Planning, dynamics and
motion graphs

D.A. Forsyth, UIUC

Kinematic planning

® Construct path in configuration space

® 5o that there are no collisions

® starts at start and ends at goal

z(0) = a (1) =10

Q: what if we wanted the shortest (etc)?

® We produced T (t)
® path that meets constraints

® Use this to 1nitialize

min,, ;) fol h(x,z,...,t)dt

Polish by...

® Discretize approximate path r, =X (’L At)
® Solve

ming, Y . h(z; + 05, ...) At

g(x; +6;) >0

You might also need to interpolate path
segments here

Q: Why not use...

® Simple splines
® A smoothing spline
® A B-spline
® A subdivision curve
® ctc

® with vertices as control points?

Dynamics make planning harder

® Dynamics introduce differential constraints

x':f($,u)
N

Derivative of state State Control input -
there might be
constraints on this,

too

Quite possibly nasty

Example

Obstacle

Point robot

on a line
. .

® State1s: (X, V)
® (differential constraints:

Control constraint: —]_ < Uu < 1

I’m here, and
decelerate

(X, v)

Distance travelled
until stationary
at acceleration = -1

(X, v)

Keep out of here, to

\

Key 1ssue

You have to think about control input as well

Compare:
® RRT in kinematic planning -
® check is there no obstacle
® RRT in dynamic planning
® what control gets you from gnear to qrand?
® there might not be one
® it might be hard to find

Taking actions into account

qnear

=<

q' = f(q,u)---useaction u from g to arrive at ¢’

Notice this f isn’t the f in slide 6 —
it maps initial state to final state given control u

chose u, = argmin(d(q,,,,,4')) Is this the best?

c7rzand o

How it Works

e Build a rapidly-exploring random tree in state
space (X), starting at s+

e Stop when tree gets sufficiently close to s,

Start

Building an RRT

e To extend an RRT:
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

~

Building an RRT

e To extend an RRT (cont.)

— Apply control inputs u for
time 6, so robot reaches
C

— If no collisions occur in
getting from a to ¢, add ¢
to RRT and record u with
hew edge

Executing the Path

e Once the RRT reaches s,

— Backtrack along tree to identify edges that lead
from s+ t0 S 02

— Drive robot using control inputs stored along edges
in the tree

Problem of Simple RRT Planner

e Problem: ordinary RRT explores X uniformly
— slow convergence

e Solution: bias distribution towards the goal — once in a
while choose goal as new random configuration (5-10%)

e If goal is choose 100% time then it is randomized potential
planner

Bidirectional Planners

e Build two RRTs, from start and goal state

~ \\"‘Kn
N
\ i
A N S
S >
\; _ __‘___ a }C.-.
A)\,_- = }y |
) /

e Complication: need to connect two RRTs
— local planner will not work (dynamic constraints)
— bias the distribution, so that the trees meet

RRT's

Link

Issues/problems

Metric sensitivity

Nearest neighbour efficiency

Optimal sampling strategy

Balance between greedy search and exploration

Applications in mobile robotics, manipulation,
humanoids, biology, drug design, areo-space, animation

Extensions - real-time RRT'’s, anytime RRT’'s dynamic
domains RRT'sm deterministic RRTs, hybrid RRT's

Building an RRT

e To extend an RRT:
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

!
Strategies: HOW ()

Optimization
with simulator

Discretize

~

Discretization and motion graphs

Discretization
® build a set of motion primitives
® start state, control input -> path, end state
® procedures for composing them
® what primitives can be applied in what state?
® there is translation, rotation covariance

Search this set of primitives for appropriate control inputs

The motion graph

® (ld idea in human animation
® Essentially, build a roadmap of what people can do by
® joining up animation sequences
e Control by
® scarching these sequences

® Analogy with car
® drive around “at random”
® build motion graph
® search this for primitive sequences

The motion signal

There 1s no reliable method for generating novel motions
® some special cases work OK

® Keys for special cases
® data driven methods work well for temporal composition
® Some motions can be blended successfully
® (Contacts create special problems
® There are complex, cross-body correlations

There must be some set of motion primitives

Motion Sequences

Corresponding Motion

>

Time

Figure 1: We wish to synthesize human motions by splicing to-
gether pieces of existing motion capture data. This can be done by
representing the collection of motion sequences by a directed graph
(top). Each sequence becomes a node; there is an edge between
nodes for every frame in one sequence that can be spliced to a frame
in another sequence or itself. A valid path in this graph represents a
collection of splices between sequences, as the middle shows. We
now synthesize constrained motion sequences by searching appro-
priate paths in this graph using a randomized search method.

Fr ame; Frame. J

Walking , frame 1

\\‘\'\ \

Clustering

_>
AR TN

Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there 1s one edge between two nodes
1n our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, 1t will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The 7, j’th
entry in this matrix represents the weight for a cut from the i’th
frame 1n the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph i1s composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

Running, frame |

o

. Start with a set of n valid random “seed” paths in the graph G’
. Score each path and score all possible mutations

. Where possible mutations are:

(a) Delete some portion of the path and replace it with O or
1 hops.

(b) Delete some edges of the path and replace them with
their children

. Accept the mutations that are better than the original paths
. Include a few new valid random “seed” paths

. Repeat until no better path can be generated through muta-

tions

Figure 3: The two mutations are: deleting some portion of the path
(top-left, crossed out in red) and replacing that part with another set
of edges (top-right), and deleting some edges in the path (bottom-
left) and replacing deleted edges with their children in our hierarchy
(bottom-right)

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion 1s required to pass through the arrow (body con-
straint) 1n the middle on the way from the right arrow to the left.

