is known

• (essentially) project to plane 

• thresholded nearest neighbor to road center polyline


• thresholding removes panoramas inside buildings, etc.

• some noise 


• under bridges, etc.


• Annotations

• Intersections

• Drivable heading

• Heading angle

• Bike lane

• Speed limit, wrong way, etc.






Cues

• Incidental data

• streetview+openmaps 


• layout is stylized


• persistent categories have coherent appearance


• scene flow/photometric consistency



TODO

• layered depth images?

• support reasoning?

• adversarial losses



Layout is stylized
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In overhead view

Wang et al 19



Birds eye view

• We want

• overhead view of semantically labelled image

• completed

Schulter et al 18
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horizon (v=0)
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Detector to mask Inpaint semantics and depth

Map to ground

Fix the ground map
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Inpainting

Notice:  we inpaint labels and depth, NOT the image

Notice:  depth is inferred from the image
Schulter et al 18
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Birds eye view from depth + labels

Schulter et al 18



Refining birds eye predictions

Schulter et al 18



Warping OSM to map layout

Schulter et al 18
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Good + bad

• Birds eye view is a good idea

• right place to compare labels with models


• Label inpainting is good idea

• but why in image?

• the warping, registration seem to help A LOT with this


• It’s clear that warping, registration, adversary are helpful

• adversary isn’t that helpful - why?


• If you’re going to warp OSM, why not use result of warp?

• Depth inference is a dubious idea


• Why not use ground plane estimate?

• and homography?



In overhead view

Wang 19



Wang 19 This is the Schulter paper I’ve been talking about



CRF

• Q: what does this apply to

• I *think* predicted labels on “ground plane”


• but what is discretization?
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Good + bad

• It’s clear that label fields are highly structured

• but BEV construction is weird


• This structure is very important and valuable

• Q: can we exploit without OSM, Streetview, etc.?



Scene Flow and Ways to Infer It

• particularly photometric consistency

•  a version of this applies to scene inference



f f1 2

Image 1 Image 2Image 1 optic flow

Recall optical flow gives 

information about movement



Recall optical flow gives 

information about movement AND depth



Scene Flow

• Mark (x, y, z) AND (v_x, v_y, v_z) at every image point

• From pair of (image+depth) or (stereo pair) or (lidar) or even (image)


• Rigid scene

• Easy for stereo pair/image+depth pair:  


• (v_x, v_y, v_z) follow from depth and camera ego-motion


• Much harder for image pair

• depth, scene flow ambiguity


• BUT assume there are moving objects



Depth/flow ambiguity

• Notice there are no 
problems if you know 
depth

Menze 2015



Harder when there are moving objects…

• Registering the depths (say) doesn’t work


• Need to know which pixels are moving rigidly together


• Much more important case

• Think cars

• Time to contact



Fun fact about vision

X

xFocal point

focal length=f

distance=D

Fun fact:  time to contact = x/(dx/dt)



TTC - Long



TTC - AAARGH!











Typical scene flows

Menze 2015

TTC A

TTC B



Estimation strategies -I

• RGB-D image pairs

• segment

• estimate correspondence using RGB

• get v_x, v_y, v_z using D


• RGB stereo pairs

• segment

• estimate depth using stereo

• as above


• LIDAR

• segment; use registration from early lectures (with tricks, following slides)

• get v_x, v_y, v_z



Estimation strategies -II

• Single image pairs

• use single image depth predictor, proceed as above

• use labelled scene flow images, predict w/net


• LIDAR - II

• train a network to estimate from pairs with known scene flows 



Estimation for stereo

• Break into 
superpixels


• Each gets depth, 
flow


• Use this to predict 
appearance in other 
views


• This gives massive 
CRF

• pile in and solve

Depth cue

Depth+motion+ego-motion cue
Depth+motion+ego-motion cue

Menze 2015



Lagniappe:  Scene flow in LIDAR

• Learn without labelled data

• ICP isn’t quite enough


• objects might contract, for example

• use a cycle consistency loss


• f_ab = 3Da -> 3Db

• we must have f_ba(f_ab(x))=x

• trick: 


• as stated, this is unstable

• instead, f_ba(0.5 f_ab(x)+ 0.5 NN(f_ab(x))) close to x

• this also avoids problems with zero flow



Mittal 20



Mittal 20



Scene flow in single images

• Predict depth from single image

• using network which makes mixture of normals in depth at location

• trained using existing image-depth data


• Break image into superpixels

• each is a plane section that moves rigidly


• to infer:  plane params, motion params (9 total per superpixel)


•

Brickwedde 19



Scene flow in single images

• CRF

• unary losses:


• plane section motion should predict next frame pixel values well

• plane section should model predicted depth well


• binary losses:

• plane sections should have compatible depths on boundary

• normals of neighbors should be similar

Brickwedde 19

Photometric consistency
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Scene flow in single images

• Straightforward network prediction of scene flow

• depth ambiguity?


