EKF SLAM

D.A. Forsyth, UIUC
The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

- Why is SLAM hard?
 Chicken-or-egg problem:
 - a map is needed to localize the robot and a pose estimate is needed to build a map

From Burgard et al slides
Alternative view of SLAM

- We already know we can do it
 - for example
 - do the matrix factorization stuff incrementally
 - visual odometry then triangulate
 - BUT
 - that doesn’t take uncertainty into account
- What we’re doing now is
 - wrapping an EKF (other filter) around ideas we’ve seen before
Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown.
- Picking wrong data associations can have catastrophic consequences.
- Pose error correlates data associations.

From Burgard et al. slides.
In factorization language

- Which point in image i goes into which row of the matrix?
 - get that wrong enough often enough and you’re in trouble
- Obvious we can do something about this
 - eg assume we have OK reconstruction from frame 1..N-1
 - in frame N, estimate camera motion from
 - small number of reliable point correspondences +VO
 - shaft encoders, etc.
 - now sort out all other observations
 - eg map to the point that appears closest in predicted camera
Data Association Problem

- A data association is an assignment of observations to landmarks
- In general there are more than \(\binom{n}{m} \) (n observations, m landmarks) possible associations
- Also called “assignment problem”

From Burgard et al slides
State

\[
\mathbf{x} = \begin{bmatrix} \mathcal{R} \\ \mathcal{M} \end{bmatrix} = \begin{bmatrix} \mathcal{R} \\ \mathcal{L}_1 \\ \ldots \\ \mathcal{L}_n \end{bmatrix}
\]

Position and orientation of the robot

All landmark positions in original coordinate frame

Landmark 1 position in OCF
A general movement model

\[
\begin{bmatrix}
 x \\
 y \\
 \theta
\end{bmatrix} \rightarrow \begin{bmatrix}
 x + R(\sin(\theta + \Delta\theta) - \sin \theta) \\
 y - R(\cos(\theta + \Delta\theta) - \cos \theta) \\
 \theta + \Delta\theta
\end{bmatrix}
\]

THIS ISN’T LINEAR!

For sufficiently small timestep, bounded rate of change in angle, we get

\[
\begin{bmatrix}
 x \\
 y \\
 \theta
\end{bmatrix} \rightarrow \begin{bmatrix}
 x + v \cos \theta \\
 y + v \sin \theta \\
 \theta + u
\end{bmatrix}
\]

v, u parameters of motion

THIS ISN’T LINEAR!
A general movement model

\[
\begin{bmatrix}
x \\
y \\
\theta
\end{bmatrix} \rightarrow \begin{bmatrix}
x + R(\sin(\theta + \Delta\theta) - \sin \theta) \\
y - R(\cos(\theta + \Delta\theta) - \cos \theta) \\
\theta + \Delta\theta
\end{bmatrix}
\]

THIS ISN'T LINEAR!

\[
\begin{bmatrix}
x \\
y \\
\theta
\end{bmatrix} \rightarrow \begin{bmatrix}
x \\
y \\
\theta
\end{bmatrix} + \begin{bmatrix}
\frac{v_t}{\omega_t} (\sin(\theta + \omega_t \Delta t) - \sin(\theta)) \\
-\frac{v_t}{\omega_t} (\cos(\theta + \omega_t \Delta t) - \cos(\theta)) \\
\omega_t \Delta t
\end{bmatrix}
\]

\(v_t\) = velocity

\(\omega_t\) = rotational velocity
Recall: The extended Kalman filter

- Linearize:

\[x_i = f(x_{i-1}, n) \]

\[
F_x = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \cdots \\
\cdots & \frac{\partial f_i}{\partial x_j} & \cdots \\
\cdots & \cdots & \frac{\partial f_i}{\partial x_j}
\end{bmatrix}
\]

\[
F_n = \begin{bmatrix}
\frac{\partial f_1}{\partial n_1} & \cdots & \cdots \\
\cdots & \frac{\partial f_i}{\partial n_j} & \cdots \\
\cdots & \cdots & \frac{\partial f_i}{\partial n_j}
\end{bmatrix}
\]

