
Scene Flow and Ways to
Infer it

D.A. Forsyth, UIUC

Scene Flow and Ways to Infer It

• particularly photometric consistency
• a version of this applies to scene inference

f f1 2

Image 1 Image 2Image 1 optic flow

Recall optical flow gives
information about movement

Recall optical flow gives
information about movement AND depth

Scene Flow

• Mark (x, y, z) AND (v_x, v_y, v_z) at every image point
• From pair of (image+depth) or (stereo pair) or (lidar) or even (image)

• Rigid scene
• Easy for stereo pair/image+depth pair:

• (v_x, v_y, v_z) follow from depth and camera ego-motion

• Much harder for image pair
• depth, scene flow ambiguity

• BUT assume there are moving objects

Depth/flow ambiguity

• Notice there are no
problems if you know
depth

Menze 2015

Harder when there are moving objects…

• Registering the depths (say) doesn’t work

• Need to know which pixels are moving rigidly together

• Much more important case
• Think cars
• Time to contact

Fun fact about vision

X

xFocal point

focal length=f

distance=D

Fun fact: time to contact = x/(dx/dt)

TTC - Long

TTC - AAARGH!

Typical scene flows

Menze 2015

TTC A

TTC B

Estimation strategies -I

• RGB-D image pairs
• segment
• estimate correspondence using RGB
• get v_x, v_y, v_z using D

• RGB stereo pairs
• segment
• estimate depth using stereo
• as above

• LIDAR
• segment; use registration from early lectures (with tricks, following slides)
• get v_x, v_y, v_z

Estimation strategies -II

• Single image pairs
• use single image depth predictor, proceed as above
• use labelled scene flow images, predict w/net

• LIDAR - II
• train a network to estimate from pairs with known scene flows

Estimation for stereo

• Break into
superpixels

• Each gets depth,
flow

• Use this to predict
appearance in other
views

• This gives massive
CRF
• pile in and solve

Depth cue

Depth+motion+ego-motion cue
Depth+motion+ego-motion cue

Menze 2015

Lagniappe: Scene flow in LIDAR

• Learn without labelled data
• ICP isn’t quite enough

• objects might contract, for example
• use a cycle consistency loss

• f_ab = 3Da -> 3Db
• we must have f_ba(f_ab(x))=x
• trick:

• as stated, this is unstable
• instead, f_ba(0.5 f_ab(x)+ 0.5 NN(f_ab(x))) close to x
• this also avoids problems with zero flow

Mittal 20

Mittal 20

Scene flow in single images

• Predict depth from single image
• using network which makes mixture of normals in depth at location
• trained using existing image-depth data

• Break image into superpixels
• each is a plane section that moves rigidly

• to infer: plane params, motion params (9 total per superpixel)

•

Brickwedde 19

Scene flow in single images

• CRF
• unary losses:

• plane section motion should predict next frame pixel values well
• plane section should model predicted depth well

• binary losses:
• plane sections should have compatible depths on boundary
• normals of neighbors should be similar

Brickwedde 19

Photometric consistency

Brickwedde 19

Scene flow in single images

• Straightforward network prediction of scene flow
• depth ambiguity?

• semantics, etc. resolve
• *train* with stereo pairs

• cues
• single image depth cues (texture)
• photometric consistency

• optic flow

Hur 20

Scene flow in single images

• Cute trick - this can be self-supervised
• Training time:

• stereo images

• Test time
• real images

Hur 20

Computing a loss for self supervision

• Each point in L gets
• depth, flow

• Use depth to predict
• appearance in R

• Use depth+flow to predict
• appearance in t+1 L, R
• 3D location in t+1 L

• compare with depth

• This gives loss
• Train to minimize

Depth cue

Depth+motion+ego-motion cue
Depth+motion+ego-motion cue

Menze 2015

Training losses

• Disparity predictions should be good
• train with stereo pairs for this
• disparity should predict color in other frame (in training)
• disparity should be smooth

• Photometric consistency
• scene flow should predict pixel values in next frame

• Point consistency
• scene flow should predict depth in next frame

• Smoothness
• scene flow at a point should be similar to neighbors

Hur 20

Hur 20

Hur 20

Motion in depth

x

X

d
f

Focal point

Image plane

<latexit sha1_base64="OW7nRRefHWxiXCWY888OawJcYr4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiol6EohePFewHtKFsNpt26WYTdjdiDfklXjwo4tWf4s1/47bNQVsfDDzem2Fmnp9wprTjfFulldW19Y3yZmVre2e3au/tt1WcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj2+mfueBSsVica8nCfUiPBQsZARrIw3s6uNVP5SYZCHq5lmQD+yaU3dmQMvELUgNCjQH9lc/iEkaUaEJx0r1XCfRXoalZoTTvNJPFU0wGeMh7RkqcESVl80Oz9GxUQIUxtKU0Gim/p7IcKTUJPJNZ4T1SC16U/E/r5fq8NLLmEhSTQWZLwpTjnSMpimggElKNJ8Ygolk5lZERtjkoE1WFROCu/jyMmmf1t3zunt3VmtcF3GU4RCO4ARcuIAG3EITWkAghWd4hTfryXqx3q2PeWvJKmYO4A+szx+9t5Mm</latexit>

x =
fX

d

Motion in depth

• Now imagine object moves IN DEPTH
• so d’, x’