• semantics, etc. resolve

• *train* with stereo pairs


• cues

• single image depth cues (texture)

• photometric consistency


• optic flow

Hur 20



Scene flow in single images

• Cute trick - this can be self-supervised

• Training time:


• stereo images


• Test time

• real images

Hur 20



Computing a loss for self supervision

• Each point in L gets 

• depth, flow


• Use depth to predict 

• appearance in R


• Use depth+flow to predict

• appearance in t+1 L, R

• 3D location in t+1 L


• compare with depth


• This gives loss

• Train to minimize

Depth cue

Depth+motion+ego-motion cue
Depth+motion+ego-motion cue

Menze 2015



Training losses

• Disparity predictions should be good

• train with stereo pairs for this

• disparity should predict color in other frame (in training)

• disparity should be smooth


• Photometric consistency

• scene flow should predict pixel values in next frame


• Point consistency

• scene flow should predict depth in next frame


• Smoothness

• scene flow at a point should be similar to neighbors
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Motion in depth

x

X

d
f

Focal point

Image plane
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Motion in depth

• Now imagine object moves IN DEPTH

• so d’, x’


• We get


• this is important, because 


• and we can estimate d

<latexit sha1_base64="OW7nRRefHWxiXCWY888OawJcYr4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiol6EohePFewHtKFsNpt26WYTdjdiDfklXjwo4tWf4s1/47bNQVsfDDzem2Fmnp9wprTjfFulldW19Y3yZmVre2e3au/tt1WcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj2+mfueBSsVica8nCfUiPBQsZARrIw3s6uNVP5SYZCHq5lmQD+yaU3dmQMvELUgNCjQH9lc/iEkaUaEJx0r1XCfRXoalZoTTvNJPFU0wGeMh7RkqcESVl80Oz9GxUQIUxtKU0Gim/p7IcKTUJPJNZ4T1SC16U/E/r5fq8NLLmEhSTQWZLwpTjnSMpimggElKNJ8Ygolk5lZERtjkoE1WFROCu/jyMmmf1t3zunt3VmtcF3GU4RCO4ARcuIAG3EITWkAghWd4hTfryXqx3q2PeWvJKmYO4A+szx+9t5Mm</latexit>

x =
fX

d

<latexit sha1_base64="PPxeiJOcFacgChtvvgiIy+DWjOs=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XqqSQi6kUoevFYwX5AG8pmu2mXbjZhd6OWmJ/ixYMiXv0l3vw3btsctPXBwOO9GWbm+TFnSjvOt7W0vLK6tl7YKG5ube/s2qW9pooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb80fXEb91TqVgk7vQ4pl6IB4IFjGBtpJ5deqxcdgOJSRqgdpb2K1nPLjtVZwq0SNyclCFHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcJoVu4miMSYjPKAdQwUOqfLS6ekZOjJKHwWRNCU0mqq/J1IcKjUOfdMZYj1U895E/M/rJDq48FIm4kRTQWaLgoQjHaFJDqjPJCWajw3BRDJzKyJDbILQJq2iCcGdf3mRNE+q7lnVvT0t167yOApwAIdwDC6cQw1uoA4NIPAAz/AKb9aT9WK9Wx+z1iUrn9mHP7A+fwCGiJOI</latexit>

x0 =
fX

d0
<latexit sha1_base64="oBtqboh8IPa1tBmx4mjXrACKVYI=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIvUVUlE1I1QdOOygn1AG8pkMmmHTiZhZiItIQs3/oobF4q49SPc+TdO2yy09cCFM+fcy9x7vJhRqWz72yisrK6tbxQ3S1vbO7t75v5BS0aJwKSJIxaJjockYZSTpqKKkU4sCAo9Rtre6Gbqtx+IkDTi92oSEzdEA04DipHSUt8sy6teIBBOx1k6rmb5w69mqZ/1zYpds2ewlomTkwrkaPTNr54f4SQkXGGGpOw6dqzcFAlFMSNZqZdIEiM8QgPS1ZSjkEg3nR2RWcda8a0gErq4smbq74kUhVJOQk93hkgN5aI3Ff/zuokKLt2U8jhRhOP5R0HCLBVZ00QsnwqCFZtogrCgelcLD5GOQencSjoEZ/HkZdI6rTnnNefurFK/zuMoQhmO4AQcuIA63EIDmoDhEZ7hFd6MJ+PFeDc+5q0FI585hD8wPn8ASLyYgg==</latexit>

s =
x

x0 =
d0

d

<latexit sha1_base64="UetKWcYzswbgpVBgukPNPPg9XJI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyxiXbTMiKgboejGZQX7gHYYMplMG5rJhCRTqLULf8WNC0Xc+hvu/BvTdhbaeuDC4Zx7ufeeQDCqtON8WwuLS8srq7m1/PrG5ta2vbNbV0kqManhhCWyGSBFGOWkpqlmpCkkQXHASCPo3Yz9Rp9IRRN+rweCeDHqcBpRjLSRfHs/LKqSe3IVHpfCtpCJ0Ans+w++XXDKzgRwnrgZKYAMVd/+aocJTmPCNWZIqZbrCO0NkdQUMzLKt1NFBMI91CEtQzmKifKGk/tH8MgoIYwSaYprOFF/TwxRrNQgDkxnjHRXzXpj8T+vlero0htSLlJNOJ4uilIGzZPjMGBIJcGaDQxBWFJzK8RdJBHWJrK8CcGdfXme1E/L7nnZvTsrVK6zOHLgAByCInDBBaiAW1AFNYDBI3gGr+DNerJerHfrY9q6YGUze+APrM8fCwKU2w==</latexit>

d(s� 1) = d0 � d / vz



Scene flow from MiD

• Train optic expansion network

• ptic expansion=1/s

• using existing scene flow training data


• Then attach to optic flow, cleanup 



Learning to predict SF from point clouds

• Point clouds

• Eg LiDAR

• problem:  


