Table of Contents

1. Polaris GEM e2 - Hardware ... 3
 1.1 Polaris GEM e2 Vehicle .. 3
 1.2 Hardware Overview ... 4
 1.3 Master Power Switch ... 5
 1.4 Automated Research Development Platform 5
 1.5 AStuff Spectra 2 Computer .. 6
 1.6 Power Devices of AStuff Spectra 2 Computer 7
 1.7 PACMod Hardware Interface ... 8
 1.8 Joystick Controller Interface ... 9
 1.9 ZED2 Stereo Camera ... 10
 1.10 Velodyne VLP-16 ... 11
 1.11 Delphi ESR 2.5 Radar .. 13
 1.12 ProPak 6 & SPAN-IGM-S1 ... 14
 1.13 Cradlepoint IBR1700 Mobile Router .. 17

2. Polaris GEM e2 - Software .. 18
 2.1 Software Setup .. 18
 2.2 Frame Setup ... 19
 2.3 Rviz Setup ... 20
 2.4 ROS Driver of PACMod ... 22
 2.5 ROS Driver of Joystick Controller ... 26
 2.6 ROS Topics of Polaris GEM e2 ... 28
 2.7 Demo of Pure Pursuit Tracker on GNSS Waypoints 36
 2.8 Demo of Stanley Tracker on GNSS-RTK Waypoints 37
 2.9 Coming more ... 38

3. Polaris GEM e2 - Simulator ... 39
 3.1 Introduction ... 39
 3.2 Launch of the Simulator ... 40
 3.3 Demo of Pure Pursuit & Stanley Controller 43
 3.4 Coming more ... 45

4. Polaris GEM e2 - Operation .. 46
 4.1 Power of Computer & Vehicle ... 46
 4.2 Launch of ROS Programs ... 49
 4.2 Launch of ROS Programs ... 51
1. Polaris GEM e2 - Hardware

1.1 Polaris GEM e2 Vehicle

Software interfaces to the controls: steering, braking, acceleration
Software access: left and right blinkers, reverse and drive gear selection, speed feedback
Convenience features: Dash mounted display screen, Power distribution terminals
1.2 Hardware Overview
1.3 Master Power Switch

Switch will allow operator to cut power to power distribution system

ON will supply power to power distribution system from vehicle battery

OFF will remove power to the power distribution system

Location: under the driver’s seat

1.4 Automated Research Development Platform

All front and rear racks are made with 3 inch x 1.5 inch 15 series 80/20
1.5 AStuff Spectra 2 Computer

The AStuff Spectra 2 is the world's first dual GPU edge AI platform with industrial-grade design and in-vehicle features. Designed specifically to support two high-end 250W NVIDIA® graphics cards, it offers tremendous GPU power up to 28 TFLOPS in FP32 for emerging GPU-accelerated edge computing, such as autonomous driving, vision inspection and surveillance/security.

1.6 Power Devices of AStuff Spectra 2 Computer

The AStuff Spectra 2 computer is powered a 12V lead-acid battery. To charge the battery, put the battery on the concrete floor, clip both terminals correspondingly, wait until the green LED on the charger lights. To use the battery, put the battery on the passenger side on the vehicle’s floor, connect the battery to the power switch, then switch on the battery.
1.7 PACMod Hardware Interface

Application software

ROS

ECU

PACMod

Vehicle

State information
Vehicle speed
Actuator reports
Override status

Commands
Steering
Brake
Acceleration
Shifting
Turn signals

PACMod Override

Steering

Brake / Throttle
1.8 Joystick Controller Interface

Launching the Joystick Demo

$ roslaunch basic_launch gem_dbw_joystick.launch

<launch>
 <include file="$(find pacmod_game_control)/launch/pacmod_game_control.launch">
 <arg name="launch_pacmod" value="false"/>
 <arg name="is_pacmod_3" value="false"/>
 <arg name="pacmod_vehicle_type" value="POLARIS_GEM"/>
 </include>

 <include file="$(find platform_launch)/launch/$(env platform_name)/platform.launch">
 <arg name="use_dbw" value="true"/>
 </include>
</launch>
1.9 ZED2 Stereo Camera

Neural Depth Sensing
ZED 2 is the first stereo camera that uses neural networks to reproduce human vision, bringing stereo perception to a new level.

