Learning to control
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BIG GOOD QUESTIONS

® Recall mashup of openmaps and street view
® it could predict drivable directions, steering directions, lanes, signs, etc.

e Q: WHY IS THIS NOT DRIVING AROUND NOW?

® A: (pretty obviously) because it doesn’t work

® Q: WHY NOT?

® A:interesting



First learned steering controller

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image

30x32 Video
Input Retina

“ ALVINN:

An autonomous Land vehicle in a neural Network, Pomerleau 1989



Topics

Vocabulary
Simplest imitation learning and DAGGER

® to set up possible projects, and answer Q1, Q2
Simple reinforcement learning ideas

More imitation learning; inverse reinforcement learning
® and its variants and problems



Markov Decision Process

action
a,

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides



Model

At time O, environment samples initial state
® agent is in that state

Then for t=0 till done

agent chooses action

environment samples new state conditioned on action, old state
environment samples reward conditioned on action, old state, new state
agent gets that reward and moves into new state

Policy
® what action to take in each state
® this could be stochastic

Maximise total discounted reward



Examples

a Cleaning robot

o Walking robot

a Pole balancing
a Games: tetris, backgammon

a Server management

a Shortest path problems

a Model for animals, people

Abbeel slides



Markov Decision Process (S, A, T, R, H)

ﬁ
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Agent

state r,_eward action
s.. i (),

Given

' 5. | Environment ]“—

= S: set of states

= A: set of actions

= T:SxAxSx{0,l,..,H 2 [0l1], T(sas)=P(S., =s|s, =s, a,=a)

= R SxAxSx{0,1,....,H} >R R(sas’) =reward for (S,, =5, S,=s, a, =a)
= H: horizon over which the agent will act

Goal:

= Find7 :Sx{0, I, ..., H} > A that maximizes expected sum of rewards, i.e.,

H
7" = arg max E[Z Ri(Si, Ay, Sit)|m]
w
t=0

This is usually discounted by gamma T Abbeel slides



Canonical Example: Grid World

The agent lives in a grid

Walls block the agent’s path 3 .
The agent’s actions do not
always go as planned: 2 =1
And this 1s y g P
true for 80% of the time, the action North
the other takes the agent North ]
three; 80% (if there is no wall there)
of the time
you €0 |0% of the time, North takes the ] ) i 4
where you agent West; 10% East
intended, 10% . . . .
. If there is a wall in the direction
at right angles 0.8
one way the agent would have been taken,
10% the other  the agent stays put 0.1 0.1

Big rewards come at the end



Snakes + Ladders

e Sometimes, chutes and ladders Lift from Wikipedia entry

® There is a board (typically, 10x10 grid) with numbered cells
® Two players (for us - more OK)
® both start at 1
® [In turn, each
® throws a die
® moves forward the given number of cells
® if final cell is base of ladder, goes up that ladder
e if final cell is head of snake, goes down that snake
® winner is first to leave board

® This 1s an MDP o

® but there’s no choice of action, so it’s really a Markov Chain P
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Lift from Wikipedia entry
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S+L as MDP

W\

Y

® States:

® 10x10x2 = (position of pl, position of p2, who moves next)
® transitions
® for each state, six possible new states
® big table will do it
® P(newlold)=1/6
o Q:

® who wins?
® how long does game go on?
® what is the value of a particular position



Math

Any version of snakes and ladders can be represented exactly as an
absorbing Markov chain, since from any square the odds of moving to any
other square are fixed and independent of any previous game history.[24]
The Milton Bradley version of Chutes and Ladders has 100 squares, with
19 chutes and ladders. A player will need an average of 39.2 spins to
move from the starting point, which is off the board, to square 100. A two-
player game is expected to end in 47.76 moves with a 50.9% chance of
winning for the first player.[25] These calculations are based on a variant
where throwing a six does not lead to an additional roll; and where the
player must roll the exact number to reach square 100 and if they
overshoot it their counter does not move.

Lift from Wikipedia entry



Cumulative probability of finishing by (ie. at or before) N’th round of S+L

1.0

150 200

Lift from Wikipedia entry



Questions

® Known environment, rewards
® Assume
® we know T(s,a,s’),R(s, a, s’) Solving MDPs
® What should our policy be?
® do math
® Unknown environment, rewards Reinforcement learning
® What should our policy be?
® act and adjust policy to improve rewards
® Unknown environment, rewards, but access to expert
® What should our policy be?
® (al) do what the expert does Imitation learning
® (a2) figure out the experts reward function, and maximize that
Inverse reinforcement learning



Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.

- Good: simplest, cheapest form of supervision
- Bad: High sample complexity
Where is it successful so far?

