

LEVELS OF DRIVING AUTOMATION

THE HUMAN MONITORS THE DRIVING ENVIRONMENT

THE AUTOMATED SYSTEM MONITORS THE DRIVING ENVIRONMENT

Context for vehicles and sensing

• Environments:

- Case 1:
 - work anywhere
 - likely: various gadgets improve safety and experience
 - implausible: full autonomy
- Case 1.5:
 - work some places
 - some are specialized to freeways, etc.
- Case 2:
 - work only in tightly controlled environment (eg smart city)
 - there are models of full autonomy (eg transporters at airports)

Case 1

- Various gadgets improve safety and experience
- case-by-case reasoning about representation and sensing
- Issues:
 - what's worth doing?
 - what can be done easily?
 - how much sensing?

Case 1 examples

- Reversing cameras
- Reversing sonar
- Forward sonar for collision avoidance
- Active collision management
- Pedestrian detection
- Various safety cameras
 - driver attention
 - record events for dispute resolution
 - driver sobriety
- Smarter links to maps

Case 1.5:

• Mostly, more specialized gadgets, mostly for highways

- lane following for highways
- predicting highway turnoffs
- speed control that's aware of cars in front
- neat tricks to reduce traffic jams
- Issues
 - what's worth doing?
 - what can be done easily?
 - how much sensing?

Case 2: Strongly controlled environments

- Full autonomy quite plausible
 - depending on regulatory and environmental control
 - there are models of full autonomy (eg transporters at airports)
 - This case is valuable, and may be important
 - public transport -> apartment in high density living areas
- Issues:
 - how much control do you need?
 - what density of traffic can be sustained?
 - how do you ensure safe behavior if weird stuff happens?

The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
 - and where do we get it?
- How do we know if it works

Representation

• A1: No representation required

- link control inputs to sensing with multiple network layers
- train on simulation with reinforcement learning
- dubious position, but...
 - notice that, IN PRINCIPLE, this deals with full autonomy
- Q:
 - how do you know it will do the right thing in a given situation?
- A (dubious)
 - watch what it does on training data

Representation

• A2: 3D reconstruction

- build complete 3D model of world around you
 - LIDAR, SFM, etc.
 - label it with appropriate labels (next slides)
- use a planner, etc to make paths in that environment
- follow paths
- Q:
 - how do you know it will do the right thing in a given situation?
- A (dubious):
 - prove that environment is right and software is correct
- Q:
 - do you really need a 3D representation?
- A:
 - who knows?

Optic flow as a theory of perception

Fun fact about vision

TTC - Long

TTC - AAARGH!

Where am I?

- This doesn't get sufficient credit as 3D
 - early work (im2gps, etc; Hays+Efros 2008)
 - non-par regression (matching)
 - NOT the same as building a map

- Short scales, visually simple worlds are hard
 - get different visual sensors and use them well
 - Mantis shrimp (Daly et al 2016)

How do I get home?

- Desert ants can forage, then go home directly
 - They're not doing SLAM! (scale)
 - Cues:
 - dead reckoning (count leg movements)
 - visual waypoints
 - polarization based sun compass
- Behavior can be explained *without* a map
 - multiple cues each produce a "go-home" vector
 - weighted combination (Hoinville+Wehner, 2018)
 - can be imitated (Dupeyroux et al 2019)
- And they can go home backwards

https://www.labroots.com/trending/plants-and-animals/15376/desert-ants-sun-return-home-foraging

https://www.youtube.com/watch?v=i-ahuZEvWH8

What can I do?

• Path planning is not about geometric detail

- which creates computational complexity
- RRT methods; nearest neighbor methods; = strategies to duck detail
 - the key is a test: will this result in collision?
- So why recover detail from images, rather than be able to answer query?
- We should recover geometric affordances of objects
 - what can be done to this, and where?
 - this likely isn't inherited from category
- Does a clam shell have a "hit here" tag?

Likely truth about 3D vs 2D

- Straightforward to convert from 2D to 3D repns and back
- This means anything you can do w/3D, you can do w/2D
- But: convenience is important
 - some planners want 3D
 - sensing 3D as 3D might be a good idea (LIDAR)
 - detection is generally faster in 2D, might be easier

Representation

• A3: Label images (or 3D reconstruction)

- with what?
 - label all possible objects with all names
 - label some classes, ignore others
- what taxonomy?
 - likely a derived taxonomy from actions
- Q:
 - how do you know it will do the right thing in a given situation?
- A (dubious):
 - prove that environment is right and software is correct
- Q:
 - what should be labelled and what should be ignored?
- A:
 - who knows? likely the things that most affect performance?

Labelling

Labelling

MS-CoCo

Labelling

The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
 - and where do we get it?
- How do we know if it works?

XXXX Autonomy data

Special features: rich appearance variation

Special features: rich appearance variation

Special features: rich appearance variation

XXX data consequences

XXXX data consequences

The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
 - and where do we get it?
- How do we know if it works?

Image classification

APOLLOSCAPE

Adversarial example

APOLLOSGAPE

- Search for
 - small update to image
 - such that
 - output for true class is low
 - output for some other class is high

- Surprising fact:
 - such updates can be VERY small

Real-Time Perception/Prediction Behavior Forecas mputer vision technology

Detection

Yolo attack

- Yolo uses a large image area to
 - predict boxes
 - predict classes
- This means that a detection is
 - affected by pixels OUTSIDE box

The questions that will plague us

- What representation do we need?
- How much data do we need to make it?
 - and where do we get it?
- How do we know if it works?