Two cameras: Stereo and Optic Flow
Stereopsis

• Generically:
 • recover depth map from two images of scene
 • cameras may be calibrated/uncalibrated
 • may have large/small baseline
 • if uncalibrated, recover from fundamental matrix, above
 • do so by
 • finding correspondences
 • constructing depth map using correspondences
• Huge literature, with multiple important tricks, etc.
 • I’ll mention a small set
Pragmatics

• Simplify activities by rectifying to ensure
 • That camera image planes are coplanar
 • That focal lengths are the same
 • That the separation is parallel to the scanlines
 • (all this used to be called the epipolar configuration)
Rectification

Original view

Rectified views
Figure 13.6. Triangulation for rectified images: the rays associated with two points p and p' on the same scanline are by construction guaranteed to intersect in some point P. As shown in the text, the depth of P relative to the coordinate system attached to the left camera is inversely proportional to the disparity $d = u' - u$. In particular, the preimage of all pairs of image points with constant disparity d is a frontoparallel plane Π_d (i.e., a plane parallel to the camera retinas).
Pragmatics

- **Issue**
 - Match points

- **Strategy**
 - correspondences occur only along scanlines
 - represent points from coarse to fine
 - scale problems - some scales are misleading

- **Issue**
 - some points don’t have correspondences (occlusion)

- **Match left to right, then right to left**
 - if they don’t agree, break match
Some points don’t have matches
Some points don’t have matches
From Jones and Malik, “A computational framework for determining Stereo correspondences from a set of linear spatial filters"
From Jones and Malik, “A computational framework for determining Stereo correspondences from a set of linear spatial filters"
From Jones and Malik, “A computational framework for determining Stereo correspondences from a set of linear spatial filters"
Stereo as an optimization problem

- Original:
 - find \(q, q'\) that match, and infer depth

- Now:
 - choose value of depth at \(q\); then quality of match at \(q'\) is cost
 - optimize this
Discrete Quadratic Programs

• Minimize:
 • $x^T A x + b^t x$
 • subject to: x is a vector of discrete values

• Summary:
 • turn up rather often in early vision
 • from Markov random fields; conditional random fields; etc.
 • variety of cases:
 • some instances are polynomial
 • most are NP hard
 • but have extremely efficient, fast approximation algorithms
 • typically based on graph cuts, qv
Stereo as an optimization problem

- Typically:
 - quantize depth to a fixed number of levels
 - unary cost is color match
 - (photometric consistency constraint)
 - it can be helpful to match intensity gradients, too
 - pairwise cost from smoothness constraint on recovered depths
 - eg depth gradient not too big, etc.
 - massive discrete quadratic program
Stereo as an optimization problem (II)

- Segment images into regions
 - NOT semantic; small, constant color+texture
- Each region is assumed to have a linear disparity
 - \(d(x, y) = a \cdot x + b \cdot y + c \)
- Find a quantized “vocabulary” of such disparities
 - eg by initial disparity, incremental fitting
- For each region, choose the “best” in the “vocabulary”
 - This is a discrete optimization problem
 - It’s quadratic
 - unary term - does the chosen vocab item “agree” with color data?
 - binary term - are neighboring pairs of models “similar” on boundary?
Stereo resources

- Datasets and evaluations:
 - Middlebury stereo page has longstanding
 - datasets
 - evaluations with leaderboards
 - datasets with groundtruth
 - refs to other such collections
 - (but this is the best known, by a long way)
 - https://vision.middlebury.edu/stereo/
Optic flow

• Generically:
 • a “small” camera movement yields image 2 from image 1
 • determine where points in image 1 move

• Assume we’re moving rigidly in a stationary environment
 • then points will move along their epipolar lines
 • where the epipolar lines follow from fundamental matrix
 • so from camera movement

• Main point of contrast with stereo
 • Images are not usually simultaneous
 • so objects might have moved
Optical flow

• Generically:
 • a “small” camera movement yields image 2 from image 1
 • determine where points in image 1 move

• Assume we’re moving rigidly in a stationary environment
 • then points will move along their epipolar lines
 • where the epipolar lines follow from fundamental matrix
 • so from camera movement

• As we saw, HOW FAR they move is determined by depth
 • and by their movement!!!
There is flow here!

For camera motions in a rigid scene, you can determine ground truth. Evaluation is then by comparison to ground truth.
Recovering optic flow

- Huge literature
- Initial strategy:
 - Assume

\[
\frac{dI(x, y, t)}{dt} = \frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} = 0
\]

Image gradients

Flow (which is unknown)

\[
I_x u + I_y v + I_t = 0
\]
Recovering optic flow

• Strategies:
 • find $u(x, y), v(x, y)$ that minimizes some smoothness cost
 • subject to constraint on flow
 • what smoothness cost?
 • how to impose constraint?
 • assume flow has some parametric form within windows (eg. constant)
 • choose parameters to minimize error in window
 • what parametric model?
 • what windows?
 • If few or no objects move
 • impose a parametric depth model, and use that

\[I_x u + I_y v + I_t = 0 \]
If objects are moving, much harder to determine ground truth.

IDEA: Interpolate flow to get intermediate frame.

Evaluation is then by comparing interpolate to ground truth frame.
Figure 1. **Top row:** Image of a sequence where the person is stepping forward and moving his hands. The optical flow estimated with the method from [4] is quite accurate for the main body and the legs, but the hands are not accurately captured. **Bottom row,** **left:** Overlay of two successive frames showing the motion of one of the hands. **Center:** The arm motion is still good but the hand has a smaller scale than its displacement leading to a local minimum. **Right:** Color map used to visualize flow fields in this paper. Smaller vectors are darker and color indicates the direction.

Brox et al 09
Strategy

- Segment into regions, estimate region correspondences
 - use to inform flow estimate

Figure 9. **Left:** Two overlaid images of a tennis player in action. **Center left:** Region correspondences. **Center right:** Result with optical flow from [4]. The motion of the right leg is too fast to be estimated. **Right:** The proposed method captures the motion of the leg.
Optical flow resources

• Datasets and evaluations:
 • Middlebury optical flow page has longstanding
 • datasets
 • evaluations with leaderboards
 • datasets with groundtruth
 • refs to other such collections
 • (but this is the best known, by a long way)
 • https://vision.middlebury.edu/flow/