The Kalman Filter and

the Extended Kalman
Filter

D.A. Forsyth

Tracking - more formal view

® Very general model:
® We assume there are moving objects, which have an underlying state X
® There are observations Y, some of which are functions of this state
® There is a clock
® at each tick, the state changes
® at each tick, we get a new observation

® Examples

® object is ball, state is 3D position+velocity, observations are stereo pairs

® object is person, state i1s body configuration, observations are frames, clock
1s in camera (30 fps)

Tracking - Probabilistic formulation

® (1ven
e P(X_ i-11Y_O, ..., Y_i-1)
® “Prior”
® We should like to know
e P(X_ilY_ O, .. Y_i-1)
® “Predictive distribution”
o P(X ilY_O,..,Y_ 1)
® “Posterior”

Key assumptions:

e Only the immediate past matters: formally, we require
P(X;| Xy, ..., Xi21) = P(X;| X 1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we’re clever about interpreting X;
as we shall show in the next section.

¢ Measurements depend only on the current state: we assume that Y,
is conditionally independent of all other measurements given X ;. This means
that

P(Y,Y;,... Y| X:)= P(Y:|X:)P(Y,,..., Y X))

Acain. this isn’t a particularly restrictive or controversial assumption. but it
y, ?
yields important simplifications.

Tracking as Induction - base case

Firstly, we assume that we have P(X)

Then we have

P(yo‘Xo)P(Xo)
P(y,)
_ Pyl Xo)P(Xo)
J P(yo|X0)P(Xo)d X
< P(yo|Xo0)P(Xo)

P(XolYo=1yy) =

Tracking as induction - induction step

GiVen .[)(X,_l|y() y,_l).

Prediction
Prediction involves representing
g Notice this is 1-1
P(XilYyg: -5 Y1)
current state based

—— on previous

Our independence assumptions make it possible to write measurements

/1)(X,‘ Xi—l-y() yi—l)l)(.Xf—l‘y() y,'_l)(IXi—l

Tracking as induction - induction step

Correction

Correction involves obtaining a representation of

ilYo: - ¥y) Notice this is i

Our independence assumptions make it possible m Prediction based on
current measurement

-[)(Xi:y()e .. 'ayz‘)

as well.

P(Xilyy,..yy;) =

P(yy, .-, y;)
_ P(y-i|X'i.ayOe---:yz‘—l)l)(XikyO’ ayi—l)P(yOe----yz—l)
P(yo,---,Y;)
, , P(yy,---,Y; 1)
=])(yZ|X7)])(X1|y0" ’yl—l)])(; y)l
0y Y,
P(y;| X)) P(Xilygs -+, Yi1)

T [P, | X)P(Xilyg, -y,)dX;

The Kalman Filter

Assume that:

® All state follows a linear dynamical model

® Measurements are a linear function of state, plus noise
Then (if first prior 1s Gaussian)

® All PDF’s are Gaussian

® and so easy to represent
® just need to keep track of mean and covariance

The Kalman Filter correctly updates mean and covariance

InlD

® We have

When both P(D|#) and P(#) are normal with known standard deviation, the pos-
terior is normal, too.

_log (P(z]0)) = 2%2 (z — 0)? + K (o)
~log (P(8)) = 55 (60— 1)+ K(s)
1

—log (P(f|z)) = (something)

((92 — 2(something else)f) + K’

Problem

X - measurement
theta - length of cable
p(theta) normal

p(xltheta) normal; mean will theta*const standard dev
known

p(thetalx)

log p(thetalx)=-1/(2sigma’?2) theta”2 + mu/sigma’?2 theta
+other

InlD

2
log P(0) = —% + constant not dependent on 6.
Start by assuming that D is a single measurement z;. The measurement z; could
be in different units from #, and we will assume that the relevant scaling constant
c1 is known. We assume that P(z1|f) is normal with known standard deviation
Om,1, and with mean ¢16. Equivalently, z; is obtained by adding noise to ¢16. The
noise will have zero mean and standard deviation o, ;. This means that

