
C H A P T E R 2

Cameras

2.1 CAMERAS

2.1.1 The Pinhole Camera

A pinhole camera is a light-tight box with a very small hole in the front (Figure 2.1).
Think about a point on the back of the box. The only light that arrives at that
point must come through the hole, because the box is light-tight. If the hole is very
small, then the light that arrives at the point comes from only one direction. This
means that an inverted image of a scene appears at the back of the box (Figure 2.1).
An appropriate sensor (CMOS sensor; CCD sensor; light sensitive film) at the back
of the box will capture this image.

Pinhole

X

Y

Z

(X, Y, Z)

z=f

(fX/Z, fY/Z, f)

camera center

focal point

image plane

FIGURE 2.1: The pinhole imaging model. On the left, a light-tight box with a pinhole
in it views an object. The only light that a point on the back of the box sees comes
through the very small pinhole, so that an inverted image is formed on the back face
of the box. On the right, the usual geometric abstraction. The box doesn’t affect
the geometry, and is omitted. The pinhole has been moved to the back of the box, so
that the image is no longer inverted. The image is formed on the plane z = f , by
convention. Notice the coordinate system is left-handed, because the camera looks
down the z-axis. This is because most people’s intuition is that z increases as one
moves into the image. The text provides some more detail on this point.

Pinhole camera models produce an upside-down image. This is easily dealt
with in practice (turn the image the right way up). An easy way to account for this
is to assume the sensor is in front of the hole, so that the image is not upside-down.
One could not build a camera like this (the sensor blocks light from the hole) but it
is a convenient abstraction. There is a standard model of this camera, in a standard
coordinate system. The coordinate system is left-handed even though coordinate
systems in 3D are usually right-handed coordinate systems. This is because most

12

Section 2.1 Cameras 13

people’s intuition is that z increases as one moves into the image. The pinhole –
usually called the focal point – is at the origin, and the sensor is on the plane z = f .
This plane is the image plane, and f is the focal length. We ignore any camera
body and regard the image plane as infinite.

Under this highly abstracted camera model, almost any point in 3D will map
to a point in the image plane. We image a point in 3D by constructing a ray through
the 3D point and the focal point, and intersecting that ray with the image plane.
The focal point has an important, distinctive, property: It cannot be imaged, and
it is the only point that cannot be imaged.

Similar triangles yields that the point (X,Y, Z) in 3D is imaged to

(fX/Z, fY/Z, f)

on the sensor (Figure 2.1). Notice that the z-coordinate is the same for each point
on the image plane, so it is quite usual to ignore it and use the model

(X,Y, Z) → (fX/Z, fY/Z).

The projection process is known as perspective projection. The point where the z-
axis intersects the image plane (equivalently, where the ray through the focal point
perpendicular to the image plane intersects the image plane) is the camera center.
Remarkably, in almost every publication in computer vision the camera is expressed
in left-handed coordinates and everything else works in right-handed coordinates.
The exercises demonstrate that there is no real difficulty here.

Remember this: Most practical cameras can be modelled as a pinhole
camera. A pinhole camera with focal length f maps

(X,Y, Z) → (fX/Z, fY/Z).

Figure 2.1 shows important terminology (focal point; image plane; camera
center).

2.1.2 Perspective Effects

Perspective projection has a number of important properties, summarized as:

� lines project to lines;

� more distant objects are smaller;

� lines that are parallel in 3D meet in the image;

� planes have horizons;

� planes image as half-planes.

14 Chapter 2 Cameras

X

Y

Z

z=-f

X

Y

Z

z=-f

FIGURE 2.2: Perspective projection maps almost any 3D line to a line in the image
plane (left). Some rays from the focal point to points on the line are shown as
dotted lines. The family of all such rays is a plane, and that plane must intersect
the image plane in a line as long as the 3D line does not pass through the focal
point. On the right, two 3D objects viewed in perspective projection; the more
distant object appears smaller in the image.

Lines project to lines: Almost every line in 3D maps to a line in the image.
You can see this by noticing that the image of the 3D line is formed by intersecting
rays from the focal point to each point on the 3D line with the image plane. But
these rays form a plane, so we are intersecting a plane with the image plane, and so
obtain a line (Figure 2.2). The exceptions are the 3D lines through the focal point
– these project to points.

More distant objects are smaller: The further away an object is in 3D,
the smaller the image of that object, because of the division by Z (Figure 2.2).

X

Y

Z

X

Y

Z

vanishing point

vanishing point

FIGURE 2.3: Perspective projection maps a set of parallel lines to a set of lines that
meet in a point. On the left, a set of lines parallel to the z-axis, with “railway
sleepers” shown. As these sleepers get further away, they get smaller in the image,
meaning the projected lines must meet. The vanishing point (the point where they
meet) is obtained by intersecting the ray parallel to the lines and through the focal
point with the image plane. On the right, a different pair of parallel lines with a
different vanishing point. The figure establishes that, if there are more than two
lines in the set of parallel lines, all will meet at the vanishing point.

Section 2.1 Cameras 15

Lines that are parallel in 3D meet in the image: Now think about a
set of infinitely long parallel railroad tracks. The sleepers supporting the tracks are
all the same size. Distant sleepers are smaller than nearby sleepers, and arbitrarily
distant sleepers are arbitrarily small. This means that parallel lines will meet in the
image. The point at which the lines in a collection of parallel lines meet is known
as the vanishing point for those lines (Figure 2.3). The vanishing point for a set
of parallel lines can be obtained by intersecting the ray from the focal point and
parallel to those lines with the image plane (Figure 2.3).

X

Y

Z

X

Y

Z

horizon horizon

x

FIGURE 2.4: Left shows a plane in 3D (in this case, y = −1). The intersection of
the plane through the focal point parallel to the 3D plane (in this case, y = 0) and
the image plane, forms an image line called the horizon. This line cuts the image
plane into two parts. Construct the ray through the focal point and a point x in the
image plane. For x on one side of the horizon, this ray will intersect the 3D plane
in the half space z > 0 (and so in front of the camera, shown here). If x is on
the other side of the horizon, the intersection will be in the half space z < 0 (and
so behind the camera, where it cannot be seen). Right shows a different 3D plane
with a different horizon. The gradients on the planes indicate roughly where points
on the 3D plane appear in the image plane (light points map to light, dark to dark).

Planes have horizons: Now think about the image of a plane. As Figure 2.5
shows, the plane through the focal point and parallel to that plane produce a line
in the image, known as the horizon of the plane.

Planes image as half-planes: For an abstract perspective camera, any
point on the plane can be imaged to a point on the image plane. In practical
cameras, we cannot image points that lie behind the camera in 3D. Now cast a ray
through the focal point and some point x in the image plane. If x is on one side of
the horizon, the ray will hit the plane in the z > 0 half space and so we can see the
plane. If it is on the other side, it will hit the plane in the z < 0 half space, so we
cannot see the plane.

16 Chapter 2 Cameras

Remember this: Under perspective projection:

� points project to points;

� lines project to lines;

� more distant objects are smaller;

� lines that are parallel in 3D meet in the image;

� planes have horizons;

� planes image as half-planes.