Posterior covariance of \(x_{i-1} \)

\[x_i \sim N(f(\bar{x}_{i-1}^+, 0), F_x \Sigma_{i-1}^+ F_x^T + F_n \Sigma_{n,i} F_n^T) \]

Noise covariance
Measuring position

- Landmark is at:
 - in world coordinate system
- We record position in vehicle’s frame:

 \[
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 \]

 \[
 x_v \\
 y_v
 \]

 \[
 = \mathcal{R}_{-\theta} \begin{bmatrix}
 (u - x) \\
 (v - y)
 \end{bmatrix}
 \]

 \[
 \begin{bmatrix}
 x_v \\
 y_v
 \end{bmatrix}
 \]

 \[
 \text{THIS ISN’T LINEAR!}
 \]

Observation
Recall: The extended Kalman filter

- Linearize:

\[y_i = g(x_i, n) \]

\[
G_x = \begin{bmatrix}
\frac{\partial g}{\partial x_1} & \ldots & \ldots \\
\ldots & \frac{\partial g}{\partial x_1} & \ldots \\
\end{bmatrix}
\]

\[
G_n = \begin{bmatrix}
\frac{\partial g}{\partial n_1} & \ldots & \ldots \\
\ldots & \frac{\partial g}{\partial n_1} & \ldots \\
\end{bmatrix}
\]

\[y_i \approx \mathcal{N}(g(x_i, 0), G_x \Sigma_i G_x^T + G_n \Sigma_{m,i} G_n^T) \]
Dynamic Model:

\[
x_i = f(x_{i-1}, n)
\]

\[
y_i = g(x_i, n)
\]

Start Assumptions: \(x_0^-\) and \(\Sigma_0^-\) are known

Update Equations: Prediction

\[
x_i^- \sim \mathcal{N}(f(x_{i-1}, 0), \mathcal{F}_x \Sigma_{i-1}^+ \mathcal{F}_x^T + \mathcal{F}_n \Sigma_{n,i} \mathcal{F}_n^T)
\]

Update Equations: Correction

\[
\kappa_i = \Sigma_i^- \mathcal{M}_i^T \left[\mathcal{G}_x \Sigma_i^- \mathcal{G}_x^T + \mathcal{G}_n \Sigma_{m,i} \mathcal{G}_n^T \right]^{-1}
\]

\[
x_i^+ = x_i^- + \kappa_i [y_i - g(x_i^-, 0)]
\]

\[
\Sigma_i^+ = [\text{Id} - \kappa_i \mathcal{G}_x] \Sigma_i^-
\]

The extended kalman filter
Correction!

Dynamic Model:

\[
x_i = f(x_{i-1}, n)
\]

\[
y_i = g(x_i, n)
\]

Start Assumptions: \(\overline{x}_0 \) and \(\Sigma_0^- \) are known

Update Equations: Prediction

\[
x_i \sim \mathcal{N}(f(x_{i-1}, 0), \mathcal{F}_x \Sigma^-_{i-1} \mathcal{F}_x^T + \mathcal{F}_n \Sigma_{n,i} \mathcal{F}_n^T)
\]

Update Equations: Correction

\[
\kappa_i = \Sigma^-_i G_x^T \left[G_x \Sigma^-_i G_x^T + G_n \Sigma_{m,i} G_n^T \right]^{-1}
\]

\[
\overline{x}^+_i = \overline{x}_i^- + \kappa_i \left[y_i - g(x_i^-, 0) \right]
\]

\[
\Sigma^+_i = \left[Id - \kappa_i G_x \right] \Sigma^-_i
\]

The extended kalman filter
In principle, now easy

- Rather horrid from the point of view of complexity
 - looks like we have to invert a 3+N by 3+N matrix!

