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Knowing motion 1s a cue

® [.ocalization:
® Match observation to map - this tells us where we are
® Now imagine we move; there are two cues to location:
® what the map says;
® how we moved (from, eg, shaft encoders, etc.)

® Tracking:
® [Estimate state of object in one frame
® Now we receive a second frame; there are two cues to object state:
® ecstimate in new frame;
® use a motion model (eg moving under gravity)
e Key technical question:
® Fuse these two cues into a single estimate recursively



Tracking: Why?

® Motion capture

® build models of moving people from video
® Recognition from motion

® cg cyclists move differently than runners
® Surveillance

® who is doing what?

® for security (eg keep people out of sensitive areas in airports)
e for HCI (eg kinect, eyetoy, etc.)



Tracking

® [Establish state of object using time sequence
® state could be:
® position; position+velocity; position+velocity+acceleration
® or more complex, eg all joint angles for a person
® Biggest problem -- Data Association
® which image pixels are informative, which are not?

e Key ideas
® Tracking by detection
® if we know what an object looks like, that selects the pixels to use

® Tracking through flow
® if we know how an object moves, that selects the pixels to use



Appearance Flow
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FIGURE 11.1: In tracking problems, we want to build space time paths followed by
tokens—which might be objects, or regions, or interest points, or image windows—in
an image sequence (left). There are two important sources of information; carefully used,
they can resolve many tracking problems without further complexity. One is the appear-
ance of the token being tracked. If there is only one token in each frame with a distinctive
appearance, then we could detect it in each frame, then link the detector responses (a).
Alternatively, if there is more than one instance per frame, a cost function together with
weighted bipartite matching could be enough to build the track (b). If some instances
drop out, we will need to link detector responses to abstract tracks (c); in the figure, track
1 has measurements for frames n and n + 2, but does not have a measurement for frame
n + 1. Another important source of information is the motion of the token; if we have a
manageable model of the flow, we could search for the flow that generates the best match
in the next frame. We choose that match as the next location of the token, then iterate
this procedure (right).



Track by detection (simple form)

® Assume

® a very reliable detector (e.g. faces; back of heads)
® detections that are well spaced in images (or have distinctive properties)
® c.g. news anchors; heads in public

® Link detects across time
® only one - easy
® multiple - weighted bipartite matching
® but what if one is missing?

® Better: create abstract tracks

® link detects to track
® create tracks, reap tracks as required
® clean up spacetime paths



Notation:

Write xj(2) for the k’th response of the detector in the ith frame

Write t(k, 1) for the k’th track in the ith frame

Write xt(k, ) for the detector response attached to the k’th track in the ith frame
(Think C pointer notation)

Assumptions: We have a detector which is reasonably reliable.
We know some distance d such that d(xt(k,7 — 1), xt(k,7)) is always small.

First frame: Create a track for each detector response.

N’th frame:

Link tracks and detector responses by solving a bipartite matching problem.
Spawn a new track for each detector response not allocated to a track.

Reap any track that has not received a detector response for some number of
frames.

Cleanup: We now have trajectories in space time. Link anywhere this is
justified (perhaps by a more sophisticated dynamical or appearance model, derived
from the candidates for linking).

Algorithm 11.1: Tracking by Detection.




Tracking by known appearance

Even if we don’t have a detector
Know rectangle in image (n)
Want to find corresponding rectangle in (n+1)

Search over nearby rectangles
® to find one that minimizes SSD error (Sum of Squared Differences)
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® where sum is over pixels in rectangle

Application

® stabilize players in TV sport



FIGURE 11.2: A useful application of tracking is to stabilize an image box around a more
interesting structure, in this case a football player in a television-resolution video. A frame
from the video is shown on the left. Inset is a box around a player, zoomed to a higher
resolution. Notice that the limbs of the player span a few pixels, are blurry, and are
hard to resolve. A natural feature for inferring what the player is doing can be obtained
by stabilizing the box around the player, then measuring the motion of the limbs with
respect to the box. Players move relatively short distances between frames, and their body
configuration changes a relatively small amount. This means the new box can be found
by searching all nearby boxes of the same size to get the box whose pixels best match
those of the original. On the right, a set of stabilized boxes; the strategy is enough to
center the player in a box. This figure was originally published as Figure 7 of “Recognizing
Action at a Distance,” A. Efros, A.C. Berg, G. Mori, and J. Malik, Proc. IEEE ICCYV,
2003, © IEEE, 2003.



But what 1f the patch deforms?

Eg a football player’s jersey

® (olors are “similar’ but SSD won’t work

Idea: patch histogram 1s stable

To track:

® repeat
® predict location of new patch
® scarch nearby for patch whose histogram matches original the best



FIGURE 11.5: Four frames from a sequence depicting football players, with superimposed
domains. The object to be tracked is the blob on top of player 78 (at the center right in
frame 30). We have masked off these blobs (below) to emphasize just how strongly the
pixels move around in the domain. Notice the motion blur in the final frame. These blobs
can be matched to one another, and this is done by comparing histograms (in this case,
color histograms), which are less affected by deformation than individual pixel values.
This figure was originally published as Figure 1 of “Kernel-Based Object Tracking” by
D. Comaniciu, V. Ramesh, and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2003, (©) IEEE 20035.



Q: Why no deep network methods?

e Silly A: I wrote these slides in 2011

® Better A: They’ve changed some feature mechanics

® but nothing major
® [’ll work through some examples later



When are motions “easy”?

Current procedure

® predict state
® obtaining measurement from prediction by search
® correct state

Easy
® When the object is close to where you expect it to be
® cg Object guaranteed to move a little

Large motions can be easy

® When they’re “predictable”
® ¢.g. ballistic motion
® ¢.g.constant velocity

Need a theory to fuse this procedure with motion model



Q: why care about dynamics?

® Surely deep network methods make this go away?

® A: No they didn’t
® Some problems are “easy” with dynamical models, hard without

® Example:
® many similar, fast-moving cars