Built-in IMU, Barometer & Magnetometer
Multi-sensor capture made easy. Gather real-time synchronized inertial, elevation and magnetic field data along image and depth.

120° Wide-Angle Field of View
With its 16:9 native sensors and ultra sharp 8-element all glass lenses, capture video and depth with up to 120° field of view.

Spatial Object Detection
Detect objects with spatial context. Combine AI with 3D localization to create next-generation spatial awareness.

Improved Positional Tracking
Benefit from a wide angle FOV, advanced sensor stack and thermal calibration for a greatly improved positional tracking accuracy.

Cloud Connected
Monitor and control your camera remotely. Using a dedicated cloud platform, capture and analyze 3D data anywhere in the world.

<table>
<thead>
<tr>
<th>Video Mode</th>
<th>Frames per second</th>
<th>Output Resolution (side by side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2K</td>
<td>15</td>
<td>4416x1242</td>
</tr>
<tr>
<td>1080p</td>
<td>30 / 15</td>
<td>3840x1080</td>
</tr>
<tr>
<td>720p</td>
<td>60 / 30 / 15</td>
<td>2560x720</td>
</tr>
<tr>
<td>WVGA</td>
<td>100 / 60 / 30 / 15</td>
<td>1344x376</td>
</tr>
</tbody>
</table>

The default image size of ZED2 stereo camera with ROS driver is **1280 x 720** at 30Hz for both left and right cameras.
1.10 Velodyne VLP-16 LiDAR

Roof Rack

Dimensions

<table>
<thead>
<tr>
<th>Laser ID</th>
<th>Vertical Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-15°</td>
</tr>
<tr>
<td>1</td>
<td>1°</td>
</tr>
<tr>
<td>2</td>
<td>-13°</td>
</tr>
<tr>
<td>3</td>
<td>-3°</td>
</tr>
<tr>
<td>4</td>
<td>-11°</td>
</tr>
<tr>
<td>5</td>
<td>5°</td>
</tr>
<tr>
<td>6</td>
<td>-9°</td>
</tr>
<tr>
<td>7</td>
<td>7°</td>
</tr>
<tr>
<td>8</td>
<td>-7°</td>
</tr>
<tr>
<td>9</td>
<td>9°</td>
</tr>
<tr>
<td>10</td>
<td>-5°</td>
</tr>
<tr>
<td>11</td>
<td>11°</td>
</tr>
<tr>
<td>12</td>
<td>-3°</td>
</tr>
<tr>
<td>13</td>
<td>13°</td>
</tr>
<tr>
<td>14</td>
<td>-1°</td>
</tr>
<tr>
<td>15</td>
<td>15°</td>
</tr>
</tbody>
</table>
Sensor

- 16 Channels
- Measurement Range: 100 m – 120 m
- Range Accuracy: Up to ±3 cm (Typical)
- Field of View (Vertical): +15.0° to -15.0° (30°)
- Angular Resolution (Vertical): 2.0°
- Field of View (Horizontal): 360°
- Angular Resolution (Horizontal/Azimuth): 0.1° – 0.4°
- Rotation Rate: 5 Hz – 20 Hz
- Integrated Web Server for Easy Monitoring and Configuration

Mechanical / Electrical / Operational

- Power Consumption: 8 W (Typical)
- Operating Voltage: 9 V – 18 V (with Interface Box and Regulated Power Supply)
- Weight: ~590 g (without Cabling and Interface Box)
- Dimensions: See diagram on previous page
- Environmental Protection: IP67
- Operating Temperature: -10°C to +60°C
- Storage Temperature: -40°C to +105°C

Outputs

- 3D LiDAR Data Points Generated:
 - Single Return Mode: ~300,000 points per second
 - Dual Return Mode: ~600,000 points per second
- 100 Mbps Ethernet Connection
- UDP Packets Contain:
 - Time of Flight Distance Measurement
 - Calibrated Reflectivity Measurement
 - Rotation Angles
 - Synchronized Time Stamps (µs resolution)
- GPS: $GPRMC and $GPGGA NMEA Sentences from GPS Receiver (GPS not included)
1.11 Delphi ESR 2.5 Radar