- In simulation, where we can afford a lot of trials, easy to parallelize

* not in robotic systems:
1. action execution takes long
2. we cannot afford to fall

3. safety concerns
Crusher robot

Fragkiadaki, ND



Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the
‘black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a

system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Fragkiadaki, ND



Learning from demonstrations a.k.a. Imitation Learning:

Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

a) coming up with a reward that would generate such behavior,
b) coding up the desired policy directly.

Fragkiadaki, ND



The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.

Does this remind us of something...?

GANs! Generative Adversarial Networks (on state-action trajectories)

Generator Discriminator
& g Generated Real
2 3 Example Fake
Real
|
FG Example FD

Fragkiadaki, NByerative Adversarial Networks., Goodfellow et al. 2014



The Imitation Learning problem: Challenge

Actions along the trajectories are interdependent, as actions determine
state transitions and thus states and actions down the road.

interdependent labels -> structure prediction

Action interdependence in time:

Algorithms developed in Robaotics for imitation learning found
applications in structured predictions problems, such as, sequence

Fragglgaggia}h@\/labelling e.g. parsing.



Imitation Learning

For taking this structure into account, numerous formulations have
been proposed:

» Direct: Supervised learning for (mapping states to actions)
using the demonstration trajectories as ground-truth(a.k.a.
behavior cloning) + ways to handle the neglect of action
Interdependence.

» Indirect: Learning the latent /goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (next lecture)

Experts can be:

- Humans

- Optimal or near Optimal Planners/Controllers
Fragkiadaki, ND



Imitation Learning as supervised Learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

mo(ue|oy)
Behavior Cloning=Imitation Learning as Supervised learning
- Assume actions in the expert trajectories are 1.i.d.

- Train a classifier or regressor to map observations to actions at each
time step of the trajectory.

supervised

training learning

data

7\'()([11 |0t)

Fl‘agk}lflllgz%( bnlc\lI]E)veMg for Self-Driving Cars, Bojarski et al. 2016



Classifier or regressor?

Because multiple actions u may be plausible at any given observation o,
policy network P (ut|0t) usually is not a regressor but rather:

- Aclassifier (e.g., softmax output and cross-entropy loss, after
discretizing the action space)

m K
J(O0) == D Ly@=k10g[P(y) = klz(); 0)]
i=1 k=1
- A GMM (mixture components weights, means and variances are
parametrized at the output of a neural net, minimize GMM loss, (e.g.,
Hand writing generation Graves 2013)

- A stochastic network (previous lecture)

Fragkiadaki, ND



Independent in time errors

error at time t with probability
E[Total errors] = T

Fragkiadaki, ND



Compounding Errors

L

-—-** As you get further off the path, the probability
/ S~ of making an error grows, cause the classifier

thinks this state is rare

error at time t with probability

E[Total errors] = &(T + (T-1) + (T-2) + ...+ 1) & T2

Fragkiadaki, ND

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image Simulasted Road Image

30x32 Video
Input Retina

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989

Fragkiadaki, ND



Data Distribution Mismatch!
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Fragkiadaki, ND



Data Distribution Mismatch!

supervised learning +

supervised learning control (NAIVE)

SL succeeds when training and test data distributions match, that is a

fundamental assumption.
Fragkiadaki, ND



Demonstration Augmentation: ALVINN 1989
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« Using graphics simulator for road images and corresponding steering angle
ground-truth

« Online adaptation to human driver steering angle control
« 3 layers, fully connected layers, very low resolution input from camera and lidar..

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:

Fra g‘igzi%u (’c)l oir:rﬁﬁ.and vehicle in a neural Network, Pomerleau 1989



Demonstration Augmentation: NVIDIA 2016
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“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...",

Fragki%&hleiENEeaming for Self-Driving Cars , Bojarski et al. 2016



Data Augmentation (3): Trails 2015
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Fragkiadél&'l,we Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.



DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data Dﬂ* — {01,U1, ...,ON,UN}

| run mo(uelor) to get dataset D, =

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Execute current policy and Query Expert
oy i New Data

Steering g—
from expert oo @D \ ’ @
S
’ @
N\
Nz 4§
g "AW
- Aggregate
New ‘ A= Dataset [~ All previous data h
Policy ’ ‘
¢ =
-—JC
- J
Supervised Leamning

Fl’agkiadaki s NIA Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data 'Dﬂ* — {01,U1, ...,ON,UN}

A run 7T6>(”U)t|0t) to get dataset Dﬂ = {01, OM}

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Fragkladakl s NIA Reduction of Imitation Learning and Structured Predictior



