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Non-local means

® Smoothing
® FEstimate the value of a pixel using pixels that are nearby
® ¢g gaussian filter, etc.
® problem: some pixels might be on the other side of an edge

® Non-local means
® [Estimate the value of a pixel using pixels that are “similar”
® cg write pixel value v; feature vector at pixel f; smoothed s

S; — Z w(fz, fj)vj
J




Non-local means

® Non-local means
® [Estimate the value of a pixel using pixels that are “similar”
® average all pixels, weighting by similarity
® casy questions:
® whatis f? whatis w?
® harder:
® how to get the sum quickly

Weight function Pixel value

S; = Z?lu(fi,fj)zl)j
A

smoothed
estimate

feature vector at
pixel location



Natural choices

n S; — Zw(fiafj)vj
J

fis
® color, position, perhaps a texture feature
W 18 1

w(f;, £) = exp—3 | (f — £;) M (£ - 1)

Notice this should simplify computing the sum

® only “similar” pixels make reasonable contributions
® but we must find them



Bilateral Filter
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Bilateral filter

Weight function Pixel value
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Bilateral filter

> w(fi f5)gi5v;

S; =
¢ Zj w(fiafj)gij

® [ssue:

® how to evaluate this
® sum over all pixels? really?

® Notice:
® we expect f’s to cluster in some space
® w falls off quite quickly for distance between {’s
® 50 clusters are what matters



Bilateral filter
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(b) Our algorithm’s disparity and defocused image / subregions
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(¢) SGM’s [14] disparity and defocused image / subregions



Depth maps

(a) Input (MAE = 6.00, RMSE = 38.8)  (b) Output (MAE = 3.02, RMSE = 17.9)
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Apply to class probability maps

This 1s now a class
probability at a pixel

o — 2.5 w(fif5)gi5v;
¢ Zj w(fi,f5)gi;




(a) Image (b) DeepLab (c) DenseCRF (d) BS (Ours)

Fig.5: Using the DeepLab CNN-based semantic segmentation algorithm [6] (5b)
as input our bilateral solver can produce comparable edge-aware output (5d) to
the DenseCRF [22] used in [6] (5¢), while being 8% faster.
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Bilateral filter

> w(fi f5)gi5v;

S; =
¢ Zj w(fiafj)gij

® [ssue:

® how to evaluate this
® sum over all pixels? really?

® Notice:
® we expect f’s to cluster in some space
® w falls off quite quickly for distance between {’s
® 50 clusters are what matters



Splat, smooth, slice

Input Output
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Slice

from Adams, Baek, Davis

Splat



Need

® Some form of grid in high-D for f to splat onto
® smoothing on this grid should be easy
® it should be easy for pixels to find the closest point(s) on grid

Input Output
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Splat requires finding

Blur requires finding neighboring grid
grid points enclosing

) : . Slice requires interpolation
points to a grid point

from grid points

splatted point
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Figure 4: To perform a high-dimensional Gaussian filter using the permutohedral lattice, first the position vectors p; € RY
are embedded in the hyperplane H; using an orthogonal basis for Hy (not pictured). Then, each input value splats onto the
vertices of its enclosing simplex using barycentric weights. Next, lattice points blur their values with nearby lattice points using

a separable filter. Finally, the space is sliced at each input position using the same barycentric weights to interpolate output
values.
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Figure 2: The d-dimensional permutohedral lattice is

ormed by projecting the scaled erid (d + 1 74+ onto the
J y projecting 8

plane % -1 = 0. This forms the lattice (d + 1)A%, which we
term the permutohedral lattice, as it describes how to tile
space with permutohedra. Lattice points have integer coor-
dinates with a consistent remainder modulo d + 1. In the di-
agram above, which illustrates the case d = 2, points are
labeled and colored according to their remainder. The lat-
tice tessellates the plane with uniform simplices, each sim-
plex having one vertex of each remainder. The simplices are
all translations and permutations of the canonical simplex
(highlighted), which is defined by the inequalities xo > x1 >
.>xgandxg—xg <d+ 1.

In **high” dimension

® Permutohedral lattice

The vertices of the simplex containing any point in H,
can be computed in O(dz) time. This property will be use-
ful for the splat and slice stages of filtering.

The nearest neighbors of a lattice point can be computed
in O(dz) time. This property will be useful during the blur
stage of filtering.