CAN / USB Connection Wiring

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Battery (+24V)</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>USB D+ (green wire)</td>
<td>Green (USB)</td>
</tr>
<tr>
<td>3</td>
<td>USB D- (white wire)</td>
<td>White (USB)</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
<td>Black</td>
</tr>
<tr>
<td>5</td>
<td>USB Ground (black wire)</td>
<td>Black (USB)</td>
</tr>
<tr>
<td>6</td>
<td>PRVCANL</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Ignition (+24V)</td>
<td>White</td>
</tr>
<tr>
<td>8</td>
<td>USB +5V (red wire)</td>
<td>Red (USB)</td>
</tr>
<tr>
<td>9</td>
<td>VEHCANL</td>
<td>Blue</td>
</tr>
<tr>
<td>10</td>
<td>VEHCANH</td>
<td>Brown</td>
</tr>
<tr>
<td>11</td>
<td>VEHCAN Shield</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PRVCANH</td>
<td>Orange</td>
</tr>
</tbody>
</table>

USB-to-CAN (Kvaser Hybrid 2xCAN/LIN)
1.12 ProPak 6 & SPAN-IGM-S1

ProPak-6D1

- Dual Antenna Support
- Cellular
- L1/L2 GPS+GLONASS
- L-Band TerraStar-C PPP Corrections
- 3 Grade IMUs
- 20 Hz Positions and Measurements
- 4GB Internal Memory
<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Connector Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS Antenna</td>
<td>ANT 1</td>
<td>GNSS GPS1 and GPS2 antennas (TNC) (model dependant)</td>
</tr>
<tr>
<td></td>
<td>ANT 2</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ANT1</td>
<td>GNSS GPS1 antenna (TNC) and external oscillator (BNC) (model dependant)</td>
</tr>
<tr>
<td></td>
<td>OSC</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>PWR</td>
<td>4-pin LEMO power connector</td>
</tr>
<tr>
<td>Expansion</td>
<td>EXP.</td>
<td>9-pin LEMO expansion port for CAN1 and CAN2</td>
</tr>
<tr>
<td>USB</td>
<td>DEVICE</td>
<td>USB Device (Type micro B) connector (high speed only) 480 Mbps</td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
<td>Ethernet RJ45 connector</td>
</tr>
<tr>
<td>I/O</td>
<td></td>
<td>4 Event Input/3 Event Output (DB9 female connector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I/O port is configurable</td>
</tr>
<tr>
<td>Serial Communication</td>
<td>COM1</td>
<td>COM1, COM2, COM3/IMU DB9 male communications port</td>
</tr>
<tr>
<td>Ports</td>
<td>COM2</td>
<td>RS-232 (RS-422 selectable via software)</td>
</tr>
<tr>
<td></td>
<td>COM3/IMU</td>
<td></td>
</tr>
</tbody>
</table>

![Image of Velodyne sensor with labels VLP-16, To GPS SYNC, ProPak-6D - I/O & COM2]
SPAN-IGM-S1

200Hz/125 Hz Inertial Measurements
Direct Wheel Sensor Support
Commercially Exportable
Small and lightweight design

G5Ant-3AMT4

Matte black finish without branding
Various mounting options and connectors
Size: 89 mm dia. x 25 mm hgt
Weight: 368 g
1.13 Cradlepoint IBR1700 Mobile Router

By using a SIM card with data plan, the Cradlepoint IBR1700 mobile router and network switch provide Internet access for AStuff Spectra 2 computer when the Polaris GEM e2 vehicle runs outside the building. The master power switch in 1.3 is in charge of powering these devices.
2. Polaris GEM e2 - Software

2.1 Software Setup

ROS Noetic Installation

http://wiki.ros.org/noetic/Installation

AutonomouStuff Driver Installation

$ sudo apt update && sudo apt install apt-transport-https

$ sudo sh -c 'echo "deb [trusted=yes] https://s3.amazonaws.com/autonomoustuff-repo/
$(lsb_release -sc) main" > /etc/apt/sources.list.d/autonomoustuff-public.list'

Install Kvaser linuxcan SDK:
https://autonomoustuff.atlassian.net/wiki/spaces/RW/pages/17475947/Driver+Pack+Installation+or+Upgrade+Instructions
https://www.kvaser.com/download/