(171 — 019)2

p)
20m’1

We would like to know P(f|z). We have that

log P(D|0) = log P(z4|0) = — + constant not dependent on z; or #.

log P(8|z1) = logp(z1]0)+ logp(#) + terms not depending on 6
_ (m1—ad)?® (0 pa)?
N 207, 202

+ terms not depending on 6.

c? 1 €171 o
- _ 02 1 -0 m
[(20,2,1,1 + 202 207, 4 + 202

+ terms not depending on 6.

In 1D

Now some trickery will get us an expression for P(6|z,). Notice first that log P(0|z,)
is of degree 2 in @ (i.e. it has terms 62, § and things that don’t depend on #). This
means that P(f|z1) must be a normal distribution, because we can rearrange its
log into the form of the log of a normal distribution.

Now we can show that P(6|D) is normal when there are more measurements.
Assume we have N measurements, =1, ..., zxn. The measurements are IID samples
from a normal distribution conditioned on #. We will assume that each measure-
ment is in its own set of units (captured by a constant ¢;), and each measurement
incorporates noise of different standard deviation (with standard deviation o,).

So

 — ci6)’
log P(z;|0) = _(m20—2¢:,) + constant not dependent on z; or 6.

m,i
Now

log P(D|#) = ZlogP(a:,w

mlD

S0 wWe can write

log P(O|D) = logp(zn|0)+ ...+ logp(z2|8) + log p(z1|0) + log p(f) + terms not depending on 6
= logp(zn|0) + ...+ logp(x2|0) + log p(f|z1) + terms not depending on 6
= logp(zn|0) + ...+ logp(f|z1, 22) + terms not depending on 6.

This lays out the induction. We have that P(f|z1) is normal, with known standard
deviation. Now regard this as the prior, and P(z2|6) as the likelihood; we have that
P(8|z1,x2) is normal, and so on. So under our assumptions, P(6|D) is normal. We
now have a really useful fact.

Remember this: A normal prior and a normal likelihood yield a normal
posterior when both standard deviations are known

In 1D

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter . The prior distribution for
f is normal, with known mean g, and known standard deviation o.
We receive a single data item 2; and a scale ¢;. The likelihood of 2,
is normal with mean ¢;0 and standard deviation o, 1, where oy, 1 is
known. Then the posterior, p(0|z1,¢c1,0m 1, ptx,0x), is normal, with

mean - ;
C1T10- 1 HrOpm 1

2 2.2
am,l + C10x

2 2

oy — O'm’IO',n.
= 5 ok
am,l + 0201r

p1 =

and standard deviation

Recursion

Useful Fact: 9.3 Normal posteriors can be updated online

Assume we wish to estimate a parameter #. The prior distribution
for # is normal, with known mean g, and known standard devia-
tion 0. We write x; for the i'th data item. The likelihood for
each separate data item is normal, with mean ¢;# and standard de-
viation 0,,;. We have already received k data items. The posterior
p(0|z1,..., 2k C1,. .., CkyOm 1y - -, Om ks Jix, Ox) is normal, with mean
pr. and standard deviation or. We receive a new data item zp,,. The
likelihood of this data item is normal with mean ¢, 6 and standard
deviation 0., (r+1), Where ck4+1 and 0y, (k+1) are known. Then the
posterior, p(f|z1,...,Zk+1,C1,...,ChyCht1,0m,1,- -, Om, (k+1)> M, Ox),
is normal, with mean

ck+1xk+10z + ﬂ'kofn,(k+l)
2
y T 410k

Hik+1 = 5
0m,(k+1

and
2

2
O, (k+1) %k

2
Ok+1 = /3 2-
O (k1) + Ciy10%

Linear models

Read this as: x_i is normally distributed.
The mean is a linear function of x_1i-1 and
whose variance is known (and can
depend on 1).