• given point cloud at t, t+1

• place a 3D motion vector on each point in t


• hard, because:

• there may be no corresponding point in t+1

• representing a point cloud is hard


• Strategy:

• don’t need corresponding points - use segments

• use pointnet features



Pointnet - a neat trick

• Required:  learned feature representation of a point cloud

• Difficulty: point cloud has no order


• you can get the same point cloud in a different order

• could impose order, but…


• Permutation invariants:

• the basis for permutation invariants are the symmetric functions


• mostly, a nuisance to work with


• Idea:

• for any point cloud of n points in d dimensions, 

2

4
max(x1,1, x2,1, . . . xn,1)

. . .
max(x1,d, x2,d, . . . xn,d)

3

5 is permutation invariant



Pointnet - a neat trick - II

• So:

• embed points in high dimension (K)

• compute this pooling

• now compute embedding of this feature vector

• the resulting object is permutation invariant


• and “general”  

• assume 


• f(S) continuous in hausdorff distance on point sets

• hausdorff distance on point sets = max dist to nearest 

neighbor

• choose eps, and K big enough

• then there is some g(S) of this form st |f(S)-g(S)|<eps
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How do we deal with relief?

• Surely some form of height field

• estimated by consistency

• changing slowly


• Horizon estimation gets complicated in tilted planes

• you might get distracted by distant horizon 

• Local horizon estimator has problems



Nasty geometries

• Single image depth prediction likely doesn’t work here

• weird relief and dip in road


• Ground plane estimates likely don’t work here either



Estimating the camera

• Height 

• from car (calibrated and known)


• Roll and pitch

• from horizon


• roll is why horizon isn’t parallel to image plane

• pitch is why it isn’t centerline

x

y
z

Plane   z=-h

(s, t, -h)
(u, v)=(-s/t, -h/t)

horizon (v=0)



Sources of variation in the label map

• Foreshortening


• Wrong ground plane estimate



Sources of variation in the label map

• Torsion Horizon

Image

Ground plane



Horizon estimation

• Khan et al - vanishing points from road lines + fudge

• Workman et al - mark up dataset, classify



Horizons

• Horizon estimation gets 
complicated in tilted planes

• you might get distracted by distant 

horizon (picture)



Horizons

• Horizon estimation gets 
complicated in tilted planes

• local cues are a problem



What to do?

• (Likely)

• build sources of variance into simulated label fields

• work on best available ground plane


• (possibly) estimate several planes to rectify label fields

• train without labelled images, as above


• note this is a clusterer



Notice

• Straightforward consistency losses are very powerful

• Minimal use of labelled data 


• (augmentation by stereo pairs, but no labelling)


• Some form of photometric consistency loss for labels

• eg 


• predict layout map 1

• move forward

• predict layout map 2

• they should register

• things that have the same label (tar, paint, junction, etc.) 


• should look similar



Appearance Consistency and Clustering

• Map image into some feature space so that

• patches that “look similar” are “close”

• without markup


• Why?

• because doing so would help produce a layout map eg


• attach labels to clusters using current maps

• improve maps using labels



Deep Embedding Clustering

• Compute embedding that

• autoencodes

• clusters well

Xie et al 15



Clustering

• Cluster centers mu_j must 
be estimated

• form membership weights as in 

TSNE     (alpha=1)                ->


• We want these weights to 
match a target distribution

• p_ij=target for j’th cluster on i’th 

point

• KL divergence (as in TSNE)



Clustering-II

• But what are p?

• notice we have some form of 

reestimation going on here


• After that, just descend

• note autoencoder initialization 

would probably be done 
differently now



Clustering

Xie et al 15



Clustering



Xie et al 15



Attribute discovery

• We have:

• a set of images labelled with class, but not attribute

• a feature construction (now very old fashioned)


• We want:

• to associate each image with a bit vector


• attribute present/absent

• where


• bits are “easily predicted”

• bits are “informative”

• bit vectors within a category cluster









Why do we care?

• Each imputes labels by

• compelling the label space to have strong properties


• variant clustering


• DEC suggests that this is enough to learn features

• DBC has fixed feature stack (but this is discriminative)


• Idea:

• a feature stack that is discriminative


• and perhaps has autoencoding properties

• likely clusters appearance in a useful way


• so you can impose labels by just compelling them to have spatial 
structure