$ sudo apt install ros-$ROS_DISTRO-kvaser-interface ros-$ROS_DISTRO-delphi-esr

Software Installation

$ sudo apt install solaar
$ sudo apt install preload
$ sudo apt install meld
$ sudo apt-get install indicator-multiload

Summary

Ubuntu 20.04 with ROS Noetic (Python3)
NVIDIA Driver Version: 450 (valid for RTX2080 Ti)
CUDA 11.0.3
OpenCV 4.6.0
pytorch 1.7.1
2.2 Frame Setup

```
platform_launch/launch/white_e2/platform.launch
platform_launch/launch/core/all_supported_drivers.launch

veh_frame (default=base_link)
front_radar_frame (default=front_radar)
lidar1_frame (default=lidar1)
novatel_frame (default=novatel)
novatel_imu_frame (default=imu)
```

Usage: static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period (ms)
2.3 Rviz Setup

$ source devel/setup.bash

$ roslaunch basic_launch gem_sensor_init.launch
2.4 ROS Driver of PACMod

ROS wiki: http://wiki.ros.org/pacmod
Source: https://github.com/astuff/pacmod.git (branch: release)

Supported Hardware

- Polaris GEM Series (e2/e4/e6/eLXD)
- Polaris Ranger X900
- International Prostar+ 122
- Lexus RX-450h

can_msgs/Frame.msg

Header header
uint32 id
bool is_rtr
bool is_extended
bool is_error
uint8 dlc
uint8[8] data

CAN Device List

dev@dev-gen:/usr/src/linuxcan/canlib/examples$./listChannels
CANlib version 5.28
Found 2 channel(s).
ch 0: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v0.28.846)
ch 1: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v0.28.846)
dev@dev-gen:/usr/src/linuxcan/canlib/examples$
Published Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>can_rx</td>
<td>can_msgs/Frame</td>
<td>All data published on this topic is intended to be sent to the PACMod system via a CAN interface.</td>
</tr>
<tr>
<td>parsed_tx/global_rpt</td>
<td>pacmod_msgs/GlobalRpt</td>
<td>High-level data about the entire PACMod system.</td>
</tr>
<tr>
<td>parsed_tx/accel_rpt</td>
<td>pacmod_msgs/SystemRptFloat</td>
<td>Status and parsed values [pct] of the throttle subsystem.</td>
</tr>
<tr>
<td>parsed_tx/brake_rpt</td>
<td>pacmod_msgs/SystemRptFloat</td>
<td>Status and parsed values [pct] of the steering subsystem.</td>
</tr>
<tr>
<td>parsed_tx/steer_rpt</td>
<td>pacmod_msgs/SystemRptFloat</td>
<td>Status and parsed values [rad] of the steering subsystem.</td>
</tr>
<tr>
<td>parsed_tx/turn_rpt</td>
<td>pacmod_msgs/SystemRptInt</td>
<td>Status and parsed values [enum] of the turn signal subsystem.</td>
</tr>
<tr>
<td>parsed_tx/shift_rpt</td>
<td>pacmod_msgs/SystemRptInt</td>
<td>Status and parsed values [enum] of the gear/transmission subsystem.</td>
</tr>
<tr>
<td>parsed_tx/vehicle_speed_rpt</td>
<td>pacmod_msgs/VehicleSpeedRpt</td>
<td>The vehicle’s current speed, the validity of the speed message [bool], and the raw CAN message from the vehicle CAN.</td>
</tr>
<tr>
<td>parsed_tx/vin_rpt</td>
<td>pacmod_msgs/VinRpt</td>
<td>The configured vehicle’s VIN, make, model, manufacturer, and model year.</td>
</tr>
<tr>
<td>as_tx/vehicle_speed</td>
<td>std_msgs/Float64</td>
<td>The vehicle’s current speed [m/s].</td>
</tr>
<tr>
<td>as_tx/enable</td>
<td>std_msgs/Bool</td>
<td>The current status of the PACMod’s control of the vehicle. If the PACMod is enabled, this value will be true. If it is disabled or overridden, this value will be false.</td>
</tr>
</tbody>
</table>
Subscribed Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>can_tx</td>
<td>can_msgs/Frame</td>
<td>All data published to this topic will be parsed by the PACMod driver. This should be connected to a CAN interface.</td>
</tr>
<tr>
<td>as_rx/accel_cmd</td>
<td>pacmod_msgs/PacmodCmd</td>
<td>Commands the throttle subsystem to seek a specific pedal position [pct - 0.0 to 1.0].</td>
</tr>
<tr>
<td>as_rx/brake_cmd</td>
<td>pacmod_msgs/PacmodCmd</td>
<td>Commands the brake subsystem to seek a specific pedal position [pct - 0.0 to 1.0].</td>
</tr>
<tr>
<td>as_rx/shift_cmd</td>
<td>pacmod_msgs/PacmodCmd</td>
<td>Commands the gear/transmission subsystem to shift to a different gear [enum].</td>
</tr>
<tr>
<td>as_rx/turn_cmd</td>
<td>pacmod_msgs/PacmodCmd</td>
<td>Commands the turn signal subsystem to transition to a given state [enum].</td>
</tr>
<tr>
<td>as_rx/steer_cmd</td>
<td>pacmod_msgs/PositionWithSpeed</td>
<td>Commands the steering subsystem to seek a specific steering wheel angle [rad] at a given rotation velocity [rad/s].</td>
</tr>
<tr>
<td>as_rx/enable</td>
<td>std_msgs/Bool</td>
<td>Enables [true] or disables [false] PACMod's control of the vehicle.</td>
</tr>
</tbody>
</table>