2.1.3 Scaled Orthographic Projection and Orthographic Projection

Under some circumstances, perspective projection can be simplified. Assume the
camera views a set of points which are close to one another compared with the
distance to the camera. Write Xi = (Xi, Yi, Zi) for the i’th point, and assume that
Zi = Z(1+ϵi), where ϵi is quite small. In this case, the distance to the set of points
is much larger than the relief of the points, which is the distance from nearest to
furthest point. The i’th point projects to (fXi/Zi, fYi/Zi), which is approximately
(f(Xi/Z)(1 − ϵi), f(Yi/Z)(1 − ϵi)). Ignoring ϵi because it is small, we have the
projection model

(X,Y, Z) → (f/Z)(X,Y) = s(X,Y).

This model is usually known as scaled orthograpic projection. The model applies
quite often. One important example is pictures of people. Very often, all body
parts are roughly the same distance from the camera — think of a side view of a
pedestrian seen from a motor car. Scaled orthographic projection applies in such
cases. It is not always an appropriate model. For example, when a person is
holding up a hand to block the camera’s view, perspective effects can be significant
(Figure ??).

Occasionally, it is useful to rescale the camera (or assume that f/Z = 1),
yielding (X,Y, Z) → (X,Y). This is known as orthographic projection.

Remember this: Scaled orthographic projection maps

(X,Y, Z) → s(X,Y)

where s is some scale. The model applies when the distance to the points
being viewed is much greater than their relief. Many views of people have
this property.

Section 2.1 Cameras 17

FIGURE 2.5: The pedestrian on the left is viewed from some way away, so the dis-
tance to the pedestrian is much larger than the change in depth over the pedestrian.
In this case, which is quite common for views of people, scaled orthography will ap-
ply. The celebrity on the right is holding a hand up to prevent the camera viewing
their face; the hand is quite close to the camera, and the body is an armslength
away. In this case, perspective effects are strong. The hand looks big because it is
close, and the head looks small because it is far.

2.1.4 Lenses

One practical version of a pinhole camera is a camera obscura – the box is built as
a room, and you can stand in the room and see the view on the back wall (some ex-
amples are at https://www.atlasobscura.com/lists/camera-obscura-places;
the internet yields amusing disputes about the correct plural form of the term).
You can also build a simple pinhole camera with a matchbox, some tape, a pin, and
some light sensitive film do the trick. Getting good images takes trouble, however.

A large hole in front of the camera will cause the image at the back to be
brighter, but blurrier, because each point on the sensor will average light over all
directions that happen to go through the hole. If the hole is smaller, the image will
get sharper, but darker. In practical cameras, achieving an image that is both bright
and focused is the job of the lens system. There may be one or several lenses that
light passes through before reaching the sensor at the back of the camera. Each of
these lenses is built from refracting materials. The shape and position of the lenses,
together with the refractive index of the materials they are built of, determine the
path that light follows through the lens system. Generally, the lens system is
designed to collect as much light as possible at the input and produce a focused
image on the image plane. Remarkably, the many or most lens systems result
in an imaging geometry that can be modelled with a pinhole camera model, and
lens system effects are ignored in all but quite specialized applications of computer
vision.

Lens systems are designed and modelled using geometric optics, but lens de-
signs always involve compromises. The result is that cameras with lenses differ
from pinhole cameras in some ways that are worth knowing about, although they
are not always important. First, in an abstract pinhole camera, all objects at what-

18 Chapter 2 Cameras

ever distance are in focus. Geometric optics means that a lens with this property
admits very little light, so it is common to work with cameras that have a limited
depth of field – the range of distances to the camera over which objects are in fo-
cus on the image plane. Second, manufacturing difficulties and cost considerations
mean that lenses will have various aberrations. The net effect of most aberrations
is a tendency to defocus some objects under some circumstances, but chromatic
aberrations can cause colors to be less crisp and objects to have “halos” of color.
Chromatic aberration occurs because light of different wavelengths takes slightly
different paths through a refracting object. Various lens coatings can correct chro-
matic aberration, but the resulting lens system will be more expensive. Third, in
most lens systems, the periphery of the image tends to be brighter than it would
be in a pure pinhole camera. For more complex lens systems, an effect in the lens
known as vignetting can darken the periphery somewhat. Finally, lenses may cause
geometric distortions of the image. The most noticeable effect of these distortions
is that straight lines in the world may project to curves in the image. Most com-
mon is barrel distortion, where a square is imaged as a bulging barrel; pincushion
distortion, where the square bulges in rather than out, can occur (Figure ??).

Neutral grid Barrel distortion Pincushion distortion

FIGURE 2.6: On the left a neutral grid observed in a non-distorting lens (and viewed
frontally to prevent any perspective distortion). Center shows the same grid, viewed
in a lens that produces barrel distortion. Right, the same grid, now viewed in a
lens that produces pincushion distortion.

2.2 SIMPLE PROJECTIVE GEOMETRY

Draw a pattern on a plane, then view that pattern with a perspective camera. The
distortions you observe are more interesting than are predicted by simple rotation,
translation and scaling. For example, if you drew parallel lines, you might see lines
that intersect at a vanishing point – this doesn’t happen under rotation, translation
and scaling. Projective geometry can be used to describe the set of transformations
produced by a perspective camera.

2.2.1 Homogeneous Coordinates and Projective Spaces

The coordinates that every reader will be most familiar with are known as affine
coordinates. In affine coordinates, a point on the plane is represented by 2 numbers,
a point in 3D is represented with 3 numbers, and a point in k dimensions is rep-

Section 2.2 Simple Projective Geometry 19

resented with k numbers. Now adopt the convention that a point in k dimensions
is represented by k+ 1 numbers not all of which are zero. Two representations X1

and X2 represent the same point (write X1 ≡ X2) if there is some λ ̸= 0 so that

X1 = λX2.

These coordinates are known as homogeneous coordinates, and will offer a particu-
larly convenient representation of perspective projection.

Remember this: In homogeneous coordinates, a point in a k dimen-
sional space is represented by k + 1 coordinates (X1, . . . , Xk+1), together
with the convention that

(X1, . . . , Xk+1) ≡ λ(X1, . . . , Xk+1) for λ ̸= 0.

The space represented by k+1 homogeneous coordinates is different from the
space represented by k affine coordinates in important but subtle ways. We start
with a 1D space. In homogenous coordinates, we represent a point on a 1D space
with two coordinates, so (X1, X2) (by convention, homogeneous coordinates are
written with capital letters). Two sets of homogeneous coordinates (U1, U2) and
(V1, V2) represent different points if there is no λ ̸= 0 such that λ(U1, U2) = (V1, V2).
Now consider the set of all the distinct points, which is known as the projective line.
Any point on an ordinary line (the affine line) has a corresponding point on the
projective line. In affine coordinates, a point on the affine line is given by a single
coordinate x. This point can be identified with the point on the projective line
given by (X1, X2) = λ(x, 1) (for λ ̸= 0) in homogeneous coordinates. Notice that
the projective line has an “extra point” – (X1, 0) are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

Example: 2.1 Seeing the point at infinity

You can actually see the point at infinity. Recall that lines that are
parallel in the world can intersect in the image at a vanishing point.
This vanishing point turns out to be the image of the point “at infinity”
on the parallel lines. For example, on the plane y = −1 in the camera
coordinate system, draw two lines (1,−1, t) and (−1,−1, t) (these lines
are in Figure 25.2). Now these lines project to (f1/t, f(−1/t), f) and
(f(−1/t), f(−1/t), f) on the image plane, and their vanishing point is
(0, 0, f). This vanishing point occurs when the parameter t reaches
infinity. The exercises work this example in homogeneous coordinates.