Figure 3: When using the permutohedral lattice to tessellate
the subspace Hy, any point X € Hy is enclosed by a simplex
uniquely identified by the nearest remainder-0 lattice point
70 (the zeroes highlighted in red) and the ordering of the co-
ordinates of X — 76 The nearest remainder-0 lattice point can
be computed with a simple rounding algorithm, and so iden-
tifying the enclosing simplex of any point and enumerating
its vertices is computationally cheap (O(d*)).



More general conditional random fields

® More than two labels
® we’ve seen this case, very briefly, under stereo

® But now we have it for segmentation as well
® one label per segment
® costs:
® per pixel:
® how well does this label/pixel value go together
® as in grabcut above
® per pair:
® how well does this label/pixel pair work together
® usually, a form of smoothness
® agree with your neighbors



Stereo as an optimization problem
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® Original:
® f{ind q, q’ that match, and infer depth

® Now:
® choose value of depth at q; then quality of match at q’ is cost
® optimize this



Stereo as an optimization problem

® Typically:

® quantize depth to a fixed number of levels

® unary cost is color match
® (photometric consistency constraint)
® it can be helpful to match intensity gradients, too

® pairwise cost from smoothness constraint on recovered depths
® cg depth gradient not too big, etc.

® massive discrete quadratic program



Discrete Quadratic Programs

® Minimize:
o x"TAX+DbAtx
® subjectto: x is a vector of discrete values

® Summary:
® turn up rather often in early vision
® from Markov random fields; conditional random fields; etc.
® variety of cases:
® some instances are polynomial
® most are NP hard
® but have extremely efficient, fast approximation algorithms
® typically based on graph cuts, qv



More general conditional random fields

® x "t AX+DbMX
® with x discrete, n labels

® Sectting this up for segmentation
® know a likelihood model for each label and pixel
® cost(observation at pixel | label for that pixel)
® casy way: X iIs a vector of one-hot vectors
® one one-hot vector for each pixel
® (ceew!) BIG
® bisa vector
® [cost(obs_1ll1=first), cost(obs_1I11=second), ....]
® A requires that nearby labels agree with one another

® (: how to solve?



How to solve?

® Immense, very active literature
® scttled down a bit over the last 10 years, but...

e Key points:
® Assume it is better to agree than disagree (this is in A)
® Strong approximations available - they reduce to 0-1 case
® a-expansion:
® iterate over label values:
® any label can either stay (0) or become a (1)
® a-b swap:
® iterate over pairs:
® a,b pixels can stick (0) or swap (1)
® Relatively fast, BUT iterative



Special case

Every pixel 1s connected to every other pixel
® with weights

Yields a fast variational algorithm
® Dbased in non-local means



Fully connected CRF

In the fully connected pairwise CRF model, G is the complete graph on X and Cg is the set of all
unary and pairwise cliques. The corresponding Gibbs energy is

E(x) =) tulx:)+ Y tp(wi, ), (1)
i i<j

where 7 and j range from 1 to N. The unary potential ¥, (x;) is computed independently for each
pixel by a classifier that produces a distribution over the label assignment z; given image features.
The unary potential used in our implementation incorporates shape, texture, location, and color
descriptors and is described in Section 5. Since the output of the unary classifier for each pixel
is produced independently from the outputs of the classifiers for other pixels, the MAP labeling
produced by the unary classifiers alone is generally noisy and inconsistent, as shown in Figure 1(b).



Why bother?
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(a) Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CREF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds

Figure 1: Pixel-level classification with a fully connected CRE (a) Input image from the MSRC-21 dataset. (b)
The response of unary classifiers used by our models. (c) Classification produced by the Robust P™ CRF [9].
(d) Classification produced by MCMC inference [17] in a fully connected pixel-level CRF model; the algorithm
was run for 36 hours and only partially converged for the bottom image. (e) Classification produced by our
inference algorithm in the fully connected model in 0.2 seconds.



where 7 and j range from 1 to N. The unary potential v, (z;) is computed independently for each
pixel by a classifier that produces a distribution over the label assignment z; given image features.
The unary potential used in our implementation incorporates shape, texture, location, and color
descriptors and is described in Section 5. Since the output of the unary classifier for each pixel
is produced independently from the outputs of the classifiers for other pixels, the MAP labeling
produced by the unary classifiers alone is generally noisy and inconsistent, as shown in Figure 1(b).