Parameters

~vehicle_type: a string value indicating the type of vehicle to which the PACMod is connected.

Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- INTERNATIONAL_PROSTAR_122
- LEXUS_RX_450H
/pacmod/as_rx/accel_cmd
/pacmod/as_rx/brake_cmd
/pacmod/as_rx/enable
/pacmod/as_rx/shift_cmd
/pacmod/as_rx/steer_cmd
/pacmod/as_rx/turn_cmd
2.5 ROS Driver of Joystick Controller

ROS wiki: http://wiki.ros.org/pacmod_game_control

Source: https://github.com/astuff/pacmod_game_control.git (branch: release)

Parameters

~steering_stick: sets whether the steering command should be controlled by the left or right joystick on a two-stick controller. Valid values are LEFT or RIGHT.

~pacmod_vehicle_type: sets the type of vehicle which is being controlled. This manages vehicle-specific values like the available features and maximum steering angle. Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- LEXUS_RX_450H
- INTERNATIONAL_PROSTAR_122
- VEHICLE_4
- VEHICLE_5
- VEHICLE_6

~controller_type: sets type of controller being used and associated button mappings. Valid values are:

- LOGITECH_F310
- HRI_SAFE_REMOTE
- LOGITECH_G29
- NINTENDO_SWITCH_WIRED_PLUS
- XBOX_ONE

~steering_max_speed: the maximum rotational speed for the steering wheel in rad/s.

~max_veh_speed: the vehicle speed is used to scale the rotation rate of the steering wheel. This value is the speed, in m/s, at which the most restriction is placed on rotation rate. This helps controllability as speed increases.

~accel_scale_val: a scaling value (0.0 - 1.0) for the accelerator. 1.0 = full throttle range. 0.0 = no throttle control.

~brake_scale_val: a scaling value (0.0 - 1.0) for the brake. 1.0 = full braking range. 0.0 = no brake control.
$ source devel/setup.bash
$ roslaunch basic_launch gem_dbw_joystick.launch
2.6 ROS Topics of Polaris GEM e2

Joystick:
/game_control/joy
/game_control/joy/set_feedback

Front RADAR:
/front_radar/front_radar/can_rx
/front_radar/front_radar/can_tx
/front_radar/front_radar/can_viz_markers
/front_radar/front_radar/esr_eth_tx
/front_radar/front_radar/esr_status_1
/front_radar/front_radar/esr_status_2
/front_radar/front_radar/esr_status_3
/front_radar/front_radar/esr_status_4
/front_radar/front_radar/esr_status_5
/front_radar/front_radar/esr_status_6
/front_radar/front_radar/esr_status_7
/front_radar/front_radar/esr_status_8
/front_radar/front_radar/esr_status_9
/front_radar/front_radar/esr_track
/front_radar/front_radar/esr_track_motion_power_group
/front_radar/front_radar/esr_valid_1
/front_radar/front_radar/esr_valid_2
/front_radar/front_radar/esr_vehicle_1
/front_radar/front_radar/esr_vehicle_2
/front_radar/front_radar/esr_vehicle_3
/front_radar/front_radar/esr_vehicle_4
/front_radar/front_radar/esr_vehicle_5
/front_radar/front_radar/eth_viz_markers
/front_radar/front_radar/objects
/front_radar/front_radar/radar_tracks
/front_radar/front_radar/vehicle_motion