• We get

• this is important, because

• and we can estimate d

<latexit sha1_base64="OW7nRRefHWxiXCWY888OawJcYr4=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoiol6EohePFewHtKFsNpt26WYTdjdiDfklXjwo4tWf4s1/47bNQVsfDDzem2Fmnp9wprTjfFulldW19Y3yZmVre2e3au/tt1WcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj2+mfueBSsVica8nCfUiPBQsZARrIw3s6uNVP5SYZCHq5lmQD+yaU3dmQMvELUgNCjQH9lc/iEkaUaEJx0r1XCfRXoalZoTTvNJPFU0wGeMh7RkqcESVl80Oz9GxUQIUxtKU0Gim/p7IcKTUJPJNZ4T1SC16U/E/r5fq8NLLmEhSTQWZLwpTjnSMpimggElKNJ8Ygolk5lZERtjkoE1WFROCu/jyMmmf1t3zunt3VmtcF3GU4RCO4ARcuIAG3EITWkAghWd4hTfryXqx3q2PeWvJKmYO4A+szx+9t5Mm</latexit>

x =
fX

d

<latexit sha1_base64="PPxeiJOcFacgChtvvgiIy+DWjOs=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0XqqSQi6kUoevFYwX5AG8pmu2mXbjZhd6OWmJ/ixYMiXv0l3vw3btsctPXBwOO9GWbm+TFnSjvOt7W0vLK6tl7YKG5ube/s2qW9pooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb80fXEb91TqVgk7vQ4pl6IB4IFjGBtpJ5deqxcdgOJSRqgdpb2K1nPLjtVZwq0SNyclCFHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcJoVu4miMSYjPKAdQwUOqfLS6ekZOjJKHwWRNCU0mqq/J1IcKjUOfdMZYj1U895E/M/rJDq48FIm4kRTQWaLgoQjHaFJDqjPJCWajw3BRDJzKyJDbILQJq2iCcGdf3mRNE+q7lnVvT0t167yOApwAIdwDC6cQw1uoA4NIPAAz/AKb9aT9WK9Wx+z1iUrn9mHP7A+fwCGiJOI</latexit>

x0 =
fX

d0
<latexit sha1_base64="oBtqboh8IPa1tBmx4mjXrACKVYI=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIvUVUlE1I1QdOOygn1AG8pkMmmHTiZhZiItIQs3/oobF4q49SPc+TdO2yy09cCFM+fcy9x7vJhRqWz72yisrK6tbxQ3S1vbO7t75v5BS0aJwKSJIxaJjockYZSTpqKKkU4sCAo9Rtre6Gbqtx+IkDTi92oSEzdEA04DipHSUt8sy6teIBBOx1k6rmb5w69mqZ/1zYpds2ewlomTkwrkaPTNr54f4SQkXGGGpOw6dqzcFAlFMSNZqZdIEiM8QgPS1ZSjkEg3nR2RWcda8a0gErq4smbq74kUhVJOQk93hkgN5aI3Ff/zuokKLt2U8jhRhOP5R0HCLBVZ00QsnwqCFZtogrCgelcLD5GOQencSjoEZ/HkZdI6rTnnNefurFK/zuMoQhmO4AQcuIA63EIDmoDhEZ7hFd6MJ+PFeDc+5q0FI585hD8wPn8ASLyYgg==</latexit>

s =
x

x0 =
d0

d

<latexit sha1_base64="UetKWcYzswbgpVBgukPNPPg9XJI=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyxiXbTMiKgboejGZQX7gHYYMplMG5rJhCRTqLULf8WNC0Xc+hvu/BvTdhbaeuDC4Zx7ufeeQDCqtON8WwuLS8srq7m1/PrG5ta2vbNbV0kqManhhCWyGSBFGOWkpqlmpCkkQXHASCPo3Yz9Rp9IRRN+rweCeDHqcBpRjLSRfHs/LKqSe3IVHpfCtpCJ0Ans+w++XXDKzgRwnrgZKYAMVd/+aocJTmPCNWZIqZbrCO0NkdQUMzLKt1NFBMI91CEtQzmKifKGk/tH8MgoIYwSaYprOFF/TwxRrNQgDkxnjHRXzXpj8T+vlero0htSLlJNOJ4uilIGzZPjMGBIJcGaDQxBWFJzK8RdJBHWJrK8CcGdfXme1E/L7nnZvTsrVK6zOHLgAByCInDBBaiAW1AFNYDBI3gGr+DNerJerHfrY9q6YGUze+APrM8fCwKU2w==</latexit>

d(s� 1) = d0 � d / vz

Scene flow from MiD

• Train optic expansion network
• ptic expansion=1/s
• using existing scene flow training data