There isn’t anything special about the point on the projective line given by
(X1, 0). You can see this by identifying x on the affine line with (X1, X2) = λ(1, x)

20 Chapter 2 Cameras

(for λ ̸= 0). Now (X1, 0) is a point like any other, and (0, X2) is “at infinity”. A
little work establishes that there is a 1-1 mapping between the projective line and
a circle (exercises).

Higher dimensional spaces follow the same pattern. In affine coordinates, a
point in a k dimensional affine space (eg an affine plane; affine 3D space; etc)
is given by k coordinates (x1, x2, . . . , xk). The space described by k + 1 homo-
geneous coordinates is a projective space (a projective plane; projective 3D space;
etc). A point (x1, x2, . . . , xk) in a k dimensional affine space can be identified with
(X1, X2, . . . , Xk+1) = λ(x1, x2, . . . , xk, 1) (for λ ̸= 0) in the k dimensional projec-
tive space. The points in the projective space given by (X1, X2, . . . , 0) have no
corresponding points in the affine space. Notice that this set of points is a k − 1
dimensional space in homogeneous coordinates. When k = 2, this set is a projective
line, and is referred to as the line at infinity, and the whole space is known as the
projective plane. As the exercises show, you can see the line at infinity: the horizon
of a plane in the image is actually the image of the line at infinity in that plane.

When k = 3, this set is itself a projective plane, and is known as the plane
at infinity; the whole space is sometimes known as projective 3-space. Notice this
means that 3D projective space is obtained by “sewing” a projective plane to the
3D affine space we are accustomed to. The piece of the projective space “at infinity”
isn’t special, using the same argument as above. The particular line (resp. plane)
that is “at infinity” is chosen by the homogeneous coordinate you divide by. There
is an established convention in computer vision of dividing by the last homogeneous
coordinate and talking about the line at infinity and the plane at infinity.

Remember this: The k dimensional space represented by k + 1 ho-
mogeneous coordinates is a projective space. You can represent a point
(x1, . . . , xk in affine k space in this projective space as (x1, . . . , xk, 1). Not
every point in the projective space can be obtained like this – the points
(X1, . . . , Xk, 0) are “extra”. These points form a projective k − 1 space
which is thought of as being “at infinity”. Important cases are k = 1 (the
projective line with a point at infinity); k = 2 (the projective plane with a
line at infinity).

2.2.2 Lines and Planes in Projective Space

Lines on the affine plane form one important example of homogeneous coordinates.
A line is the set of points (x, y) where ax+ by+ c = 0 . We can use the coordinates
(a, b, c) to represent a line. If (d, e, f) = λ(a, b, c) for λ ̸= 0 (which is the same as
(d, e, f) ≡ (a, b, c)), then (d, e, f) and (a, b, c) represent the same line. This means
the coordinates we are using for lines are homogeneous coordinates, and the family
of lines in the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist on using
(u, v, 1) = (a/c, b/c, 1) to represent lines, the corresponding equation of the line

Section 2.2 Simple Projective Geometry 21

would be ux + vy + 1 = 0. But no such line can pass through the origin – our
representation has left out every line through the origin.

Lines on the projective plane work rather like lines on the affine plane. Write
the points on our line using homogeneous coordinates to get

(x, y, 1) = (X1/X3, X2/X3, 1)

or equivalently (X1, X2, X3) where X1 = xX3, X2 = yX3. Substitute to find the
equation of the corresponding line on the projective plane, aX1 + bX2 + cX3 = 0,
or aTX = 0. There is an interesting point here. A set of three homogenous
coordinates can be used to describe either a point on the projective plane or a line
on the projective plane.

Remember this: A line on the projective plane is the set of points X
such that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
line.

Remember this: Write P1 and P2 for two points on the projective
plane that are represented in homogeneous coordinates and are different.
From the exercises, the line through these two points is given by

a = P1 ×P2.

From the exercises, a parametrization of this line is given by

UP1 + VP2.

Planes in projective 3-space work rather like lines on the projective plane.
The locus of points (x, y, z) where ax+ by+ cz + d = 0 is a plane in affine 3-space.
Because (a, b, c, d) and λ(a, b, c, d) give the same plane, we have that (a, b, c, d) are
homogeneous coordinates for a plane in 3D. We can write the points on the plane
using homogeneous coordinates to get

(x, y, z, 1) = (X1/X4, X2/X4, X3/X4, 1)

or equivalently

(X1, X2, X3, X4) where X1 = xX4, X2 = yX4, X3 = zX4.

Substitute to find the equation of the corresponding plane in projective 3-space
aX1 + bX2 + cX3 + dX4 = 0 or aTX = 0. A set of four homogenous coordinates

22 Chapter 2 Cameras

can be used to describe either a point in projective 3-space or a plane in projective
3-space.

Remember this: A plane in projective 3D is the set of points X such
that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
plane.

Remember this: Write P1, P2 and P3 for three points in projective
3D that are represented in homogeneous coordinates, are different points,
and are not collinear. From the exercises, the plane through these points is
given by

a = NullSpace

 PT
1

PT
2

PT
3

 .

From the exercises, a parametrization of this plane is given by

UP1 + VP2 +WP3.

2.2.3 Homographies

Write X = (X1, X2, X3) for the coordinates of a point on the projective plane. Now
consider V = MX, where M is a 3× 3 matrix with non-zero determinant. We can
interpret V as a point on the projective plane, and in fact M is a mapping from
the projective plane to itself. There is something to check here. Write M(X) for
the point that X maps to, etc. Because X ≡ λX (for λ ̸= 0), we must have that
M(X) ≡ M(λX) otherwise one point would map to several points. But

M(X) = MX ≡ λMX = M(λX)

so M is a mapping. Such mappings are known as homographies. You should check
thatM(−1) is the inverse ofM, and is a homography. You should check thatM and
λM represent the same homography. Homographies are interesting to us because
any view of a plane by a perspective (or orthographic) camera is a homography,
and a variety of useful tricks rest on understanding homographies.

Any homography will map every line to a line. Write a for the line in the
projective plane whose points satisfy aTX = 0. Now apply the homography M to
those points to get V = MX. Notice that

aTM(−1)V = aTX = 0,

Section 2.3 Camera Matrices and Transformations 23

so that the line a transforms to the line M(−T)a. Homographies are easily inverted.

Remember this: A homography is a mapping from the projective plane
to the projective plane. Assume M is a 3×3 matrix with non-zero determi-
nant; then the homography represented by M maps the point with homoge-
neous coordinates X to the point with homogeneous coordinates MX. The
two matrices M and λM represent the same homography, and the inverse
of this homography is represented by M−1. The homography represented by
M will map the line represented by a to the line represented by M−Ta.

2.3 CAMERA MATRICES AND TRANSFORMATIONS

2.3.1 Perspective and Orthographic Camera Matrices

In affine coordinates in the camera coordinate system of Figure 25.2, we could write
perspective projection as (X,Y, Z) → (fX/Z, fY/Z). Now write the 3D point in
homogeneous coordinates, so

X = (X1, X2, X3, X4) where X1 = XX4, etc.

Write the point in the image plane in homogeneous coordinates as well, to obtain

I = (I1, I2, I3) where I1 = f(X/Z)I3 and I2 = f(Y/Z)I3.

