Value lteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

VS eS: Vi(s)= m?XZ’I’(s,a,s’) {I—i(s,a,s’) + ~ *(s')}

Now we know how to act for infinite horizon with discounted rewards!
* Run value iteration till convergence.
* This produces V*, which in turn tells us how to act, namely following:

7*(s) = argmaxaea » .. T(s,a,s")|[R(s,a,s") +yV*(s')]

Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

25

But it’s not really all over...

® What if:

® there are lots of states?
® we don’t know T?
® we don’t know R?

Policy iteration

® Idea:

® cvaluate some policy
® then make it better

Policy Evaluation

s Recall value iteration iterates:

Vi1 (s) = max 3 T(s, .)[R(s.) + V7 (")
S

= Policy evaluation:
\/77_T|_1(5) — ZT(S, 7(s),) [R(s, w(s),s) + ﬁ,"V,;ﬂ(s/)]

= At convergence:

Vs VT‘-(S) — Z T(S, 71'(5), 5’) [H.(s, 71'(5), S/) -1- ’)”VW(S/)]

Exercise 2

Consider a stochastic policy u(als), where p(als) is the probability of taking
action a when in state s. Which of the following is the correct value iteration
update to perform policy evaluation for this stochastic policy?

1. erl(s) —max, ., T(s,a,s)(R(s,a,s") +~+V/(s))

2. Vii(s) <= 220 20 mlals)T (s, a, 8) (R(s, a, 8") + V("))
3. V?il() A Z :u'(a|)111&)(3 (93 a, 3’)([{(3,(1, S’) + ’Yviu(sl))

Policy lteration

= Alternative approach:

= Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

= Repeat steps until policy converges

= [his is policy iteration
= [t's still optimal!

= Can converge faster under some conditions

Policy Evaluation Revisited

= /dea 1: modify Bellman updates

Vo (s) =0
Vi 1(s) — Y T(s,m(s),s)R(s,m(5), ") + Vi (s)]

= |dea 2: it s just a linear system, solve with
Matlab (or whatever),
variables: V7(s),
constants: T, R

Vs VT(s) =Y T(s,n(s),s)[R(s,7(s),8) +~vV™(s)]

Policy Iteration Guarantees

Policy Iteration iterates over:

= Policy evaluation: with fixed currenl policy , find values
with simplified Bellman updates:
* [terate until values converge

VIE (8) «— Y T(s,m(8),) [R(s, 7 (5),8") 4+~ V" (s")

* Policy improvement: with fixed utilities, find the best
action according to one-step lock-ahead

mr41(s) = argmax) T(s,a,s") (R(s,a,s") + vV (s")
a r L 4

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

Proof sketch:
(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be

encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)number states) e must be done and hence have converged.
(2) Optimal at convergence: by definition of convergence, at convergence ,,,(s) = m,(s) for all states s.

This means vs V7(s) = max, Yo T(s, a. ") [R(.‘i.n,s') + A 1;.'“(.5')]
Hence "+ satisfies the Bellman equation, which means 1+ is equal to the optimal value function V*.

Points

® Value iteration won’t work if we don’t know the prob of
new state from action

® also policy iteration
® So state-value

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, r,, s;,a,, fy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V™(s) =E Z'ytrt|so =8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z 'yt'rt|sg = 8,ap = a, 7!']

t>0

Fei-Fei+Johnson+Yeung 17

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair: _ _

Q"(s,a) = m7?rlX]E Z’Yt’rdso =S,a0 =Q,T
t>0

Q* satisfies the following Bellman equation:
Q(,0) = Evne [r + ymaxQ"(s',)ls,q

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a)

The optimal policy n* corresponds to taking the best action in any state as specified by Q*

Fei-Fei+Johnson+Yeung 17

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
.
Q’H‘l(sa a’) =E [T T ’YHlaE},XQz(S y 4)|87 CL:|

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Fei-Fei+Johnson+Yeung 17

Function approximation how?

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg~¢ ['r' + 7 max Q*(s',ad)ls, a]

Forward Pass
Loss function: L;(0;) = Eg a0p() [(¥i = Q(s,056;))?]

;4 lteratively try to make the Q-value
where y; = Eg g [7' + ’)’mae}x Q(s',a’;0i-1)|s,a close to the target value (y) it

should have, if Q-function
corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 6):

Vo,Li(0;) = Eg amp():s/ e ['r + 7y max Q(s',a';0;-1) — Q(s,a;0;))Ve,Q(s,a; 90]

Fei-Fei+Johnson+Yeung 17

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Fei-Fei+Johnson+Yeung 17

Two cases

® We know all probabilities, rewards
® we’ve dealt with this; change value iteration equations as required
® not that exciting cause it doesn’t happen very often
® if we do know all this stuff, the set of states and actions is small
® 5o we don’t really need a network model of Q

® We *don’t* know all probabilities, or rewards
® this means we have to estimate them
® Jikely as a result of acting
® quite possibly in simulation
® and we have to be very careful about errors in estimation

Estimating rewards

® The future looks like:

S0,aA0,7T0,51,A1,71,52,42,7T2, ...
/ / / / / /
S0, A0, 7T0,51,A1,71,S59,Uo,T9,.
% x k% k%
SO,CLO,TO,817a/1,rl,32,a2,r2, o o o

® and there are lots of them - we can’t see every trajectory

=

~

Sampling and the WLLN - I

® Generally, we can estimate expectations (WLLN)

Ly "~ p(CC) (Recall ~ means IID samples)

Sampling and WLLN - II

® But this means we could estimate the E
® draw samples of trajectories
® same as run simulator with policy pi some number of times
® average rewards over simulations
® [ssues:
® you need a simulator (or patience)
® there could be serious errors in the estimate

