Scene Flow and Ways to
Infer it

D.A. Forsyth, UIUC

Scene Flow and Ways to Infer It

® particularly photometric consistency
® a version of this applies to scene inference

Recall optical flow gives
information about movement

N
~
| ~
~
| \
o o | |
f £, |
~
N |
~
d
Y 4 Val
x *
“«<« >
K*\
K PV
v

Image 1 Image 1 optic flow Image 2

Recall optical flow gives
information about movement AND depth

Scene Flow

® Mark (x,y,z) AND (v_x, v_y, v_z) at every image point
® From pair of (image+depth) or (stereo pair) or (lidar) or even (image)
® Rigid scene
® FEasy for stereo pair/image+depth pair:
® (v_x,v_y,v_z) follow from depth and camera ego-motion

® Much harder for image pair
® depth, scene flow ambiguity

e BUT assume there are moving objects

Depth/flow ambiguity

(a) Projecting scene flow into 2D space.

P(P:. P P.)

P'(B. Py Fr)

(b) Back-projecting optical flow into 3D space.

Figure 2. Relating monocular scene flow estimation to opti-
cal flow: (a) Projection of scene flow into the image plane yields
optical flow [59]. (b) Back-projection of optical flow leaves an
ambiguity in jointly determining depth and scene flow.

® Notice there are no
problems if you know
depth

Menze 2015

Harder when there are moving objects...

® Registering the depths (say) doesn’t work
® Need to know which pixels are moving rigidly together

® Much more important case

® Think cars
® Time to contact

Fun fact about vision

Focal point

focal length=f

“distance=D

Fun fact: time to contact = x/(dx/dt)

TTC-Long

TTC - AAARGH!

Typical scene flows

TTC B

TTC A

Figure 1: Scene Flow Results on the proposed Dataset.
Top-to-bottom: Estimated moving objects with background
object in transparent, flow results and flow ground truth. Menze 2015

Estimation strategies -I

® RGB-D image pairs
® segment
® ecstimate correspondence using RGB
® getv_x,v_y,v_zusing D
® RGB stereo pairs
® segment

® estimate depth using stereo
® asabove

e LIDAR

® segment; use registration from early lectures (with tricks, following slides)
® getv_X,v_y,v_z

Estimation strategies -11

® Single image pairs
® use single image depth predictor, proceed as above
® use labelled scene flow images, predict w/net

e LIDAR-II

® train a network to estimate from pairs with known scene flows

Estimation for stereo

Depth+motion+ego-motion cue
left right Depth+motion+ego-motion cue

® Break into
superpixels

® Each gets depth,
flow

® Use this to predict
appearance in other
Views

® This gives massive
CRF

® pile in and solve

reference view

Figure 2: Data Term. Each superpixel 7 in the reference
view 1s modeled as a rigidly moving 3D plane and warped
into each other image to calculate matching costs. Each of
the superpixels is associated with a 3D plane variable and a

pointer to an object hypothesis comprising its rigid motion. Menze 2015

Lagniappe: Scene flow in LIDAR

® [carn without labelled data
® [CPisn’t quite enough

® objects might contract, for example
® use a cycle consistency loss
e f ab=3Da->3Db
® we must have f ba(f_ab(x))=x
® trick:
® as stated, this 1s unstable
® instead,f ba(0.5 f_ab(x)+ 0.5 NN(f_ab(x))) close to x
® this also avoids problems with zero flow

Figure 4: Scene flow estimation between point clouds at time ¢ (red) and £+ 1 (creen) from the KITTI dataset trained without
any labeled LIDAR data. Predictions from our self-supervised method, trained on nuScenes and fine-tuned on KITTT using
self-supervised learning is shown in blue; the baseline with only synthetic training is shown in purple. In the absence of
real-world supervised training, our method clearly outperforms the baseline method, which overestimate the flow in many
regions. (Best viewed in color)

Mittal 20

e ﬁ—_—*
-y £ ‘=
. Ay’
iw. J v Sl
-, i Eii =
ey
(a) Ours (Self-Supervised Fine Tuning) (b) Baseline (No Fine Tuning)

Figure 5: Comparison of our self-supervised method to a baseline trained only on synthetic data, shown on the nuScenes
dataset. Scene flow is computed between point clouds at time ¢ (red) and ¢ + 1 (green); the point cloud that is transformed
using the estimated flow is in shown in blue. In our method, the predicted point cloud has a much better overlap with the
point cloud of the next timestamp (2reen) compared to the baseline. Since nuScenes dataset does not provide any scene flow
annotation, the supervised approaches cannot be fined tuned to this environment.