So we could use

I = (fX, fY, Z) ≡ (fX/Z, fY/Z, 1) ≡ (fX1/X4, fX2/X4, X3/X4) ≡ (fX1, fX2, X3).

Notice that (X,Y, Z) is a natural choice of homogeneous coordinates for the point
in the image plane. This means that, in homogeneous coordinates, we can represent
perspective projection as

(X1, X2, X3, X4) → (fX1, fX2, X3) ≡ (X1, X2, (1/f)X3)

or I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 1/f 0

X1

X2

X3

X4

where the matrix is known as the perspective camera matrix (write Cp). Notice
that this representation preserves the property that the focal point of the camera
cannot be imaged, and is the only such point. The focal point can be represented
in homogeneous coordinates by (0, 0, 0, T), for T ̸= 0. This maps to (0, 0, 0), which
is meaningless in homogeneous coordinates. You should check no other point maps
to (0, 0, 0). Notice also that changing f just scales the image, as you would expect.
It is quite common to absorb the effects of f into the scaling caused by change to
camera coordinates, which is equivalent to assuming that f = 1.

24 Chapter 2 Cameras

Remember this: The perspective camera matrix is

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0

 .
It is quite common to assume f = 1.

In affine coordinates, in the right coordinate system and assuming that the
scale is chosen to be one, scaled orthographic perspective can be written as (X,Y, Z) →
(X,Y). Following the argument above, we obtain in homogeneous coordinates

 I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 0 1

X1

X2

X3

X4

where the matrix is known as the orthographic camera matrix (write Co).

Remember this: The orthographic camera matrix is

Co =

 1 0 0 0
0 1 0 0
0 0 0 1

2.3.2 Cameras in World Coordinates

The camera matrix describes a perspective (resp. orthographic) projection for a
camera in a specific coordinate system – the focal point is at the origin, the camera
is looking down the z-axis, and so on. In the more general case, the camera is placed
somewhere in world coordinates looking in some direction, and we need to account
for this. Furthermore, the camera matrix assumes that points in the camera are
reported in a specific coordinate system. The pixel locations reported by a practical
camera might not be in that coordinate system. For example, many cameras place
the origin at the top left hand corner. We need to account for this effect, too.

Section 2.3 Camera Matrices and Transformations 25

X

Y

Z

(u, v, w)

U V

W

T

S

(s, t)

FIGURE 2.7: A perspective camera (in its own coordinate system, given by X, Y
and Z axes) views a point in world coordinates (given by (u, v, w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u, v, w) to (s, t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.

A general perspective camera transformation can be written as:

 I1
I2
I3

 =

Transformation
mapping image
plane coords to
pixel coords

 Cp

Transformation
mapping world
coords to camera

coords

X1

X2

X3

X4

= TiCpTe

X1

X2

X3

X4

The parameters of Ti are known as camera intrinsic parameters or camera intrin-
sics, because they are part of the camera, and typically cannot be changed. The
parameters of Te are known as camera extrinsic parameters or camera extrinsics,
because they can be changed.

26 Chapter 2 Cameras

2.3.3 Camera Extrinsic Parameters

The transformation Te represents a rigid motion (equivalently, a Euclidean transfor-
mation, which consists of a 3D rotation and a 3D translation). In affine coordinates,
any Euclidean transformation maps the vector x to

Rx+ t

where R is an appropriately chosen 3D rotation matrix (check the endnotes if
you can’t recall) and t is the translation. Any map of this form is a Euclidean
transformation. You should confirm the transformation that maps the vector X
representing a point in 3D in homogeneous coordinates to

λ

[
R t
0T 1

]
X

represents a Euclidean transformation, but in homogeneous coordinates. It follows
that any map of this form is a Euclidean transformation. Because Te represents
a Euclidean transformation, it must have this form. The exercises explore some
properties of Te.

2.3.4 Camera Intrinsic Parameters

Camera intrinsic parameters must model a possible coordinate transformation in
the image plane from projected world coordinates (write (x, y)) to pixel coordinates
(write (u, v)), together with a possible change of focal length. This change is caused
by the image plane being further away from, or closer to, the focal point. The
coordinate transformation is not arbitrary (Figure 2.8). Typically, the origin of the
pixel coordinates is usually not at the camera center. Write ∆x for the step in the
image plane from pixel (i, j) to (i + 1, j) and ∆y for the step to (i, j + 1). For
many cameras, ∆x is different from ∆y – such cameras have non-square pixels, and
∆x/∆y is known as the aspect ratio of the pixel. Furthermore, ∆x is not usually
one unit in world coordinates.

The transformation Ti is typically parametrized as as k cx
0 s cy
0 0 1/f

 .
Here (cx, cy) is the location of the camera center in pixel coordinates; s is a scale,
and 1/s is the size of the spacing between pixels in world units; a is the aspect ratio
of the pixels; k is the skew; and f is the focal length of the camera (Figure 2.8).
The parameters cx, cy, s, a and k can often be obtained from camera manufacturer
literature, or can be calibrated. Notice there is an interaction between 1/f and
s. When there is no need to distinguish between scaling caused by pixel size and
scaling caused by change in focal length, Ti can be parametrized as as k cx

0 s cy
0 0 1

 .

Section 2.3 Camera Matrices and Transformations 27

X

Y

Z C , Cx xy

y
u

v

FIGURE 2.8: The camera reports pixel values in pixel coordinates, which are not
the same as world coordinates. The camera intrinsics represent the transformation
between world coordinates and pixel coordinates. On the left, a camera (as in
Figure 2.1), with the camera coordinate system shown in heavy lines. On the right,
a more detailed view of the image plane. The camera coordinate axes are marked
(u, v) and the image coordinate axes (x, y). It is hard to determine f from the
figure, and we will conflate scaling due to f with scaling resulting from the change
to camera coordinates. The camera coordinate system’s origin is not at the camera
center, so (cx, cy) are not zero. I have marked unit steps in the coordinate system
with ticks. Notice that the v-axis is not perpendicular to the u-axis (so k - the skew
- is not zero). Ticks in the u, v axes are not the same distance apart as ticks on the
x, y axes, meaning that s is not one. Furthermore, u ticks are further apart than v
ticks, so that a is not one.

Remember this: A general perspective camera can be written in
homogeneous coordinates as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te

X1

X2

X3

X4

=

 as k cx
0 s cy
0 0 1/f

 1 0 0 0
0 1 0 0
0 0 −1 0

[R t
0T 1

]
X1

X2

X3

X4

A common alternative parametrization applies when there is no need to
distinguish between scaling caused by change of focal length and scaling
resulting from the change to camera coordinates. This is:

 I1
I2
I3

 =

 as k cx
0 s cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

[R t
0T 1

]
X1

X2

X3

X4

where R is a rotation matrix.

28 Chapter 2 Cameras

By the arguments above, a general orthographic camera transformation can
be written as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te

X1

X2

X3

X4

PROBLEMS

2.1. We construct the vanishing point of a pair of parallel lines in homogeneous
coordinates.
(a) Show that the set of points in homogeneous coordinates in 3D given by

(s,−s, t, s) (for s, t parameters) form a line in 3D.
(b) Now image the line (s,−s, t, s) in 3D in a standard perspective camera

with focal length 1. Show the result is the line (s,−s, t) in the image
plane.

(c) Now image the line (−s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (−s,−s, t) in the image
plane.

(d) Show that the lines (s,−s, t) and (−s,−s, t) intersect in the point (0, 0, t).