;i ~ N(D;jxzi—1;24,)

\Read this as: y_i is normally distributed.
The mean 1s a linear function of x_1 and

whose variance is known (and can
depend on 1)

Examples

® Dynamical models

® Drifting points
® new state = old state + gaussian noise

® Points moving with constant velocity
® new position=old position + (dt) old velocity + gaussian noise
® new velocity= old velocity+gaussian noise

® Points moving with constant acceleration
® ctc

® Measurement models
® state=position; measurement=position+gaussian noise
® state=position and velocity; measurement=position+gaussian noise
® but we could infer velocity

® state=position and velocity and acceleration;
measurement=position+gaussian noise

The Kalman Filter

® Dynamic Model

® Notation

x; ~ N(D;x;_1,%4,)
yi ~ N(M;x;, Xm,)

mean of P
mean of P

covar of P

covar of P

(
(

(Xi‘yo, ce.
(Xilyo, - - -
Xilyo, - -
Xilyo, - -

7yi—1) a§ Xz'_
7y2) as Xz+

. 7yi—1) as Zz—
., Y;) as Z;r

Dynamic Model:

Tj N]V(Dimi—lazd,-)
y; ~NM;zi, L)

Start Assumptions: T; and X, are known
Update Equations: Prediction

' _Dl‘rz 1
Yo =%g, + D5 D
Update Equations: Correction

K; = E;M;fr [Mz'zi_M? + Zmi]_l

T =T 4Ky - M

1

»t = [Id— KiM;) E]

1

Algorithm 11.3: The Kalman Filter.

What’s going on here?

® Dynamics (not looking at 1’th measurement yet):

X;_1 N(X,j__l, E;I__l) Xq ™ N(Dixi—la Zdz)

means that Zz_ — Zdi e DZE-F 1D;:F where (: ~ N(O, Zz_)

So

mean(x;) = D;mean(x;_1) X, =D; X",

i = Dix;_
cov(x;) = D;cov(x;_1)D} + cov() = Xi—1 16

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter #. The prior distribution for
f is normal, with known mean p, and known standard deviation o.
We receive a single data item 2, and a scale ¢;. The likelihood of 2,
is normal with mean ¢;0 and standard deviation oym,,1, where op, 1 is
known. Then the posterior, p(0|z1,c1,0m,1, ftx,0x), is normal, with
mean

C1T102 + [ix O 1

2 2 2
Om1 + €105

2 o2

oy 07107
= - =
Oy + 207

p1 =

and standard deviation

Ki =3 My [MiZ; M+ B |

]
+
|

[I — /CZMZ] Zi_

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo
of prior covar, measurement
matrix and measurement covar

Velocity

* +*
1.1 - *
+ . 14 + e
*
1 -1 *
12F * -
BE] 3 E *
E + +
. o, d . o *]
sk N E -
ozt * 1 e} " i
*
+
osf ¢ + 4 +
+ &r R . . B
State Co. . Position
4r & . . 7
1 . against time
0af B r +]
. +*
0 2 4 L] 8 10 12 14 16 o 2 4 6 8 10 12 14 16 18 20
20
..
Position
° 2
1% . +
- ®
o o . +
o, 8 .
o o O *o)
* [+]
° * e i
+
s *
+
o . * (o]
> o
+*
i
(o]
%%

FIGURE 11.7: A constant velocity dynamic model for a point on the line. In this case,
the state space i1s two dimensional, with one coordinate for position, one for velocity. The
figure on the top left shows a plot of the state; each asterisk is a different state. Notice
that the vertical axis (velocity) shows some small change compared with the horizontal
axis. This small change is generated only by the random component of the model, so
the velocity is constant up to a random change. The figure on the top right shows
the first component of state (which is position) plotted against the time axis. Notice
we have something that is moving with roughly constant velocity. The figure on the
bottom overlays the measurements (the circles) on this plot. We are assuming that the
measurements are of position only, and are quite poor; as we see, this doesn’t significantly
affect our ability to track.