Mittal 20

Scene flow 1n single 1mages

® Predict depth from single image
® using network which makes mixture of normals in depth at location
® trained using existing image-depth data

® Break image into superpixels
® cach is a plane section that moves rigidly
® to infer: plane params, motion params (9 total per superpixel)

-‘-‘ .‘ L 4 ~:
N1 ay
-&rf'l”%;-i%'
(5

i

P s P
P e

. (e

o g o
 — = D i e S| By

-.s.i'b‘llllll'l..'wﬁl"l'll

—eefEEEEEEEEEESNER AW

e LY L) (1

s AR RS TR

I

Brickwedde 19

Scene flow 1n single 1mages

Photometric consistency

e CRF

® unary losses: l
® plane section motion should predict next frame pixel values well

® plane section should model predicted depth well
® binary losses:

® plane sections should have compatible depths on boundary
® normals of neighbors should be similar

ﬁ “ 3 l- | b '!I-’ llz
.| - . _1"_ v

Figure 8. Exemplary quahtatlve result of Mono-SF on a crop of
Cityscapes (removing car hood); left: first input image, middle:
estimated depth values at time ¢ = O (left half) and ¢ = 1 (right
half), right: estimated optical flow Brickwedde 19

Mono-SF

Ground truth

Images

UO—uE Flow

Depth Flow

e %
y & :
8~ |
v
e !
< e \
3

7 OLIRUOS

Brickwedde 19

Scene flow 1n single 1mages

jointly predicts depth (middle) and scene flow (right). (x,z)-coordinates of 3D scene flow are visualized using an optical flow color coding

® Straightforward network prediction of scene flow
® depth ambiguity?
® semantics, etc. resolve
® “*train™® with stereo pairs
® cues
® single image depth cues (texture)
® photometric consistency
® optic flow

Hur 20

Scene flow 1n single 1mages

jointly predicts depth (middle) and scene flow (right). (x,z)-coordinates of 3D scene flow are visualized using an optical flow color coding.

® (ute trick - this can be self-supervised
® Training time:
® stereo images

® Test time
® real images

Hur 20

Computing a loss for self supervision

Depth+motion+ego-motion cue

Depth+motion+ego-motion cue

left right

reference view

Figure 2: Data Term. Each superpixel 7 in the reference
view 1s modeled as a rigidly moving 3D plane and warped
into each other image to calculate matching costs. Each of
the superpixels is associated with a 3D plane variable and a
pointer to an object hypothesis comprising its rigid motion.

Each point in L gets
® depth, flow
Use depth to predict

® appearance in R

Use depth+flow to predict

® appearance in t+1 L, R
® 3D locationint+1 L
® compare with depth

This gives loss
Train to minimize

Menze 2015

Training losses

Disparity predictions should be good

® train with stereo pairs for this

® disparity should predict color in other frame (in training)
® disparity should be smooth

Photometric consistency

® scene flow should predict pixel values in next frame
Point consistency

® scene flow should predict depth in next frame
Smoothness

® scene flow at a point should be similar to neighbors

(a) Input images (b) Monocular depth (c) Optical flow (d) 3D visualization of scene flow

Figure 5. Qualitative results of our monocular scene flow results (Self-Mono-SF-ft) on KITTI 2015 Scene Flow Test: each scene
shows (a) two input images, (b) monocular depth, (¢) optical flow, and (d) a 3D visualization of estimated depth, overlayed with the
reference image, and colored with the (z, z)-coordinates of the 3D scene flow using the standard optical flow color coding.

Hur 20

Hur 20

Motion in depth

Image plane |
X
Focal point
C f
< —) g
(

Motion 1n depth

® Now imagine object moves IN DEPTH

® sod’,x’
® We get /_fX
xr = g7
_x_d’ le_f_X
T d -4

® this 1s important, because

dis—1)=d —d xwv,

® and we can estimate d

Scene flow from MiD

® 'Train optic expansion network
® ptic expansion=1/s
® using existing scene flow training data

® Then attach to optic flow, cleanup

Layer i

Motion-in-depth | Optical flow

Norm. scene flow

3) Motion-in-depth Correction (7)

1) Optical Flow Estimation (u, v) 2) Optic Expansion Estimation (s)

Figure 5. Network architecture for estimating normalized scene flow. 1) Given two consecutive images, we first predict dense optical
flow fields using an existing flow network. 2) Then we estimate the initial optical expansion with a local affine transform layer, which is
refined by a U-Net architecture taking affine fitting error and image appearance features as guidance [2-]. 3) To correct for errors from the
scaled-orthographic projection and rotation assumptions, we predict the difference between optical expansion and motion-in-depth with
another U-Net. Finally, a dense normalized scene flow field is computed using Eq. 2 by combining (x, v, 7) with camera intrinsics K.