2.2. We construct the horizon of a plane for a standard perspective camera with
focal length 1. Write a = [a1, a2, a3, a4]

T for the coefficients of the plane, so
that for every point X on the plane we have aTX = 0.
(a) Show that the plane given by u = [a1, a2, a3, 0] is parallel to the plane

given by a, and passes through (0, 0, 0, 1).
(b) Write the points on the image plane (u, v, 1) ≡ (U, V,W) in homogeneous

coordinates. Show that the horizon of the plane is the set of points u in
the image plane given by lTu = 0, where l = [a1, a2, a3]

T .

2.3. A pinhole camera with focal point at the origin and image plane at z = f
views two parallel lines u+ tw and v + tw. Write w = [w1, w2, w3]

T , etc.
(a) Show that the vanishing point of these lines, on the image plane, is given

by (f w1
w3

, f w2
w3

).
(b) Now we model a family of pairs of parallel lines, by writing w(r, s) =

ra + sb, for any (r, s). In this model, u + tw(r, s) and v + tw(r, s) are
the pair of lines, and (r, s) chooses the direction. First, show that this
family of vectors lies in a plane. Now show that the vanishing point for
the (r, s)’th pair is (f ra1+sb1

ra3+sb3
, f ra2+sb2

ra3+sb3
).

(c) Show that the family of vanishing points (f ra1+sb1
ra3+sb3

, f ra2+sb2
ra3+sb3

) lies on a

straight line in the image. Do this by constructing c such that cT a =
cTb = 0. Now write (x(r, s), y(r, s)) = (−f ra1+sb1

ra3+sb3
,−f ra2+sb2

ra3+sb3
) and

show that c1x(r, s) + c2y(r, s) + c3 = 0.

2.4. All points on the projective plane with homogeneous coordinates (U, V, 0) lie
“at infinity” (divide by zero). As we have seen, these points form a projective
line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).

(b) A homography M =
[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective plane.

Show that the line whose coefficients are v3 maps to the line at infinity.

Section 2.3 Camera Matrices and Transformations 29

(c) Now write the homography as M =
[
m′

1,m
′
2,m

′
3

]
(so m′ are columns).

Show that the homography maps the points at infinity to a line given in
parametric form as sm′

1 + tm′
2.

(d) Now write n for a non-zero vector such that nTm′
1 = nTm′

2 = 0. Show
that, for any point x on the line given in parametric form as sm′

1 + tm′
2,

we have nTx = 0. Is n unique?
(e) Use the results of the previous subexercises to show that for any given line,

there are some homographies that map that line to the line at infinity.
(f) Use the results of the previous subexercises to show that for any given

line, there are some homographies that map the line at infinity to that
line.

2.5. We will show that there is no significant difference between choosing a right-
handed camera coordinate system and a left-handed camera coordinate system.
Notice that, in a right handed camera coordinate system (where the camera
looks down the negative z-axis rather than the positive z-axis) the image plane
is at z = −f .
(a) Show that, in a right-handed coordinate system, a pinhole camera maps

(X,Y, Z) → (−fX/Z,−fY/Z).

(b) Show that the argument in the text yields a camera matrix of the form

C′p =

 1 0 0 0
0 1 0 0
0 0 −1/f 0

 .

(c) Show that, if one allows the scale in Ti to be negative, one could still use

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0

as a camera matrix.

C H A P T E R 3

Camera Calibration

3.1 A CAMERA AT FIXED HEIGHT

A particularly interesting family of homographies occurs when the camera moves
at fixed height above a ground plane, and the ground plane is at right angles to the
image plane. This is a good model for a camera on (say) an autonomous car or a
taxiing aircraft. Figure 3.1 shows the notation, etc. Here the focal length is f , the
ground plane is the plane y = −h in the camera coordinate system (remember, z
is depth into the scene). Remarkably, we can calibrate the camera with elementary
geometric reasoning in a configuration like this, at least for simple cameras. We
make no attempt to distinguish between scaling caused by the focal length f and
scaling caused by s.

X

Y

Z

z=f

camera center

focal point

image plane

Ground plane

(U, -h, V)

(fU/V, -fh/V, f)

FIGURE 3.1: A perspective camera with its image plane at right angles to a ground
plane (y = −h), imaging a point on the ground plane.

3.1.1 Geometry

Then the point (u,−h, v) on the ground plane intersects the image plane at (fu/v,−fh/v, f).
These are affine coordinates for a point in 3D. Homogeneous coordinates for the
point on the image plane are (fu/v,−fh/v, 1) or equivalently (fu,−fh, v). Simi-
larly, homogeneous coordinates for the point on the ground plane are (u, v, 1).

30

Section 3.1 A Camera at Fixed Height 31

The first step is to simplify notation. Notice that the effect of a change in
focal length f is to scale the image. The camera intrinsics will also scale the image,
and we have no reason to distinguish between scaling due to focal length and that
due to the focal point. As a result, we set f = 1, and let the scaling from camera
intrinsics account for the effects of the focal length.

In this case, the homography from the ground plane to the image is

Tg→i =

 s k cx
0 s cy
0 0 1

 1 0 0
0 0 −h
0 1 0

where the matrix on the left comes from the camera intrinsics, and the matrix on
the right is the mapping from ground plane to image plane. You should check that,
in this geometry, the horizon of the ground plane is horizontal in the image and
passes through cy (Figure 3.1) should help, so we can determine cy from an image.
Write (ix, iy) for the affine coordinates of a point in the image. If we ensure that
the horizon is the line iy = 0 (which we can do by a simple subtraction), then
cy = 0. In these coordinates, we have

Tg→i =

 as k cx
0 s 0
0 0 1

 1 0 0
0 0 −h
0 1 0

 =

 as cx −hk
0 0 −sh
0 1 0

The homography from the image to the ground plane is the inverse, so

Ti→g =

 1
as − k

as2 − cx
as

0 0 1
0 −1

sh 0

 .
The parameters we don’t know here are a, s, k, h and cx. Now imagine we choose
some values – say a = 1, s = 1, k = 0, h = 1, cx = 0. This gives an easy
homography from the image to the ground plane, that is

T
′

i→g =

 1 0 0
0 0 1
0 −1 0

 .
Map from the image to the ground plane using this homography. This will give
us the pattern on the ground plane, but it will be distorted because we used the
wrong values of the parameters. We can ask how the ground plane is distorted by
different choices of parameters. In turn, if we know some properties of the ground
plane pattern we can estimate our unknown parameters to ensure these properties
hold. Write

(gx(ix, iy, a, s, k, h, cx), gy(ix, iy, a, s, k, h, cx), 1)

for the ground plane coordinates of an image plane point whose homogeneous co-
ordinates are (ix, iy, 1). You should check (in the exercises) that gx(ix, iy, a, s, k, h, cx)

gy(ix, iy, a, s, k, h, cx)
1

 =

 h
a −hk

as
cxh
a

0 sh 0
0 0 1

 gx(ix, iy, 1, 1, 0, 1, 0)
gy(ix, iy, 1, 1, 01, 0)

1

 .