LiDAR:
/lidar1/lidar1_nodelet_manager/bond
/lidar1/lidar1_nodelet_manager_cloud/parameter_descriptions
/lidar1/lidar1_nodelet_manager_cloud/parameter_updates
/lidar1/lidar1_nodelet_manager_driver/parameter_descriptions
/lidar1/lidar1_nodelet_manager_driver/parameter_updates
/lidar1/lidar1_nodelet_manager_laserscan/parameter_descriptions
/lidar1/lidar1_nodelet_manager_laserscan/parameter_updates
/lidar1/scan
/lidar1/velodyne_packets
/lidar1/velodyne_points
PACMod:

/pacmod/as_rx/accel_cmd
/pacmod/as_rx/brake_cmd
/pacmod/as_rx/enable
/pacmod/as_rx/headlight_cmd
/pacmod/as_rx/horn_cmd
/pacmod/as_rx/shift_cmd
/pacmod/as_rx/steer_cmd
/pacmod/as_rx/turn_cmd
/pacmod/as_rx/wiper_cmd
/pacmod/as_tx/enable
/pacmod/as_tx/vehicle_speed
/pacmod/can_rx
/pacmod/can_tx
/pacmod/parsed_tx/accel_rpt
/pacmod/parsed_tx/brake_rpt
/pacmod/parsed_tx/brake_rpt_detail_1
/pacmod/parsed_tx/brake_rpt_detail_2
/pacmod/parsed_tx/brake_rpt_detail_3
/pacmod/parsed_tx/global_rpt
/pacmod/parsed_tx/shift_rpt
/pacmod/parsed_tx/steer_rpt
/pacmod/parsed_tx/steer_rpt_detail_1
/pacmod/parsed_tx/steer_rpt_detail_2
/pacmod/parsed_tx/steer_rpt_detail_3
/pacmod/parsed_tx/turn_rpt
/pacmod/parsed_tx/vehicle_speed_rpt
/pacmod/parsed_tx/vin_rpt

GNSS & INS:

/novatel/bestpos
/novatel/bestxyz
/novatel/corrimudata
/novatel/fix
/novatel/gpgga
/novatel/gprmc
/novatel/gps
/novatel/gps_sync
/novatel/imu
/novatel/inscov
/novatel/inspva
/novatel/inspvax
/novatel/insstdev
ZED2 Stereo Camera:

/zed2/joint_states
/zed2/zed_node/atm_press
/zed2/zed_node/confidence/confidence_map
/zed2/zed_node/depth/camera_info
/zed2/zed_node/depth/depth_registered
/zed2/zed_node/depth/depth_registered/compressed
/zed2/zed_node/depth/depth_registered/compressed/parameter_descriptions
/zed2/zed_node/depth/depth_registered/compressed/parameter_updates
/zed2/zed_node/depth/depth_registered/compressedDepth
/zed2/zed_node/depth/depth_registered/compressedDepth/parameter_descriptions
/zed2/zed_node/depth/depth_registered/compressedDepth/parameter_updates
/zed2/zed_node/depth/depth_registered/theora
/zed2/zed_node/depth/depth_registered/theora/parameter_descriptions
/zed2/zed_node/depth/depth_registered/theora/parameter_updates
/zed2/zed_node/disparity/disparity_image
/zed2/zed_node/imu/data
/zed2/zed_node/imu/data_raw
/zed2/zed_node/imu/mag
/zed2/zed_node/left/camera_info
/zed2/zed_node/left/image_rect_color
/zed2/zed_node/left/image_rect_color/compressed
/zed2/zed_node/left/image_rect_color/compressed/parameter_descriptions
/zed2/zed_node/left/image_rect_color/compressed/parameter_updates
/zed2/zed_node/left/image_rect_color/compressedDepth
/zed2/zed_node/left/image_rect_color/compressedDepth/parameter_descriptions
/zed2/zed_node/left/image_rect_color/compressedDepth/parameter_updates
/zed2/zed_node/left/image_rect_color/theora
/zed2/zed_node/left/image_rect_gray
/zed2/zed_node/left/image_rect_gray/compressed
/zed2/zed_node/left/image_rect_gray/compressed/parameter_descriptions
/zed2/zed_node/left/image_rect_gray/compressed/parameter_updates
/zed2/zed_node/left/image_rect_gray/compressedDepth
/zed2/zed_node/left/image_rect_gray/compressedDepth/parameter_descriptions
/zed2/zed_node/left/image_rect_gray/compressedDepth/parameter_updates
/zed2/zed_node/left/image_rect_gray/theora
/zed2/zed_node/left_raw/camera_info
/zed2/zed_node/left_raw/image_raw_color
/zed2/zed_node/left_raw/image_raw_color/compressed
/zed2/zed_node/left_raw/image_raw_color/compressed/parameter_descriptions
/zed2/zed_node/left_raw/image_raw_color/compressed/parameter_updates
ROS rqt_graph
2.7 Demo of Pure Pursuit Tracker on GNSS Waypoints