Learning to predict SF from point clouds

® Point clouds

e EgLiDAR
® problem:

® gjven point cloud at t, t+1

® place a 3D motion vector on each point in t

® hard, because:

® there may be no corresponding point in t+1

® representing a point cloud is hard

® Strategy:

® don’t need corresponding points - use segments
® use pointnet features

Pointnet - a neat trick

Required: learned feature representation of a point cloud
Difficulty: point cloud has no order

® you can get the same point cloud in a different order
® could impose order, but...

Permutation invariants:

® the basis for permutation invariants are the symmetric functions
® mostly, a nuisance to work with

Idea:

® for any point cloud of n points in d dimensions,

maX(ZIJ1,1, 332,17 SR Cl?n,l)

1s permutation invariant

maX(ﬂjl,dg $2,d7 S len,d)

Pointnet - a neat trick - 11

So:

embed points in high dimension (K)
compute this pooling
now compute embedding of this feature vector
the resulting object is permutation invariant
® and “general”

® assume

® {(S) continuous in hausdorff distance on point sets
® hausdorff distance on point sets = max dist to nearest
neighbor
® choose eps, and K big enough
® then there is some g(S) of this form st [f(S)-g(S)l<eps

skip connections

set conv
layers

&

&

L &
set conv O_j‘"\ A

layers

S

set upconv
layers

&

scene flow

point cloud 1
l
=
~
0
u %,

set conv

=
)

point cloud 2
) |
%,%
=
—
~
0
w
_:!
~
—
)
s}
w
(%]
.o
N
K
w

point feature learning point mixture flow refinement

Figure 3: FlowNet3D architecture. Given two frames of point clouds, the network learns to predict the scene flow as
translational motion vectors for each point of the first frame. See Fig. 2 for illustrations of the layers and Sec. 4.4 for more

details on the network architecture.

Liu 19

Input ICP " ene iy Ours
point clouds registration cene Ho registration

Figure 6: Partial scan registration of two chair scans.
The goal is to register point cloud 1 (red) to point cloud 2
(green). The transformed point cloud 1 is in blue. We show

a case where ICP fails to align the chair while our method
grounded by dense scene flow succeeds.

Liu 19

Figure 7: Motion segmentation of a Lidar point cloud.
Left: Lidar points and estimated scene flow in colored

quiver vectors. Right: motion segmented objects and re-
gions.

Liu 19

How do we deal with reliet?

® Surely some form of height field
® estimated by consistency
® changing slowly
® Horizon estimation gets complicated in tilted planes

® you might get distracted by distant horizon
® [.ocal horizon estimator has problems

Nasty geometries

® Single image depth prediction likely doesn’t work here
® weird relief and dip in road

® Ground plane estimates likely don’t work here either

Estimating the camera

Height
® from car (calibrated and known)

Roll and pitch

® f{rom horizon

® 1oll is why horizon isn’t parallel to image plane
® pitch is why it isn’t centerline

horizon (v=0)

/
y/
/F/

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h

Sources of variation in the label map

® Foreshortening

® Wrong ground plane estimate

Sources of variation in the label map

Image

® Torsion - Horizon

Ground plane

Horizon estimation

e Khan et al - vanishing points from road lines + fudge
® Workman et al - mark up dataset, classify

1

[
I
L]
e

Figure 5: Example results showing the estimated distribution over horizon lines. For each
image, the ground truth horizon line (dash green) and the predicted horizon line (magenta)
are shown. A false-color overlay (red = more likely, transparent = less likely) shows the
estimated distribution over the point on the horizon line closest to the image center.

Horizons

® Horizon estimation gets

complicated in tilted planes

® vyou might get distracted by distant
horizon (picture)

7Z 7 / q..;..
e/ S —
= —
77/, 4 7, s * —
gt S -
i e

N
-
©,
N
oy
—
@
an

complicated in tilted planes

® Horizon estimation gets
® |ocal cues are a problem

What to do?

® (Likely) -
® build sources of variance into simulated label fields
® work on best available ground plane
® (possibly) estimate several planes to rectify label fields
® train without labelled images, as above
® note this is a clusterer

Notice

Straightforward consistency losses are very powerful

Minimal use of labelled data
® (augmentation by stereo pairs, but no labelling)

Some form of photometric consistency loss for labels
[cg
® predict layout map 1
move forward
predict layout map 2
they should register
things that have the same label (tar, paint, junction, etc.)
® should look similar

Appearance Consistency and Clustering

® Map image into some feature space so that
® patches that “look similar” are “close”
® without markup

® Why?
® because doing so would help produce a layout map eg

® attach labels to clusters using current maps
® improve maps using labels

Deep Embedding Clustering

B~ < B8 1 & =
§§ O 4) ={ -._':.'3'_‘ i- ul® _; ;: -,
; . encoder ‘_'f.' '.?'_‘ i '_:IJ decoder
® ComPUtC embedding that L"""""‘“"""\l:;"": —————————— !
® autoencodes O — — e
® clusters well Z SS = LAY
» L L= KLP|)2)
= DEC

Figure 1. Network structure

Xieetal 15

Clustering

® (luster centers mu_j must

be estimated

® form membership weights as in
TSNE (alpha=1) ->

® We want these weights to

match a target distribution

® p_ij=target for j’th cluster on i’th
point

® KL divergence (as in TSNE)

Following van der Maaten & Hinton (2008) we use the Stu-
dent’s ¢-distribution as a kernel to measure the similarity
between embedded point z; and centroid f;:

a+1

(1+ ||z —]2 /o) ="% 0
S+ 2 — e l2/) =

qdij =

L =KL(P||Q) = Zprlogp” @)

Clustering-II

But what are p?