32 Chapter 3 Camera Calibration

3.1.2 Calibration

Now assume we have a set of points pi on the ground plane, and we can find the
corresponding points qi on the image plane. Apply the homography T ′

i→g to the

points in the image plane to get ri. The map pi → ri is

Tp→r =

 h
a −hk

as
cxh
a

0 sh 0
0 0 1

[R t
0t 1

]
= TintText

where Text is a rigid motion in the ground plane (we don’t really know that the
focal point is above the origin in the ground plane) and Tint accounts for the fact
that we don’t know the camera calibration either. Notice that Tp→r is an affine
transformation, so we can recover it using procedure 23.1, which will yield a 2× 2
matrix M and a translation vector u.

We cannot recover cxh
a from u because we don’t know what t is. However, we

have

M =

[
h
a −hk

as
0 sh

]
R

and we can factor M using an RQ factorization (see procedure 26.1). Doing so
yields h

a ,
k
s and sh. These are enough for some applications. For example, we may

be able to obtain a from manufacturing specifications, yielding h and so s and k.
Furthermore, this calibration is enough to estimate rigid motion over the ground
plane. For frames n and n+ 1, we compute Text, and the motion over the ground
plane is Text,n+1T

−1
ext,n. Of course, if we move the qi may no longer be visible in

the image. Once we have the camera intrinsics, we do not need them. We could
reconstruct the ground plane pattern in frame n, then reconstruct the ground plane
pattern in frame n+1. The camera movement is the rotation and translation that
make the two patterns line up best. There are a variety of procedures for doing so
(Section 25.2), but the general idea should be clear.

3.2 CAMERA CALIBRATION FROM A 3D REFERENCE

Camera calibration involves estimating the intrinsic parameters of the camera, and
perhaps lens parameters if needed, from one or more images. There are numerous
strategies, all using the following recipe: build a calibration object, where the posi-
tions of some points (calibration points) are known; view that object from one or
more viewpoints; obtain the image locations of the calibration points; and solve an
optimization problem to recover camera intrinsics and perhaps lens parameters. As
one would expect, much depends on the choice of calibration object. If all the cal-
ibration points sit on an object, the extrinsics will yield the pose (for position and
orientation) of the object with respect to the camera. We use a two step procedure:
formulate the optimization problem, then find a good starting point.

3.2.1 Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. We have N reference points si = [sx,i, sy,i, sz,i] with known position
in some reference coordinate system in 3D. The measured location in the image for

Section 3.2 Camera Calibration from a 3D Reference 33

the i’th such point is t̂i =
[
t̂x,i, t̂y,i

]
. There may be measurement errors, so the

t̂i = ti+ ξi, where ξi is an error vector and t is the unknown true position. We will
assume the magnitude of error does not depend on direction in the image plane (it
is isotropic), so it is natural to minimize the squared magnitude of the error∑

i

ξTi ξi.

The main issue here is writing out expressions for ξi in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te for the
extrinsic transformation, whose u, v’th component will be euv. Recalling that Ti is
lower triangular, and engaging in some manipulation, we obtain∑

i

ξTi ξi =
∑
i

(tx,i − px,i)
2 + (ty,i − py,i)

2

where

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

(which you should check as an exercise). This is a constrained optimization problem,
because Te is a Euclidean transformation. The constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

We might just throw this into a constrained optimizer (review Section 25.2), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.

3.2.2 Setting up a Start Point

Write CT
j for the j’th row of the camera matrix, and Si = [sx,i, sy,i, sz,i, 1]

T
for

homogeneous coordinates representing the i’th point in 3D. Then, assuming no
errors in measurement, we have

t̂x,i =
CT

1 Si

CT
3 Si

and t̂y,i =
CT

2 Si

CT
3 Si

,

34 Chapter 3 Camera Calibration

which we can rewrite as

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0.

We now have two homogenous linear equations in the camera matrix elements for
each pair (3D point, image point). There are a total of 12 degrees of freedom in the
camera matrix, meaning we can recover a least squares solution from six point pairs.
The solution will have the form λP where λ is an unknown scale and P is a known
matrix. This is a natural consequence of working with homogeneous equations, but
also a natural consequence of working with homogeneous coordinates. You should
check that if P is a projection from projective 3D to the projective plane, λP will
yield the same projection as long as λ ̸= 0.

This is enough information to recover the focal point of the camera. Recall
that the focal point is the single point that images to [0, 0, 0]

T
. This means that

if we are presented with a 3 × 4 matrix claiming to be a camera matrix, we can
determine what the focal point of that camera is without fuss – just find the null
space of the matrix. Notice that we do not need to know λ to estimate the null
space.

Remember this: Given a 3 × 4 camera matrix P, the homogeneous
coordinates of the focal point of that camera are given by X, where PX =
[0, 0, 0]

T

There is an important relationship between the focal point of the camera and
the extrinsics. Assume that, in the world coordinate system, the focal point can be

represented by
[
fT , 1

]T
. This point must be mapped to [0, 0, 0, 1]

T
by Te. Because

we can recover f from P easily, we have an important constraint on Te, given in the
box.

Remember this: Assume camera matrix P has null space λu =

λ
[
fT , 1

]T
. Then we must have Teu = [0, 0, 0, 1]

T
, so we must have

Te =
[

R −Rf
0T 1

]

This means that, if we know R, we can recover the translation from the focal
point. We must now recover the intrinsic transformation and R from what we
know.

λP = Ti

 1 0 0 0
0 1 0 0
0 0 1 0

[R −Rf
0T 1

]
=
[
TiR −TiRf

]

Section 3.2 Camera Calibration from a 3D Reference 35

We do not know λ, but we do know P. Now write Pl for the left 3× 3 block of P,
and recall that Ti is upper triangular and R orthonormal. The first question is the
sign of λ. We expect Det (R) = 1, and Det (Ti) > 0, so Det (Pl) should be positive.
This yields the sign of λ – choose a sign s ∈ {−1, 1} so that Det (sPl) is positive.

We can now factor sPl into an upper triangular matrix T and an orthonormal
matrix Q. This is an RQ factorization (Section 25.2). Recall we could not distin-
guish between scaling caused by the focal length and scaling caused by pixel scale,
so that

Ti =

 as k cx
0 s cy
0 0 1

In turn, we have λ = s(1/t33), cy = (t23/t33), s = (t22/t33), cx = (t13/t33), k =
(t12/t33), and a = (t11/t22).

Procedure: 3.1 Calibrating a Camera using 3D Reference Points

For N reference points si = [sx,i, sy,i, sz,i] with known position in some
reference coordinate system in 3D, write the measured location in the
image for the i’th such point t̂i =

[
t̂x,i, t̂y,i

]
. Now minimize∑

i

ξTi ξi =
∑
i

(t̂x,i − px,i)
2 + (t̂y,i − py,i)

2

where

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

subject to:

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

Use the start point of procedure 3.2

36 Chapter 3 Camera Calibration

Procedure: 3.2 Calibrating a Camera using 3D Reference Points: Start
Point

Estimate the rows of the camera matrix Ci using at least six points and

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0.

Write λP for the 1D family of solutions to this set of homogeneous
linear equations, organized into 3×4 matrix form. Compute the vector
n =

[
fT , 1

]
such that Pn. Write Pl for the left 3×3 block of P. Choose

s ∈ {−1, 1} such that Det (sPl) > 0. Use RQ factorization to obtain
T and Q such that sPl = T Q. Then the start point for the intrinsic
parameters is:

a
s
k
cx
cy

 =

(t11/t22)
(t22/t33)
(t12/t33)
(t13/t33)
(t23/t33)

and for Te is: [

Q −Qf
0 1

]
.

