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The SLAM Problem

" SLAM stands for simultaneous localization and
mapping

" The task of building a map while estimating
the pose of the robot relative to this map

" Why is SLAM hard?
Chicken-or-egg problem:

" a map is needed to localize the robot and
a pose estimate is needed to build a map

From Burgard et al slides



Alternative view of SLAM

® We already know we can do it
® for example
® do the matrix factorization stuff incrementally
® visual odometry then triangulate

e BUT
® that doesn’t take uncertainty into account
® What we’re doing now 1s
® wrapping an EKF (other filter) around ideas we’ve seen before



Simplest case

® Vehicle moves in 2D

® FEach measurement is
® a 2D measurement
® of position of a known beacon in vehicle coords
® (i.e. we know which measurement corresponds to which 3D point)



State

All landmark positions
in original coordinate
frame

Position and orientation of the robot

Landmark 1 position in OCF



A general movement model
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THIS ISN’T LINEAR!

v_t = velocity
omega_t = rotational velocity
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State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
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Recall: The extended Kalman filter

® [inearize: x; = f(Xi-1,1)
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Posterior covariance of x_{i-1}

x; ~ N(f(xF,,0), Fo. Xt | FL 4+ FuXn i FD)

Noise covariance




Measuring position

U
U

® [andmark is at:
® in world coordinate system

® We record position in vehicle’s frame:

vehicle orientation point posn in
in world coords  world coords
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Recall: The extended Kalman filter

® Linearize: yi = g(x;,n)
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Correction!

Dynamic Model:

X; = f(Xi—lvn)
Y = g(Xian)

Start Assumptions: T, and X, are known
Update Equations: Prediction 7"~ Z_
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Update Equations: Correction
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The extended kalman filter



In principle, now easy

® Rather horrid from the point of view of complexity
® ]ooks like we have to invert a 3+N by 3+N matrix!

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® [ n ditto
® there is no noise in the landmark updates - the landmarks are fixed
® (Qutcome:
® We can deal with landmarks one by one
® and so do many small matrix inversions rather than one large one



State update

® The vehicle moves, as above;
® but the landmarks don’t move ~
® and there 1sn’t any noise R
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State update, 11

e BUT

® [_x is much simpler than it might look
® the landmarks do not move!
® F_nditto
® there is no noise in the landmark updates - the landmarks are fixed

N=Number of landmarks
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® Imagine we have 2 landmarks

Recall EKF:

W 0 0 ]
Fr= 0 Z 0

0 0 T
szj—lfg:

State update, 111
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Notice fewer matrix multiplies!




State update, IV

® Imagine we have 2 landmarks

Recall EKF:
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More simplifications

e BUT

® G_x 1s much simpler than it might look
® cach set of measurements affected by only one landmark!

N N=Number of landmarks
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More simplifications

e BUT

® G_n is usually much simpler than it might look
® noise is usually additive normal noise

® This means that the term: Qn En Zg;{

® s actually a block diagonal matrix



Big simplification

® The nasty bit...
—1
G Gy +Gn Ym0, |

® But notice key point

® measurements interact only through the position/orientation of the vehicle
each measurement depends on only one landmark and pose of v.
OR measurements are conditionally independent conditioned on pose of v.
OR you could subdivide time and update measurements one by one
OR matrix G_x has the sparsity structure above

the same point, manifesting in different ways)
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Subdividing time...

® We receive measurements of landmarks in some order
® a measurement of the position of landmark i affects the whole state
® because it changes your estimate of the pose of the vehicle
® and that affects your estimate of state of every landmark
e BUT
® the change in estimate of pose depends ONLY on
® pose
® Jandmark 1



Subdividing time...

® Sequence
® repeat
® move (so make predictions)
® Jandmark 1 measurement arrives (update 1 and pose)
[ J
[

landmark N measurement arrives (update N and pose)



Steps in EKF
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One measurement from one landmark!

Steps in EKF

34+INX2 342N x 2 2x2

Notice:
Inverting only a small matrix

3+2Nx2
2x1
Notice:
But affecting the whole state!




Why is SLAM a hard problem?

% ¥ % % ¥ %
0\ ,l \\ ,.

\

/
/
/
/

o — Robot pose __— o

uncertainty

\

= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations

From Burgard et al slides



In factorization language

® Which point in image 1 goes into which row of the matrix?
® ¢et that wrong enough often enough and you’re in trouble

® (Obvious we can do something about this
® cg assume we have OK reconstruction from frame 1..N-1
® in frame N, estimate camera motion from
® small number of reliable point correspondences +VO
® shaft encoders, etc.
® now sort out all other observations
® cg map to the point that appears closest in predicted camera



Data Association Problem
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= A data association is an assignment of

observations to landmarks
= In general there are more than ("’)

m

(n observations, m landmarks) possible
associations

= Also called "assignment problem”

From Burgard et al slides



Landmarks

Which measurement comes from which landmark?

® data association -
® use some form of bipartite graph matching

® [dea: _
X,
® predicts landmark positions, vehicle position before obs
® compute distances between all pairs of
® predicted obs, real obs
® bipartite graph matcher

® OR greedy



Landmarks

® No measurement from a landmark?

® structure of EKF means you can process landmarks one by one
® that’s what all the matrix surgery was about
® 50 don’t update that landmark

® How do we know no measurement from a landmark?

® refuse to match if distance in greedy/bipartite is too big
® other kinds of matching problem (color, features, etc)



Measuring distance and orientation

e [.andmark is at: { u }

® in global coordinate system

® We record distance and heading:
® measurement

Hﬁ}:[ V(e —u)? +(y—v)? }

atan2(y —u,x —v) — 0

THIS ISN’T LINEAR!



A further trick: inverting measurement

e Example: measure distance and orientation to point

U point posn in
|: v :| world coords

vehicle posn in
world coords l

Observation
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atan2(y —u,x —v) — 0

|

vehicle orientation
in world coords




Range and bearing

Landmark position

Observation »[ Z ] _ [ \/(95—114)2 + (9—711)2 ]

atan2(y — u,x —v) — 0
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Vehicle state
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Noise affecting measurements

These are measurements
of landmark ONLY

Here use the current estimate of vehicle state



Bearing only (sketch)

® (Cannot determine landmark in 2D from measurement
® it’s on a line!
® you must come up with a prior
® after that, it’s easy
® {ind mean posterior location, covariance
® plugin
® Big Issue
® True prior should have infinite covariance
® can’t work with that
® 5o linearization may fail