• Then attach to optic flow, cleanup

Learning to predict SF from point clouds

• Point clouds
• Eg LiDAR
• problem:

• given point cloud at t, t+1
• place a 3D motion vector on each point in t

• hard, because:
• there may be no corresponding point in t+1
• representing a point cloud is hard

• Strategy:
• don’t need corresponding points - use segments
• use pointnet features

Pointnet - a neat trick

• Required: learned feature representation of a point cloud
• Difficulty: point cloud has no order

• you can get the same point cloud in a different order
• could impose order, but…

• Permutation invariants:
• the basis for permutation invariants are the symmetric functions

• mostly, a nuisance to work with

• Idea:
• for any point cloud of n points in d dimensions,

2

4
max(x1,1, x2,1, . . . xn,1)

. . .
max(x1,d, x2,d, . . . xn,d)

3

5 is permutation invariant

Pointnet - a neat trick - II

• So:
• embed points in high dimension (K)
• compute this pooling
• now compute embedding of this feature vector
• the resulting object is permutation invariant

• and “general”
• assume

• f(S) continuous in hausdorff distance on point sets
• hausdorff distance on point sets = max dist to nearest

neighbor
• choose eps, and K big enough
• then there is some g(S) of this form st |f(S)-g(S)|<eps

Liu 19

Liu 19

Liu 19

How do we deal with relief?

• Surely some form of height field
• estimated by consistency
• changing slowly

• Horizon estimation gets complicated in tilted planes
• you might get distracted by distant horizon
• Local horizon estimator has problems

Nasty geometries

• Single image depth prediction likely doesn’t work here
• weird relief and dip in road

• Ground plane estimates likely don’t work here either

Estimating the camera

• Height
• from car (calibrated and known)

• Roll and pitch
• from horizon

• roll is why horizon isn’t parallel to image plane
• pitch is why it isn’t centerline

x

y
z

Plane z=-h

(s, t, -h)
(u, v)=(-s/t, -h/t)

horizon (v=0)

Sources of variation in the label map

• Foreshortening

• Wrong ground plane estimate

Sources of variation in the label map

• Torsion Horizon

Image

Ground plane

Horizon estimation

• Khan et al - vanishing points from road lines + fudge
• Workman et al - mark up dataset, classify

Horizons

• Horizon estimation gets
complicated in tilted planes
• you might get distracted by distant

horizon (picture)

Horizons

• Horizon estimation gets
complicated in tilted planes
• local cues are a problem

What to do?

• (Likely)
• build sources of variance into simulated label fields
• work on best available ground plane

• (possibly) estimate several planes to rectify label fields
• train without labelled images, as above

• note this is a clusterer

Notice

• Straightforward consistency losses are very powerful
• Minimal use of labelled data

• (augmentation by stereo pairs, but no labelling)

• Some form of photometric consistency loss for labels
• eg

• predict layout map 1
• move forward
• predict layout map 2
• they should register
• things that have the same label (tar, paint, junction, etc.)

• should look similar

Appearance Consistency and Clustering

• Map image into some feature space so that
• patches that “look similar” are “close”
• without markup

• Why?
• because doing so would help produce a layout map eg

• attach labels to clusters using current maps
• improve maps using labels

Deep Embedding Clustering

• Compute embedding that
• autoencodes
• clusters well

Xie et al 15

Clustering

• Cluster centers mu_j must
be estimated
• form membership weights as in

TSNE (alpha=1) ->

• We want these weights to
match a target distribution
• p_ij=target for j’th cluster on i’th

point
• KL divergence (as in TSNE)

Clustering-II

• But what are p?
• notice we have some form of

reestimation going on here

• After that, just descend
• note autoencoder initialization

would probably be done
differently now

Clustering

Xie et al 15

Clustering

Xie et al 15

Attribute discovery

• We have:
• a set of images labelled with class, but not attribute
• a feature construction (now very old fashioned)

• We want:
• to associate each image with a bit vector

• attribute present/absent
• where

• bits are “easily predicted”
• bits are “informative”
• bit vectors within a category cluster

Why do we care?

• Each imputes labels by
• compelling the label space to have strong properties

• variant clustering

• DEC suggests that this is enough to learn features
• DBC has fixed feature stack (but this is discriminative)

• Idea:
• a feature stack that is discriminative

• and perhaps has autoencoding properties
• likely clusters appearance in a useful way

• so you can impose labels by just compelling them to have spatial
structure