3.3 CAMERA CALIBRATION FROM PLANE REFERENCES

3D calibration objects can be inconvenient in practice. It is possible to calibrate a
camera with a plane calibration object, but you need to have several views. Plane
patterns are easy to make and easy to disseminate. Obtain a plane pattern with a
set of easily localized points (a checkerboard is good) where the locations of those
points on the plane are known in world units. So if one is using a checkerboard,
one might know that the checks are square and 10cm on edge, for example. Lay
this down flat, and take a set of images of it from different views. In each view the
calibration points should be visible.

For each view, we will compute the homography from the calibration object’s
plane to the image plane using point correspondences (Section 25.2). It turns out
that these homographies yield constraints on the camera matrix (Section 25.2)
and these constraints yield a camera estimate (Section 25.2). This estimate is a
start point for an optimization problem (Section 25.2, very much on the lines of
Section 25.2).

3.3.1 Estimating Homographies from Data

Estimating a homography from data is useful, and relatively easy to do. We are
given a set of source points Si in one plane and target points Ti in a second plane,
and we must determine the homography. In all cases of interest, the points will
be supplied in affine coordinates, rather than homogeneous coordinates, and we
convert to homogeneous coordinates by attaching a 1, as before. Write mij for the

Section 3.3 Camera Calibration from Plane References 37

i, j’th element of matrix M. In affine coordinates, a homography M will map
(sx, sy) to (tx, ty) where

tx =
m11sx +m12sy +m13

m31sx +m32sy +m33
and ty =

m21sx +m22sy +m23

m31sx +m32sy +m33

You should use these expressions to check:

� if m31 = m32 = 0, the homography is an affine transformation;

� if m31 = m32 = 0,m2
11 +m2

21 = m2
21 +m2

22 and m11m12 +m21m22 = 0, then
the homography is a scaled euclidean transformation;

� and ifm31 = m32 = 0,m2
11+m

2
21 = m2

21+m
2
22 = m33 andm11m12+m21m22 =

0, then the homography is a euclidean transformation.

In most cases of interest, the coordinates of the points are not measured
precisely, so we observe t̂ = t+ ξ, where ξ is some noise vector and t contains the
true (and unknown) coordinates of the point. The error will be in affine coordinates
– for example, in the image plane – which justifies working in affine rather than
homogeneous coordinates. In most cases of interest, the probability distribution of
ξ does not depend on orientation (it is isotropic), and so we can use straightforward
least squares. The homography can then be estimated by minimizing∑

i

ξT ξ =
∑
i

(
ξ2x + ξ2y

)
where

ξx = (t̂x,i −
m11sx,i +m12sy,i +m13

m31sx,i +m32sy,i +m33
)2

ξy = (t̂y,i −
m21sx,i +m22sy,i +m23

m31sx,i +m32sy,i +m33
)2

using standard methods (Levenberg-Marquardt is favored; Chapter 25.2). If the
error happens to be normally distributed and isotropic, this cost function is pro-
portional to the negative log-likelihood of the error (exercises), so this approach is
sometimes known as maximum likelihood . Experience teaches that this optimiza-
tion is not well behaved without a strong start point.

There is an easy construction for a good start point. Notice that the equations
for the homography mean that

t̂x,i(m31sx,i +m32sy,i +m33)−m11sx,i +m12sy,i +m13 = 0

and

t̂y,i(m31sx,i +m32sy,i +m33)−m21sx,i +m22sy,i +m23 = 0

so each corresponding pair of points si, ti yields two homogeneous linear equations
in the coefficients of the homography. They are homogeneous because scaling M
doesn’t change what it does to points (check this if you’re uncertain). If we obtain
sufficient points, we can solve the resulting system of homogeneous linear equations.
Four point correspondences yields an unambiguous solution; more than four – which
is better – can be dealt with by least squares. The resulting estimate of M has a
good reputation as a start point for a full optimization.

38 Chapter 3 Camera Calibration

Procedure: 3.3 Estimating a Homography from Data

Given N known source points si = (sx,i, sy,i) in affine coordinates and
N corresponding target points Ti with measured locations (t̂x,i, t̂y,i),
estimate the homography M with i, j’th element mij by minimizing:∑

i

ξT ξ =
∑
i

(
ξ2x + ξ2y

)
where

ξx = (t̂x,i −
m11sx,i +m12sy,i +m13

m31sx,i +m32sy,i +m33
)2

ξy = (t̂y,i −
m21sx,i +m22sy,i +m23

m31sx,i +m32sy,i +m33
)2.

Obtain a start point by solving the set of homogeneous linear equations

t̂x,i(m31sx,i +m32sy,i +m33)−m11sx,i +m12sy,i +m13 = 0

and

t̂y,i(m31sx,i +m32sy,i +m33)−m21sx,i +m22sy,i +m23 = 0.

3.3.2 Constraining Intrinsics with Homographies

Each map from the pattern to an image is a homography. Choose the world coor-
dinate system so that the pattern lies on the plane z = 0. Doing so just changes
the camera extrinsics, so no generality has been lost, but it allows us to write the
homography in a useful form. Recall the camera is

TiCpTe,j

where Te,j is the euclidean transformation giving the extrinsics for the j’th view.
This is applied to a set of points (sx,i, sy,i, 0, 1). In turn, the homography for the
j’th view must have the form

λjMj = Ti [r1,j , r2,j , tj]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj
is the translation). We do not know λj (which is non-zero) because scaling the

homography matrix yields the same homography. Now write Nj = T (−1)
i Mj =

[n1,n2,n3]. We must have that

nT
1 n1 − nT

2 n2 = 0 and nT
1 n2 = 0.

These equations constrain the unknown values of Ti, and we get two for each ho-
mography. In turn, with sufficient views (and so homographies), we can estimate
Ti.

Section 3.3 Camera Calibration from Plane References 39

3.3.3 Estimating Intrinsics from Homographies

In the j’th view of the plane calibration object, we recover a homography Mj . Now

write Nj = T (−1)
i Mj = [nj,1,nj,2,nj,3]. We know from Section 25.2 that

nT
j,1nj,1 − nT

j,2nj,2 = 0 and nT
j,1nj,2 = 0.

Now write A = (T (−T)
i T (−1)

i) (which is unknown). These two constraints are linear
homogenous equations in the entries of A, which is 3×3 but symmetric, and so has
6 unknown parameters. If we have 3 homographies, we will have 6 constraints, and
can use least squares to recover a 1D family of solutions λB, where B is known and

λ is a scale. We now need to find Ti and λ so that λB is close to (T (−T)
i T (−1)

i)).

There are constraints here. Write U = T (−1)
i . Recall Ti is upper triangular,

and i33 = 1. This means that U is upper triangular, and u33 = 1. We will find U
and λ by finding V such that VTV is closest to B, then computing U = (1/v33)V.

Finding V is straightforward. We obtain the closest symmetric matrix to
B, then apply a Cholesky factorization (Section 25.2). The factorization could be
modified if a very small number appears on the diagonal, but this event is most
unlikely. We now invert U to obtain an estimate E of Ti. Recall this has the form as′ k′ c′x

0 s′ c′y
0 0 1

 .
so we have c′x = e13, c

′
y = e23, s

′ = e22, a = e11/e22 and k′ = e12. This is usually
an acceptable start point for optimization.

