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Robustness 1s a serious problem
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FIGURE 10.6: On the left, a synthetic dataset with one independent and one ez-
planatory variable, with the regression line plotted. Notice the line is close to the
data points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further

from the line.



Robustness 1s a serious problem
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FIGURE 10.7: On the left, weight regressed against height for the bodyfat dataset.
The line doesn’t describe the data particularly well, because it has been strongly
affected by a few data points (filled-in markers). On the right, a scatter plot of the
residual against the value predicted by the regression. This doesn’t look like noise,
which is a sign of trouble.



Key 1ssue:

® Squaring a large number produces a huge number
® A few wildly mismatch points can throw off R, t

® Fixes:
® remove matches with “large” distances
® actually, quite good
® but what happens if new such pairs emerge?
® apply an M-estimator
® deals with new pairs

You should have watched the IRLS movie for regression by now



Some notation, etc.

® We know how to solve
Z w; (Rx; +t — y@-)T (Rx; +t —y;)
7
® Which is

> w; |Rxi +t =y

® Write as

Z w;f(r;)  where 7, =|Rx;+t—y;|



We would like to solve

Z p(r;)  where 1, =|Rx;+t—y;|

® where rho could have a variety of useful properties
® for example:
® like quadratic for small d, constant for large d
® Jlike quadratic for small d, linear for large d
® like absolute value



Non-linear estimation with robust loss function

min > pi(lf; ClI?)

= Non-linear optimization
(e.g. Levenberg-Marquard)

» |teration necessary
= No explicit weight |

computation necessary 05l
» | oss function should be 06}
differentiable 0al
» Jacobian needs to be 0.2}
calculated 0




A clever trick

® Assume we are optimizing:
Zﬂ(dz’) sz’f(ri)
) 1

® We are at solution if and only if:

%VT —0 ZwﬂmVT =0
— dr -

IS

k3

Choose w; = Then w_i are “right” at the true solution
T




IRLS

® (Choose rho

® [terate
® find correspondences
® from these,r 1,and w_1
® solve (in closed form!)



Examples

® rhoisL1

Choose W;

® cffect: make small residuals very important
® what we expect - L1 minimization really likes zeros




More robust loss functions

e

Tukoy

loss function p(x)
L, | x|
if |x| <k x2/2
Huber {if x| > k "
k(lxl =)
Tukey {if x| >k | Jk?/6(1~ (1 -(2)
k?/6
Cauchy =

?log(l + (x/k)?)



Examples

® Huber

dp

dr 1 r < k
Choose w,; = =Y &k otherws

r; = otherwise

7

® recall r_11s absolute value of residual
® if point is close (r_i small) this behaves like least squares
® if point is far (r_i large) behaves like L1 - weight error down



Some 1mportant cautions

e Notation creates some confusion
® some authors use r_i=(Rx_i+t -y_1)AT(R x_i+t-y_i), etc....
® which changes equations but nothing significant

® as long as you’re consistent...

® This 1s effective, but it 1sn’t magic
® these problems must have many local minima

® and you could get one of those
® it is *really* helpful to have a good start point