The pairwise potentials in our model have the form
Up(x;, ) = p(a;, xj)25=1 w™ k(M) (f;, sz, (2)
K(E..£;)
where each k(™) is a Gaussian kernel k(™) (f;, f;) = exp(—3 (fi — £;) TA(™)(£; — £;)), the vectors f;
and f; are feature vectors for pixels 7 and j in an arbitrary feature space, w(™) are linear combination

weights, and  is a label compatibility function. Each kernel k(™) is characterized by a symmetric,
positive-definite precision matrix A(™), which defines its shape.

For multi-class image segmentation and labeling we use contrast-sensitive two-kernel potentials,
defined in terms of the color vectors I; and I; and positions p; and p;:

2 2 2
) — (D) pi — p;l (L — 1| (2) Ipi — pj
k(fi,f;) =w""/ exp (— 202 - 20% +w'* exp ——293 : (3)
) appearaEe kernel ’ smoothr:ss kernel

The appearance kernel 1s inspired by the observation that nearby pixels with similar color are likely
to be in the same class. The degrees of nearness and similarity are controlled by parameters ¢, and
0z. The smoothness kernel removes small isolated regions [19]. The parameters are learned from
data, as described in Section 4.



An alternative strategy

® Variational inference
® High level:
® come up with simpler model that is “most like” intractable model
® cxtract information from that

® Currently:
® chose x_i (each O or 1) to maximize expression below

n

log plaly) = ¥ 4, ,+§§ % Byfx + (1= x)(1 = %)

i=1

+K



New setup

® H - hidden variables, 1 or -1

® used to write x
® X - observations

known known

log p(H|X) = ZwH +ZHUHH —log Z
1

Unknowable,
but not depending

® We want to maximize this by choice of H on H
® notice the -1, 1 trick



15.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good 1dea, because intractable models are often quite natural. The discrete Markov
random field model of an image 1s a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so 1s to choose a
tractable parametric family of probability models Q(H;8), then adjust 6 to find
parameter values 9 that represent a distribution that is “close” in the right sense
to P(H|X). One then extracts information from Q(H;#). This process is known
as variational inference. What is remarkable is that (a) it is possible to find a
Q(H ;) without too much fuss and (b) information extracted from this distribution
1s often accurate and useful.



15.2.1 The KL Divergence

Assume we have two probability distributions P(X) and Q(X ). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written

P(X)
Q(X)
(you've clearly got to be careful about zeros in P and @ here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P | @) is the same as D(Q | P), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisty the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

dX

D(PI @) = [ P(X)1og

KL divergence has some nice properties, however. First, we have
DP|Q) =0

with equality only if P and @ are equal almost everywhere (i.e. except on a set of
measure Zzero).

Remember this: The KL divergence measures the similarity of two
probability distributions. It is always non-negative, and is only zero if the
two distributions are the same. However, it is not symmetric.




KL divergence and Maximum likelihood

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that X; are IID samples from some unknown P(X), and
we wish to fit a parametric model Q(X |f) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P) for the entropy of P(X),
defined by

H(P)=— / P(X)log P(X)dz = —Epllog P].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P| Q) =Ep[log P] — Ep[log Q]



KL divergence and Maximum Likelihood

Then
£(6) = > logQUXile) ~ [ POO0gQXI)AX = Epo)log Q(X6)]
= —H(P)-D(P| Q)(9).
Equivalently, we can write
L(0) +D(P| Q)() = —H(P).

Recall P doesn’t change (though it’s unknown), so H(P) is also constant (though
unknown). This means that when £(6) goes up, D(P | Q)(#) must go down. When
L(0) is at a maximum, D(P | Q)(#) must be at a minimum. All this means that,
when you choose € to maximize the likelihood of some dataset given € for a para-
metric family of models, you are choosing the model in that family with smallest

KL divergence from the (unknown) P(X).



15.2.2 The Variational Free Energy

We have a P(H|X) that is hard to work with (usually because we can’t evaluate
P(X)) and we want to obtain a Q(H) that is “close to” P(H|X). A good choice

of “close to” is to require that
D(Q(H)| P(H|X))
1s small. Expand the expression for KL divergence, to get

D(Q(H)| P(H|IX)) = Eg[logQ]—Eq[log P(H|X)]
= Eq[log Q] — Eqg[log P(H, X)] + Eq[log P(X)]
= Eq[logQ] —Eq[log P(H, X)] + log P(X)

which at first glance may look unpromising, because we can’t evaluate P(X). But
log P(X) is fixed (although unknown). Now rearrange to get

log P(X) = D(QH)| P(H|X)) — (Eq[log Q] — Eq[log P(H, X)])
= D(Q(H)| P(H|X)) — Eq-

Here

Eq = (Eq[log Q] — Eqllog P(H, X)])
is referred to as the variational free energy. We can’t evaluate D(Q(H) || P(H|X)).
But, because log P(X) is fixed, when Eg goes down, D(Q(H)| P(H|X)) must

go down too. Furthermore, a minimum of Eg will correspond to a minimum of

D(Q(H)| P(H|X)). And we can evaluate Eg.