S50, a0, 70,S51,Q1,71,52,A2,7T2,... p
/ / / / / / /

S0,Q0,70,51,A1,771,59,Uo, T, ... P
% % ok k * % %

SO,CLO,TO781,CL1,T1,SQ,CLQ,TZ,... p

Variance 1n estimates - WLLN, 11

r; ~ p(x)

Importance sampling and WLLN - III

Lg ~ C](CE’)

1§ flaple) o f@p@) o[y
N | e e [st

X

Importance sampling and WLLN - IV

Lg ~ (J(flf)

Errors 1n estimating rewards

® The future looks like:

$0,Q0,70,51,Q1,71,52,Q2,72, ... p
/ / / / / / /

SO7CLO7TO7817G’17T17827a27r27'" p
% * 2% * % * k

S0, A0, 70y S1,A1,T1,59,Uo, Ty, ... P

® and there are lots of them - we can’t see every trajectory
® Notice that r_k could depend very strongly on a_1 (say)

® This creates a problem

® samples far in the future depend strongly on early choices
® results in variance in the sampled estimates

Errors 1n estimating rewards are important

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Learning a policy

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei+Johnson+Yeung 17

Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

Z vYire|me

J(0) =E

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei+Johnson+Yeung 17

Policy gradients - core 1dea

.

Compute J(0) = E

p(T)

y

Compute J(8') = E,

S0,Q0,70,51,Q1,71,S52,02,T2,.
/ / / / / /

S0, Q0,7T0,51,A7,71,S59,09o,T9, ...
%k k k% ok

S0, A0,7T0yS1yA1,T1,59,Uo, Ty, ...

S0,a0,70,51,A1,71,52,02,7T2, ...
/ / / / / /

S0, A0, 70, S1,A1,7T1,S9,09,T9, ..
* O T % %

S0,A0,70,51yA14,71,S9,09,To, ...

D A

P
p

1
%NZ

> under 7(6)

ZVt"“t

t

p* > under 7(6")

[
zﬁL

Z*ytrt
|2 i

REINFORCE algorithm

Mathematically, we can write:

J(0) = Errp(rio) [7(7)]
= /T(T)p(’r; 0)dr

Where r(r) is the reward of a trajectory 7 = (30, ap,To,S1y - -)

Fei-Fei+Johnson+Yeung 17

REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) 7 (7)]
— /r(T)p(T; 0)dr

Intractable! Gradient of an
expectation is problematic when p

Now let's differentiate this: V,.J () :/T(T)VQP(T;O)dT

T depends on 6
o Vop(T; 0)
However, we can use a nice trick: v p(r:) = p(7; 9) = p(7;0) Vg logp(7;0)
If we inject this back: p(7;0)
VoJ(0) = / (r(7)Ve log p(7;6)) p(7;0)dr
4 Can estimate with
= E,p(r:) [T(T) Vo log p(T; 6)] Monte Carlo sampling

Fei-Fei+Johnson+Yeung 17

VoJ(0) = / (r(7) Vs log p(7;8)) p(r; 0)dr

REINFORCE algorithm .y r0) [F(7) Vo log p(r:)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r;) = HP(8t+1|3taat)W6(at|8t)
£>0

Thus: logp(r;0) = ¥ _ logp(se+1lst, ar) + log me(aclst)

t>0 Doesn’t depend on

And when differentiating: Vologp(r;6) = > Vglogme(acls:) yransition probabilities!
t>0

Therefore when sampling a trajectory z, we can estimate J(0) with

VeJ(0) = Z r(7)Velog me(at|st)

t>0

Fei-Fei+Johnson+Yeung 17

Get samples

Gradient is

Sampled estimates

of trajectories (simulator)

S0,Q0,70,51,Q1,71,S52,02,T2,.
/ / / / / /

S0, Q0,7T0,S51,A7,71,59,A9,T9, ...
%k k _k k%

S0, A0, 7T0yS1yA1,T1,59,Uo, Ty, ...

1
N Z Z r+Vo log mg(at|st)

T t

p
P

p

\

> under 7(6)

Intuition

Gradient estimator: Vg J () ~ Z r(7)Velog mg(at|st)
t>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Fei-Fei+Johnson+Yeung 17

Variance reduction
Gradient estimator: VJ(6) & ZT(T)VQ log mg(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) ~ Z (Z rt/) Vo log g (at|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ (0 Z (Z 'yt “tp,) Vo log mg(as|st)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VeJ(0) ~ Z (Z A Tty — b(st)) Vo log mg(a|ss)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17

How to choose the baseline?

VoJ (0 T (T ~ "ty — b(st)) Vi log mg(a:|st)

t>0 >t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

Fei-Fei+Johnson+Yeung 17

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.
Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q™ (s, a:) — V7 (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(0) ~ Z(Q”e(st, ar) — V7™ (s¢))Velogmg(at|st)
t>0

Fei-Fei+Johnson+Yeung 17

Actor-Critic Algorithm

Problem: we don’'t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,0) = Q7 (s,0) — V™ (s)

Fei-Fei+Johnson+Yeung 17

Why so many RL algorithms?

* Different tradeoffs
» Sample efficiency

» Stability & ease of use

fit a model/
. . ﬁ estimate return
* Different assumptions

generate

» Stochastic or deterministic?

samples (i.e.

* Continuous or discrete? run the policy)

* Episodic or infinite horizon?

t improve the

olic
* Different things are easy or hard in i

different settings
» Easier to represent the policy?
* Easier to represent the model?

Levine, ND

Blog post entitled: “Why deep reinforcement learning doesn’t work™

https://www.alexirpan.com/2018/02/14/rl-hard.html