st 1 Notice how uncertainty
| , | in state grows with
movement and
5h | 1 b - 1s reduced with
ARIRIS, Tt measurement.

wor % % * +

4
-

2«
i o ey

FIGURE 11.9: The Kalman filter for a point moving on the line under our model of constant
velocity (compare with Figure 11.7). The state is plotted with open circles as a function of
the step i. The *s give T, , which is plotted slightly to the left of the state to indicate that
the estimate 1s made before the measurement. The xs give the measurements, and the +s
give T, , which is plotted slightly to the right of the state. The vertical bars around the
*s and the +s are three standard deviation bars, using the estimate of variance obtained
before and after the measurement, respectively. When the measurement 1s noisy, the bars

don’t contract all that much when a measurement is obtained (compare with Figure 11.10).

180

;
L
] K

1 1 1 1
0 5 10 15 20 25

FIGURE 11.10: The Kalman filter for a point moving on the line under our model of
constant acceleration (compare with Figure 11.8). The state is plotted with open circles
as a function of the step i. The *s give T, , which is plotted slightly to the left of the
state to indicate that the estimate is made before the measurement. The xs give the
measurements, and the +s give T, which is plotted slightly to the right of the state.
The vertical bars around the *s and the +s are three standard deviation bars, using
the estimate of variance obtained before and after the measurement, respectively. When
the measurement is noisy, the bars don’t contract all that much when a measurement is

obtained.

Tricks

® Smoothing
® You can build a representation of P(X_ilY_O, Y_N)
® (i.e.incorporating future measurements)
® run one filter forward, one backward
® posterior of forward filter is normal
® predictive for backward is normal
® ctc.

® Polishing
® This means that, if I can endure latency, I can have two estimates

® one at the time of the 1’th measurement
® one a few measurements later, that is more accurate

Forward filter: Obtain the mean and variance of P(X;|yg,...,¥y;) using the
Kalman filter. These are 7{’+ and X7

Backward filter: Obtain the mean and variance of P(X;|y,, ,...,Yy)

using the Kalman filter running backward in time. These are 7?’_ and E?’_.

Combining forward and backward estimates: Regard the backward
estimate as a new measurement for X;, and insert into the Kalman filter equations
to obtain

2 = (@ @)

X; =% [@H X+ @)X

13

Algorithm 11.4: Forward-Backward Smoothing.

Forward

Backward

{ ' M};
S LTS
T | +ﬂﬂ%ﬂgﬂﬁﬁt1}x
il

il

FIGURE 11.11: Forward-backward estimation for a dynamic model of a point moving on
the line with constant velocity. We are plotting the position component of state against
time. On the top left, we show the forward estimates, again using the convention that
the state is shown with circles, the data is shown with an x, the prediction is shown with
a *, and the corrected estimate is shown with a +; the bars give one standard deviation in
the estimate. The predicted estimate is shown slightly behind the state, and the corrected
estimate is shown slightly ahead of the state. You should notice that the measurements are
noisy. On the top right we show the backward estimates. Now time is running backward
(although we have plotted both curves on the same axis), so that the prediction is slightly
ahead of the measurement and the corrected estimate is slightly behind. We have used the
final corrected estimate of the forward filter as a prior. Again, the bars give one standard
deviation in each variable. On the bottom, we show the combined forward-backward
estimate. The squares give the estimates of state. Notice the significant improvement in
the estimate.

Data Association

® Nearest neighbours
® choose the measurement with highest probability given predicted state
® popular, but can lead to catastrophe

® Probabilistic Data Association

® combine measurements, weighting by probability given predicted state
® gate using predicted state

Example: Localization

® Assume

® car state is (position; velocity; acceleration)
® it doesn’t rotate!
® this yields D_i, and noise

® we know M 1 and noise

® Then it’s all easy (plug in equations and go)
® but what if we have a LIDAR map and localize with IRLS?