3.3.4 Estimating Extrinsics from Homographies

We have an estimate of the camera intrinsics, and now need an estimate of the
extrinsics for each view. Recall from Section ?? that

λjMj = Ti [r1,j , r2,j , tj]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj is
the translation). We have estimates of Mj and of Ti, but we do not know λj . We
can solve for λj by noticing that the first two columns of

λjT −1
i Mj = λjQj = λj [q1,j ,q2,j ,q3,j]

are unit vectors, and are normal to one another. For example, we might estimate

λj =

√
2

qT
1,jq1,j + qT

2,jq2,j

and from this follows the estimate

Te,j =
[
λjq1,j λjq2,j λ2jq1,j × q2,j λjq3,j

0 0 0 1

]

40 Chapter 3 Camera Calibration

3.3.5 Formulating the Optimization Problem

As in Section 25.2, we will calibrate the camera by solving an optimization problem.
The optimization problem is relatively straightforward to formulate, and follows the
same lines as that in Section 25.2. The main difference with that section is that
all calibration points will lie on the plane z = 0 in world coordinates, and we will
have more than one view of that plane. Write tij = [tx,ij , ty,ij] for the measured
x, y position in the image plane of the i’th reference point in the j’th view. We
have that tij = t̂ij + ξij , where ξij is an error vector and t̂ij is the true (unknown)
position. Again, assume the error is isotropic, so it is natural to minimize∑

ij

ξTijξij .

The main issue here is writing out expressions for ξij in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te,j for the j’th
extrinsic transformation, whose u, v’th component will be euv; and si = [sx,i, sy,i, 0]
for the known coordinates of the i’th reference point in the coordinate frame of
the reference points. Recalling that Ti is lower triangular, and engaging in some
manipulation, we obtain∑

ij

ξTijξij =
∑
i

(tx,ij − px,ij)
2 + (ty,ij − py,ij)

2

where

px,ij =
i11gx,ij + i12gy,ij + i13gz,ij

gz,ij

py,ij =
i22gx,ij + i23gz,ij

gz,ij

and

gx,ij = e11,jsx,i + e12,jsy,i + e14,j

gy,ij = e21,jsx,i + e22,jsy,i + e24,j

gz,ij = e31,jsx,i + e32,jsy,i + e34,j

(which you should check as an exercise – notice the missing sz,i terms!). This is a
constrained optimization problem, because Te is a Euclidean transformation. The
constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

As in Section 25.2, we could just throw this into a constrained optimizer (review
Section 25.2), but good behavior requires a good start point.

Section 3.4 Calibrating the Effects of Lens Distortion 41

Procedure: 3.4 Calibrating a Camera from Multiple Homographies

Procedure: 3.5 Calibrating a Camera from Multiple Homographies:
Start Point

3.4 CALIBRATING THE EFFECTS OF LENS DISTORTION

Now assume the lens applies some form of geometric distortion, as in Section 25.2.
There are now strong standard models of the major lens distortions (Section 25.2).
We will now estimate lens parameters, camera intrinsics and camera extrinsics from
a view of a calibration object (as in Section 25.2; note the methods of Section 25.2
apply to this problem too). As in those sections, we use a two step procedure:
formulate the optimization problem (Section 25.2), then find a good starting point
(Section 25.2).

3.4.1 Modelling Geometric Lens Distortion

Geometric distortions caused by lenses are relatively easily modelled by assuming
the lens causes (x, y) in the image plane to map to (x+δx, y+δy) in the image plane.
We seek a model for δx, δy that has few parameters and that captures the main
effects. A natural model of barrel distortion is that points are “pulled” toward the
camera center, with points that are further from the center being “pulled” more.
Similarly, pincushion distortion results from points being “pushed” away from the
camera center, with distant points being pushed further (Figure ??).

Set up a polar coordinate system (r, θ) in the image plane using the image
center as the origin. The figure and description suggest that barrel and pincushion
distortion can be described by a map (r, θ) → (r + δr, θ). We model δr as a
polynomial in r. Brown and Conrady [] established the model δr = k1r

3 + k2r
5 as

sufficient for a wide range of distortions, and we use (r, θ) → (r + k1r
3 + k2r

5, θ)
for unknown k1, k2. We must map this model to image coordinates to obtain a
map (x, y) → (x + δx, y + δy). Since cos θ = x/r, sin θ = y/r, we have (x, y) →
(x+ x(k1(x

2 + y2) + k2(x
2 + y2)2), y + y(k1(x

2 + y2) + k2(x
2 + y2)2)). Figure 3.2

shows distortions resulting from different choices of k1 and k2. This model is known
as a radial distortion model.

More sophisticated lens distortion models account for the lens being off-center.
This causes tangential distortion (Figure 3.3). The most commonly used model of
tangential distortion is a map (x, y) → (x+ p1(x

2 + y2 + 2x2) + 2p2xy, y+ p2(x
2 +

y2 + 2y2) + 2p1xy) (derived from []; more detail in, for example []).

42 Chapter 3 Camera Calibration

k = -0.2 k = 0.2k = 0
1 1 1

k =-0.026

k =0

k = 0.026

2

2

2

FIGURE 3.2: The effects of k1 and k2 on a neutral grid (center), showing how
the parameters implement various barrel or pincushion distortions. Notice how k2
slightly changes the shape of the curves that k1 produces from straight lines in the
grid.

Remember this: A full lens distortion model is(
x
y

)
→
(
x+ x(k1(x

2 + y2) + k2(x
2 + y2)2) + p1(x

2 + y2 + 2x2) + 2p2xy
y + y(k1(x

2 + y2) + k2(x
2 + y2)2) + p2(x

2 + y2 + 2y2) + 2p1xy

)
.

for k1, k2, p1, p2 parameters. It is common to ignore tangential distortion
and focus on radial distortion by setting p1 = p2 = 0.

3.4.2 Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. Write ti = [tx,i, ty,i] for the measured x, y position in the image
plane of the i’th reference point. We have that ti = t̂i + ξi, where ξi is an error
vector and t̂ is the true (unknown) position. Again, assume the error is isotropic,

Section 3.4 Calibrating the Effects of Lens Distortion 43

p = -0.8 p = 0 p = 0.8

p = -0.8

p = 0

p = 0.8

1 1 1

2

2

2

FIGURE 3.3: The effects of p1 and p2 on a neutral grid (center), showing how
the parameters implement various distortions. These parameters model effects that
occur because the lens is off-center; note the grid “turning away” from the lens.

so it is natural to minimize ∑
i

ξTi ξi.

The main issue here is writing out expressions for ξi,j in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te for the ex-
trinsic transformation, whose u, v’th component will be euv; and si = [sx,i, sy,i, sz,i]
for the known coordinates of the i’th reference point in the coordinate frame of the
reference points. Recalling that Ti is lower triangular, and engaging in some ma-
nipulation, we obtain∑

i

ξTi ξi =
∑
i

(tx,i − lx,i)
2 + (ty,i − ly,i)

2

where

lx,i = px,i + px,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p1(p
2
x,i + p2y,i + 2p2x,i) + 2p2px,ipy,i

ly,i = py,i + py,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p2(p
2
x,i + p2y,i + 2p2y,i) + 2p1px,ipy,i

44 Chapter 3 Camera Calibration

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

(which you should check as an exercise). This is a constrained optimization problem,
because Te is a Euclidean transformation. The constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

We might just throw this into a constrained optimizer (review Section 25.2), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.