® notice we have some form of
reestimation going on here

After that, just descend

® pnote autoencoder initialization
would probably be done
differently now

In our experiments, we compute p; by first raising g; to
the second power and then normalizing by frequency per

cluster:)
i = Qij/ fi
ij = 2
Zj/ Qij’/fj' 7
where f; = > .q;; are soft cluster frequencies. Please

refer to section 5.1 for discussions on empirical properties
of L and P.

3)

Clustering

gc'
@ g, . Yopus vas |
(a) Epoch 0 (b) Epoch 3 (c) Epoch 6
: ¢
- ol
we gﬁ "“y::_
k
0.8 fk-means initialization
0.79
(d) Epoch 9 (e) Epoch 12 (f) Accuracy vs. epochs

Xieetal 15

Clustering

012

0.08}

0.06}

dl.
dr,

004}

0.02}
0.7

l:l. 6

000}
0.2 0.3 0.4 05
;5

—O‘C'a-l)

Figure 4. Gradient visualization at the start of KL divergence min-

imization. This plot shows the magnitude of the gradient of the
loss L vs. the cluster soft assignment probability g, ;. See text for

discussion.

S
o?
5
q
/
7
b
3
q
0

V0 W e~ ~ 000 N\
O W BH\) —-0 N0
D0 WY N0 NW
QAILWSN 00N @
QY UWSN~D W
ORWPWe~d—IDx0NG

S B
222
g &8
9 q 4
| /)
7 T
b6 b
5 3 3
949 ¢
000

(a) MNIST (b) STL-10

Figure 3. Each row contains the top 10 scoring elements from one cluster.

Xieetal 15

Attribute discovery

® We have:

® a set of images labelled with class, but not attribute
® a feature construction (now very old fashioned)

® We want;

® to associate each image with a bit vector
® attribute present/absent
® where
® bits are “easily predicted”
® bits are “informative”
® bit vectors within a category cluster

‘~-
“

Y]

Fig. 1. Each bit in the code can be thought of as a hyperplane in the feature space. We learn
arrangements of hyperplanes in a way that the resulting bit codes are discriminative and also
all hyperplanes can be reliably predicted (enough margin). For example, the red hyperplanes
(IL,V) are not desirable because II is not informative(discriminative) and IV is not predictable
(no margin). Our method allows the green hypeplanes (good ones) to sacrifice discrimination
for predictability and vice versa. For example, our method allows the green hyperplane (I) to go
through the triangle class because it has strong evidence that some of the triangles are very similar
to circles.

Fig. 6. This figure qualitatively compares the quality of retrieved images by our method com-
paring to that of I'TQ and SpH. Each row corresponds to the top five images returned by three
different methods: ours, I'TQ and spectral hashing. This retrieval is done by first projecting the
query image to the space of binary codes and then running KNN in that space. Notice how, even
with relatively short codes(32 bits), our method recovers relevant objects. This menas that the
discriminative training of the code has forced our code learning to focus on distinctive shared
properties of categories. Our method consistently becomre more accurate as we increase the code
size.

Fig. 8. Discovering attributes: Each bit corresponds to a hyperplane that group the data according
to unknown notions of similarity. It is interesting to show what our bits have discovered. On two
sides of the black bar we show 8 most confident images for 5 different hyperplanes/bits (Each
row). Note that one can easily provide names for these attributes. For example, the bottom row
corresponds to all round objects versus objects with straight vertical lines. The top row has silver,
metalic and boxy objects on one side and natural images on the other side, the second row has
water animals versus objects with checkerboard patterns. Discovered attributes are in the form
of contrast: both sides have its own meaning. These attributes are compact representations of
standard attributes that only explain one property. For more examples of discovered attributes
please see supplementary material.

Why do we care?

® FEach imputes labels by

® compelling the label space to have strong properties
® variant clustering

® DEC suggests that this is enough to learn features
® DBC has fixed feature stack (but this is discriminative)

® [dea:

® a feature stack that is discriminative
® and perhaps has autoencoding properties
® likely clusters appearance in a useful way

® 50 you can impose labels by just compelling them to have spatial
structure