Example: Harder localization

Write state of vehicle:

Can extract position as:

State update is:

Measurement i1s:

position
X; = .
velocity

Pi: — Hsz'

xX; = Dix;—1 +&

y; = argmin, C'(u, x;)

HUH?

)

Harder localization, 11

® Model the cost function as:

‘H
C(u,x;) ~ ¢y + VT(u —pi) + (u— pi)TE(u — Pi)

® at the minimum - so actually, v=0
® now the cost function might be slightly wrong, which will cause errors in u
® if we use the model:

yi=u=p; + H 3¢

® then we have: I

do?
C(yi,xi) ~ N(co, 7) N(0,0%1)

And a kind of “evenness” property

Harder localization, 111

® This property is reasonable:
® we can’t tell noise directions apart by their effect on the cost function

® Now we’re 1n business:
x; ~ N(Djx;_1,%;)

yi ~ N(I,x;, 027-[._1)

1

But what is this?

Choose this Hessian of cost function at best location

Example: Even harder localization!

N

NN N\
|] |]

OK Not OK

Formally: car is non-holonomic

Building a movement model

X

Y
0

NNy

- x + vAtcosh

y + vAtsin 6
6

For sufficiently small timestep, bounded rate of change in angle, we get

X

Yy
0

%

A general movement model

4

-z + R(sin(0 + Af) — sin6)
y — R(cos(f + Af) — cos @)

T + vcosb

y_

- vsin @

0+ u

0+ A

THIS ISN’T LINEAR!

THIS ISN’T LINEAR!

v, u parameters of motion

The extended Kalman filter

® What happens if state update, measurement aren’t linear?
® particle filter
® linearize and approximate (EKF)

Xi = f(Xz'—larTl)

Noise - normal, mean 0, Cov known

}
yi = g(x;,n)

Recall: The Kalman filter

Dynamic Model:

z; ~ N(Dizi1,%a4,) Assumption: state upc.iate
y: ~ N(Mizi,Zm,) and me.asurement are linear
with normal noise

Start Assumptions: T, and Y, are known
Update Equations: Prediction

T_ —D1
Yo =Yg, + D; 2+ D
Update Equations: Correction

K =Ty MT M MT +5,,] "

T, =T, +Ki [y; — MiT;] <
= = [Id - KiM;i] X7 Difference between
predicted and observed

measurement

Algorithm 11.3: The Kalman Filter.

[inearization and noise

® Two ways in which noise could affect x_1 l

® x_{i-1} is noisy X; = f(X’i—la n)
® AND there is n to account for

® Now consider some nonlinear function with noisy input
® first case

h(x) where x ~ N(X,%;) h(X + () where (~ N(0,3,)
Approximate

P hX+¢) = h(X) + Jha(
h,x c o Oz ;

Yields

Jacobian === derivative h(X) ~ N(h(}_(), Jh,:c ZCBJIEZL_:aj)

[inearization and noise

® Two ways in which noise could affect x_1 l

® x_{i-1} is noisy X; = f(X’i—la n)
® AND there is n to account for

® Now consider some nonlinear function with fixed input,

noise
® sccond case

h(x,n) where n ~ N(0,0,)
Approximate

By o] h(x,n) ~ h(x,0) + Jp 0

Oh;
Jon=| ... on

Yields

Jacobian === derivative h(x’ n) ~ N(h(X, O), Jh,nznjfzjn)

Recall: The Kalman filter

Dynamic Model:

z; ~ N(Dizi1,%a4,) Assumption: state upc.iate
y: ~ N(Mizi,Zm,) and me.asurement are linear
with normal noise

Start Assumptions: T, and Y, are known
Update Equations: Prediction

T_ —D1
Yo =Yg, + D; z+ D/
Update Equations: Correction

K =Ty MT M MT +5,,] "

T, =T, +Ki [y; — MiT;] <
= = [Id - KiM;i] X7 Difference between
predicted and observed

measurement

Algorithm 11.3: The Kalman Filter.