GitHub link: https://github.com/hangcui1201/POLARIS_GEM_e2_Real
Demo link: https://youtu.be/8I52buLR1zU

$ source devel/setup.bash
$ rosrun gem_gnss_control gem_gnss_tracker_pp.py
2.8 Demo of Stanley Tracker on GNSS-RTK Waypoints

GitHub link: https://github.com/hangcui1201/POLARIS_GEM_e2_Real
Demo link: https://youtu.be/DItwU_8GVHI

```
$ source devel/setup.bash
$ roslaunch basic_launch gem_pacmod_control.launch

$ source devel/setup.bash
$ rosrun gem_gnss_control gem_gnss_tracker_stanley_rtk.py
```
2.9 Coming more ...
3. Polaris GEM e2 ROS - Simulator

3.1 Introduction

GitHub link: https://github.com/hangcui1201/POLARIS_GEM_e2_Simulator

GEM vehicle with top 3D LiDAR

```
$ source devel/setup.bash
$ roslaunch gem_launch gem_init.launch
```
3.2 Launch the Simulator

Track1 Environment

$ cd ~/demo_ws
$ source devel/setup.bash
$ roslaunch gem_launch gem_init.launch world_name:="track1.world"

$ source devel/setup.bash
$ roslaunch gem_launch gem_sensor_info.launch
Track2 Environment

$ source devel/setup.bash
$ roslaunch gem_launch gem_init.launch world_name:="track2.world" y=-98.5
Highbay Environment

$ source devel/setup.bash
$ roslaunch gem_launch gem_init.launch world_name:="highbay_track.world" x:=-1.5 y:=-21
3.3 Demo of Pure Pursuit & Stanley Controllers

Demo of Pure Pursuit Controller in Track1 Environment

$ source devel/setup.bash
$ rosrunc gem_pure_pursuit_sim pure_pursuit_sim.py
Demo of Stanley Controller in Track1 Environment

$ source devel/setup.bash
$ rosrun gem_stanley_sim stanley_sim.py
3.4 Coming more
4. **Polaris GEM e2 - Operation**

4.1 **Power of Computer & Vehicle**

(1) Unplug the power cord of Polaris GEM e2

(2) Connect battery of computer on the passenger's side and switch on
(3) Switch on the battery of sensors under the driver’s seat

(4) Turn on vehicle by using the key, the computer should also be turned on automatically
(5) Remove the chokes and drive the vehicle outside

(6) When finishing using the Polaris GEM e2, do reverse steps from (5) to (1)

(7) The battery of the computer can be charged as below
4.2 Launch of ROS Programs

$ cd ~/demo_ws/
$ catkin_make

$ source devel/setup.bash
$ roslaunch basic_launch gem_sensor_init.launch

$ source devel/setup.bash
$ roslaunch basic_launch gem_dbw_joystick.launch
Section 2.7: Demo of Pure Pursuit Tracker on GNSS Waypoints

Section 2.8: Demo of Stanley Track on GNSS-RTK Waypoints
4.3 Coming more …