Variational Inference

We now have a strategy for building approximate Q(H ). We choose a family of
approximating distributions. From that family, we obtain the Q(H ) that minimises
Eo (which will take some work). The result is the Q(H ) in the family that minimizes
D(Q(H)| P(H|X)). We use that Q(H) as our approximation to P(H|X), and

extract whatever information we want from Q(H ).

® (Questions:
® what Q(H)?
® hard, case by case basis; essentially, so that calculations go through
® How to minimize?
® straightforward (long, dull) calculation
® (AML Chl5 for easiest example)



Variational Inference

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) ...qn(Hy). We will then assume that all but one of the
terms in ) are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The 7’th factor in () 1s a probability distribution over the two possible values
of H;, which are 1 and —1. There is only one possible choice of distribution. Each
g; has one parameter m; = P({H; = 1}). We have

(1+H;) (1—H;)

gi(H;)=(m) = (1-—m) 2

Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether H; is 1
or —1. So ¢;(1) = m; and g;(—1) = (1 — m;). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

Eo = (Eg[log Q] — Eg[log P(H, X))).



Variational Inference for FCCRFs

Minimizing the KL-divergence, while constraining Q(X) and Q;(X;) to be valid distributions,
yields the following iterative update equation:

K
1 - - |
Qi(zi =1) = - exp § —Yu(i) — > p@1) Y wm™ Y K £)Q;) . 4
! el m=1 i
A detailed derivation of Equation 4 is given in the supplementary material. This update equation
leads to the following inference algorithm:



K
—u(@i) = ) p) Y w™ Y k(6 £)Q; (1)

el m=1

This 1s non-local means
or bilateral filter

JFi




Alg.

non-local means (splat blur slice)

Algorithm 1 Mean field in fully copfiected CRFs

Initialize Q > Qi(x;) ZL exp{—¢u(zi)}

while not converged do > See Section 6 for convergence analysis
Q'™ (1) « > iz KU (£, £5)Q; (1) for all m > Message passing from all X to all X;
Qi(z:) X p k™ (z:, )Y, wm™ Q™ (1) > Compatibility transform
Qi(z N\ exp{—vu(z;) — Ql(wz)} > Local update
normilixe Q;(z;)

end while

\ This is a vector of values, one per label 1’, hence the notation issue

This is a vector of values, one per label I’, hence the notation issue



Long range connections seem to help
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Long range connections seem to help

Long-range connections. We have examined the value of long-range connections in our model by
varying the spatial and color ranges 6, and 63 of the appearance kernel and analyzing the resulting
classification accuracy. For this experiment, w(!) was held constant and w® was set to 0. The
results are shown in Figure 6. Accuracy steadily increases as longer-range connections are added,
peaking at spatial standard deviation of §, = 61 pixels and color standard deviation g = 11. At this
setting, more than 50% of the pairwise potential energy in the model was assigned to edges of length
35 pixels or higher. However, long-range connections can also propagate misleading information,

as shown in Figure 7.
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Figure 6: Influence of long-range connections on classification accuracy. (a) Global classification accuracy on
the 94 MSRC images with accurate ground truth, as a function of kernel parameters ¢, and 6. (b) Results for
one image across two slices in parameter space, shown as black lines in (a).



Grid CRF Robust P" CRF Our approach Accurate ground truth




General summary

Complicated but fast and efficient method
® imposes spatial priors
® results are pre deep learning
® 1o end-to-end training
For a while, widely used on semantic segmenters
® train segmenter end-to-end
® then bolt this on to smooth labels
® now somewhat less common
® why? not sure
Weight training method exists
® essentially, search

Good evidence that applying fast bilateral solver

® s faster, only slightly worse



General summary, I1

® This will impose coherence constraints
® things with the same label should look similar

® And spatial constraints
® neighbors should mostly agree

® But it won’t
® make straight lines
® make stylized layouts
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