- BUT
 - F_x is much simpler than it might look
 - the landmarks do not move!
 - F_n ditto
 - there is no noise in the landmark updates - the landmarks are fixed

- Outcome:
 - We can deal with landmarks one by one
 - and so do many small matrix inversions rather than one large one
State update

\[x_i = f(x_{i-1}, n) \]

\[x = \begin{bmatrix} R \\ M \end{bmatrix} = \begin{bmatrix} R \\ L_1 \\ \vdots \\ L_n \end{bmatrix} \]

- The vehicle moves, as above;
 - but the landmarks don’t move
 - and there isn’t any noise

\[\begin{bmatrix} R \\ L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix} \rightarrow \begin{bmatrix} h(R) + \xi \\ L_1 \\ L_2 \\ \vdots \\ L_n \end{bmatrix} \]
In principle, now easy

• BUT
 • F_x is much simpler than it might look
 • the landmarks do not move!
 • F_n ditto
 • there is no noise in the landmark updates - the landmarks are fixed

$$F_x = \begin{bmatrix} \frac{3}{\partial \mathcal{R}} & N \\ \frac{\partial f \mathcal{R}}{\partial \mathcal{R}} & 0 \\ 0 & I \end{bmatrix}$$

$$F_n = \begin{bmatrix} \frac{\partial f \mathcal{R}}{\partial \mathbf{n}} & 0 \\ 0 & 0 \end{bmatrix}$$

N=Number of landmarks
Effects:

- Imagine we have 2 landmarks

Recall EKF:

\[x_i \sim \mathcal{N}(f(x_{i-1}, 0), \mathcal{F}_x \Sigma^+_i \mathcal{F}_x^T + \mathcal{F}_n \Sigma_n, \mathcal{F}_n^T) \]

\[\mathcal{F}_x = \begin{bmatrix} \mathcal{W} & 0 & 0 \\ 0 & \mathcal{I} & 0 \\ 0 & 0 & \mathcal{I} \end{bmatrix} \]

\[\Sigma^+_i = \begin{bmatrix} A & B & C \\ B^T & D & E \\ C^T & E^T & F \end{bmatrix} \]

\[\mathcal{F}_x \Sigma^+_i \mathcal{F}_x^T = \begin{bmatrix} \mathcal{W} \mathcal{A} \mathcal{W}^T & \mathcal{W} \mathcal{A} & \mathcal{W} \mathcal{B} \\ \mathcal{B}^T \mathcal{W}^T & D & E \\ \mathcal{C}^T \mathcal{W} & E^T & F \end{bmatrix} \]

Notice fewer matrix multiplies!
Effects:

- Imagine we have 2 landmarks

Recall EKF:

\[x_i \sim \mathcal{N}(f(x_{i-1}, 0), \mathcal{F}_x \Sigma_{i-1}^+ \mathcal{F}_x^T + \mathcal{F}_n \Sigma_{n,i} \mathcal{F}_n^T) \]

\[\mathcal{F}_n = \begin{bmatrix} \mathcal{V} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Sigma_{n,i} = \begin{bmatrix} \mathcal{H} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[\mathcal{F}_n \Sigma_{n,i} \mathcal{F}_n^T = \begin{bmatrix} \mathcal{V} \mathcal{H} \mathcal{V}^T & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

Notice fewer matrix multiplies!
More simplifications

- **BUT**
 - G_x is much simpler than it might look
 - each set of measurements affected by only one landmark!

\[
G_x = \begin{bmatrix}
\frac{\partial O_1}{\partial R} & \frac{\partial O_1}{\partial L_1} & 0 & 0 & 0 & 0 \\
\frac{\partial O_2}{\partial R} & 0 & \frac{\partial O_2}{\partial L_2} & 0 & 0 & 0 \\
\cdots & & & & & \\
\frac{\partial O_N}{\partial R} & 0 & 0 & 0 & 0 & \frac{\partial O_N}{\partial L_N}
\end{bmatrix}
\]

N = Number of landmarks
More simplifications

• BUT
 • G_n is usually much simpler than it might look
 • noise is usually additive normal noise

• This means that the term: $G_n \sum_{i} G_n^T$
 • is actually a block diagonal matrix
Big simplification