The extended Kalman filter

® [inearize: x; = f(Xi-1,1)

911
a e o o
FCB — 1 af?,
i e o o 8$j

9 f1
‘F’ . 8n1 e o o
n Ofi
i e o o 8nj

Posterior covariance of x_{i-1}

x; ~ N(f(xF,,0), Fo. Xt | FL 4+ FuXn i FD)

Noise covariance

Dynamic Model:

Yi ~ N(M;z;, Xm;)

Start Assumptions: T, and X, are known
Update Equations: Prediction T.
1

X ~ N(f(fi—fﬁ

Update Equations: Correction

>
/ 7
X FL 4+ S Fl

Ki =37 MT [MS;MT +8,] 7
T =7, +Ki [y; — MiT; |

1

»F = [Id — KiM;) E]

1

Algorithm 11.3: The Kalman Filter.

The extended Kalman filter

® Linearize: yi = g(x;,n)

- o

. 8 o o o

gQZ T 1 89

o Bay
- o

. 8 e o o

gn T e ag

yi ~ N(g(X’ia 0)7 gaﬁzz_gg + gnzm,igg)

Dynamic Model:

y; ~NMzi,Xn,)

Start Assumptions: T, and X, are known

Update Equations: Prediction . E_
)

x; ~ N(f(

o <

Xi_1,0), Fu X\ FL 4+ Fu X o FF

Update Equations: Correction

Ki = Ei_,'\/l? [,;\/[,izi—_/\/(;l" + Zm,«]_l <

fEi

nt

1

=T, + KCi [yi - “M"‘l_’i_]
= [Id — }Ci-’Mi] ZI_

Algorithm 11.3: The Kalman Filter.

This is the
inverse of
the covariance
of y_i

Dynamic Model:

Y, ~ N(M;x;, Zml—)

Start Assumptions: T, and X, are known

Update Equations: Prediction 7.

x; ~ N(f(

1

el

Update Equations: Correction

}Ci - ZT_JMIT [szzrz\/t? + Zmi] -

€T i

nt

2

=7, +Ki[y; — MiT;]

1

= [Id — KiM;] S,

i

Xi 1,0), Fo XX\ FL 4+ Fu X o FF

<

Algorithm 11.3: The Kalman Filter.

Difference between
predicted and true
measurement

Dynamic Model:

Y; o~ *Nr(JM'i:B‘is Zml—)

Start Assumptions: T, and X, are known

Update Equations: Prediction 7. Z_
1 .
/ / 7)
+ T T
Update Equations: Correction

}Ci — E,Z_JM;I—‘ [JM;ZI_JM;T + Z?Tt{] -

?1+ =T; +K; ['yz‘ - J’Mifi_]
F = [Id — KiM;]]
<

Algorithm 11.3: The Kalman Filter.

Linear measurement
model

Dynamic Model:

X; = f(Xi—lvn)
Y = g(Xian)

Start Assumptions: T, and X, are known
Update Equations: Prediction 7"~ Z_

/Z P e .
X N(f(Xi_l,O),Fa;Ei_lJT"x -+ fnzn,@Fn

Update Equations: Correction

o =S MT [GeD7 GF + GuSmi0r]

=) =7, +K; [Yi —g(x; Oﬂ
5+ = [Id - K;G, 1 =7

The extended kalman filter

Outcome and 1ssues

® In principle, can now filter position/orientation wrt map

® linearize dynamics following recipe above
® linearize measurements ditto

® There could be problems
® EKF’s are fine if the linearization is reliable
® can be awful if not (next slides...)
® in fact, the map points are uncertain
® why not try to make/update map while moving? SLAM, to follow