• The nasty bit…

\[
\left[g_x \sum_i g_x^T + g_n \sum_{m,i} g_n^T \right]^{-1}
\]

• But notice key point
 • measurements interact only through the position/orientation of the vehicle
 • OR measurements are conditionally independent conditioned on pose of v.
 • OR you could subdivide time and update measurements one by one
 • OR matrix G_x has the sparsity structure above
• (the same point, manifesting in different ways)
Subdividing time…

- We receive measurements of landmarks in some order
 - a measurement of the position of landmark i affects the whole state
 - because it changes your estimate of the location of the vehicle
 - and that affects your estimate of state of every landmark
 - BUT
 - the change in estimate of location depends ONLY on
 - location
 - landmark i
Steps in EKF

\[K_i = \Sigma_i^{-} G_x^T \left[G_x \Sigma_i^{-} G_x^T + G_n \Sigma_m, i G_n^T \right]^{-1} \]

\[x_i^+ = x_i^- + K_i \left[y_i - g(x_i^-, 0) \right] \]

\[\Sigma_i^+ = \left[I - K_i G_x \right] \Sigma_i^- \]
Steps in EKF

\[\mathcal{K}_i = \sum_i -G_x^T \left[G_x \sum_i G_x^T + G_n \sum_{m,i} G_n^T \right]^{-1} \]

\[x_i^+ = x_i^- + \mathcal{K}_i \left[y_i - g(x_i^-, 0) \right] \]

\[\Sigma_i^+ = \left[I - \mathcal{K}_i G_x \right] \Sigma_i^- \]

Notice:
- Inverting only a small matrix
- But affecting the whole state!
Landmarks

• Which measurement comes from which landmark?
 • data association -
 • use some form of bipartite graph matching

• Idea:
 \[\overline{X_i} \]
 • predicts landmark positions, vehicle position before obs
 • compute distances between all pairs of
 • predicted obs, real obs
 • bipartite graph matcher
 • OR greedy
Landmarks

- No measurement from a landmark?
 - structure of EKF means you can process landmarks one by one
 - that’s what all the matrix surgery was about
 - so don’t update that landmark

- How do we know no measurement from a landmark?
 - refuse to match if distance in greedy/bipartite is too big
 - other kinds of matching problem (color, features, etc)
Measuring distance and orientation

- Landmark is at:
 - in global coordinate system
- We record distance and heading:
 - measurement

\[
\begin{bmatrix}
 d \\
 \phi
\end{bmatrix}
= \begin{bmatrix}
 \sqrt{(x - u)^2 + (y - v)^2} \\
 \text{atan2}(y - u, x - v) - \theta
\end{bmatrix}
\]

THIS ISN’T LINEAR!
A further trick: inverting measurement

- Example: measure distance and orientation to point

\[
\begin{bmatrix}
 d \\
 \phi
\end{bmatrix} = \begin{bmatrix}
 \sqrt{(x - u)^2 + (y - v)^2} \\
 \text{atan2}(y - u, x - v) - \theta
\end{bmatrix}
\]

Observation

- point posn in world coords
- vehicle posn in world coords
- vehicle orientation in world coords
Range and bearing

Observation $\begin{bmatrix} d \\ \phi \end{bmatrix} = \begin{bmatrix} \sqrt{(x-u)^2 + (y-v)^2} \\ \text{atan2}(y-u, x-v) - \theta \end{bmatrix}$

Landmark position

Vehicle state

$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x + (d + \xi) \sin(\phi + \zeta + \theta) \\ y + (d + \xi) \cos(\phi + \zeta + \theta) \end{bmatrix}$

These are measurements of landmark ONLY

Noise affecting measurements

Here use the current estimate of vehicle state
Bearing only (sketch)

- Cannot determine landmark in 2D from measurement
 - it’s on a line!
 - you must come up with a prior
 - after that, it’s easy
 - find mean posterior location, covariance
 - plug in
 - Big Issue
 - True prior should have infinite covariance
 - can’t work with that
 - so linearization may fail