
C H A P T E R 12

Camera Matrices

12.1 SIMPLE PROJECTIVE GEOMETRY

Draw a pattern on a plane, then view that pattern with a perspective camera. The
distortions you observe are more interesting than are predicted by simple rotation,
translation and scaling. For example, if you drew parallel lines, you might see lines
that intersect at a vanishing point – this doesn’t happen under rotation, translation
and scaling. Projective geometry can be used to describe the set of transformations
produced by a perspective camera.

12.1.1 Homogeneous Coordinates and Projective Spaces

The coordinates that every reader will be most familiar with are known as affine
coordinates. In affine coordinates, a point on the plane is represented by 2 numbers,
a point in 3D is represented with 3 numbers, and a point in k dimensions is rep-
resented with k numbers. Now adopt the convention that a point in k dimensions
is represented by k+ 1 numbers not all of which are zero. Two representations X1

and X2 represent the same point (write X1 ≡ X2) if there is some λ ̸= 0 so that

X1 = λX2.

These coordinates are known as homogeneous coordinates, and will offer a particu-
larly convenient representation of perspective projection.

Remember this: In homogeneous coordinates, a point in a k dimen-
sional space is represented by k + 1 coordinates (X1, . . . , Xk+1), together
with the convention that

(X1, . . . , Xk+1) ≡ λ(X1, . . . , Xk+1) for λ ̸= 0.

The space represented by k+1 homogeneous coordinates is different from the
space represented by k affine coordinates in important but subtle ways. We start
with a 1D space. In homogenous coordinates, we represent a point on a 1D space
with two coordinates, so (X1, X2) (by convention, homogeneous coordinates are
written with capital letters). Two sets of homogeneous coordinates (U1, U2) and
(V1, V2) represent different points if there is no λ ̸= 0 such that λ(U1, U2) = (V1, V2).
Now consider the set of all the distinct points, which is known as the projective line.
Any point on an ordinary line (the affine line) has a corresponding point on the
projective line. In affine coordinates, a point on the affine line is given by a single
coordinate x. This point can be identified with the point on the projective line
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given by (X1, X2) = λ(x, 1) (for λ ̸= 0) in homogeneous coordinates. Notice that
the projective line has an “extra point” – (X1, 0) are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

Example: 12.1 Seeing the point at infinity

You can actually see the point at infinity. Recall that lines that are
parallel in the world can intersect in the image at a vanishing point.
This vanishing point turns out to be the image of the point “at infinity”
on the parallel lines. For example, on the plane y = −1 in the camera
coordinate system, draw two lines (1,−1, t) and (−1,−1, t) (these lines
are in Figure 32.2). Now these lines project to (f1/t, f(−1/t), f) and
(f(−1/t), f(−1/t), f) on the image plane, and their vanishing point is
(0, 0, f). This vanishing point occurs when the parameter t reaches
infinity. The exercises work this example in homogeneous coordinates.

There isn’t anything special about the point on the projective line given by
(X1, 0). You can see this by identifying x on the affine line with (X1, X2) = λ(1, x)
(for λ ̸= 0). Now (X1, 0) is a point like any other, and (0, X2) is “at infinity”. A
little work establishes that there is a 1-1 mapping between the projective line and
a circle (exercises).

Higher dimensional spaces follow the same pattern. In affine coordinates, a
point in a k dimensional affine space (eg an affine plane; affine 3D space; etc)
is given by k coordinates (x1, x2, . . . , xk). The space described by k + 1 homo-
geneous coordinates is a projective space (a projective plane; projective 3D space;
etc). A point (x1, x2, . . . , xk) in a k dimensional affine space can be identified with
(X1, X2, . . . , Xk+1) = λ(x1, x2, . . . , xk, 1) (for λ ̸= 0) in the k dimensional projec-
tive space. The points in the projective space given by (X1, X2, . . . , 0) have no
corresponding points in the affine space. Notice that this set of points is a k − 1
dimensional space in homogeneous coordinates. When k = 2, this set is a projective
line, and is referred to as the line at infinity, and the whole space is known as the
projective plane. As the exercises show, you can see the line at infinity: the horizon
of a plane in the image is actually the image of the line at infinity in that plane.

When k = 3, this set is itself a projective plane, and is known as the plane
at infinity; the whole space is sometimes known as projective 3-space. Notice this
means that 3D projective space is obtained by “sewing” a projective plane to the
3D affine space we are accustomed to. The piece of the projective space “at infinity”
isn’t special, using the same argument as above. The particular line (resp. plane)
that is “at infinity” is chosen by the homogeneous coordinate you divide by. There
is an established convention in computer vision of dividing by the last homogeneous
coordinate and talking about the line at infinity and the plane at infinity.
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Remember this: The k dimensional space represented by k + 1 ho-
mogeneous coordinates is a projective space. You can represent a point
(x1, . . . , xk in affine k space in this projective space as (x1, . . . , xk, 1). Not
every point in the projective space can be obtained like this – the points
(X1, . . . , Xk, 0) are “extra”. These points form a projective k − 1 space
which is thought of as being “at infinity”. Important cases are k = 1 (the
projective line with a point at infinity); k = 2 (the projective plane with a
line at infinity).

12.1.2 Lines and Planes in Projective Space

Lines on the affine plane form one important example of homogeneous coordinates.
A line is the set of points (x, y) where ax+ by+ c = 0 . We can use the coordinates
(a, b, c) to represent a line. If (d, e, f) = λ(a, b, c) for λ ̸= 0 (which is the same as
(d, e, f) ≡ (a, b, c)), then (d, e, f) and (a, b, c) represent the same line. This means
the coordinates we are using for lines are homogeneous coordinates, and the family
of lines in the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist on using
(u, v, 1) = (a/c, b/c, 1) to represent lines, the corresponding equation of the line
would be ux + vy + 1 = 0. But no such line can pass through the origin – our
representation has left out every line through the origin.

Lines on the projective plane work rather like lines on the affine plane. Write
the points on our line using homogeneous coordinates to get

(x, y, 1) = (X1/X3, X2/X3, 1)

or equivalently (X1, X2, X3) where X1 = xX3, X2 = yX3. Substitute to find the
equation of the corresponding line on the projective plane, aX1 + bX2 + cX3 = 0,
or aTX = 0. There is an interesting point here. A set of three homogenous
coordinates can be used to describe either a point on the projective plane or a line
on the projective plane.

Remember this: A line on the projective plane is the set of points X
such that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
line.
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Remember this: Write P1 and P2 for two points on the projective
plane that are represented in homogeneous coordinates and are different.
From the exercises, the line through these two points is given by

a = P1 ×P2.

From the exercises, a parametrization of this line is given by

UP1 + VP2.

Planes in projective 3-space work rather like lines on the projective plane.
The locus of points (x, y, z) where ax+ by+ cz + d = 0 is a plane in affine 3-space.
Because (a, b, c, d) and λ(a, b, c, d) give the same plane, we have that (a, b, c, d) are
homogeneous coordinates for a plane in 3D. We can write the points on the plane
using homogeneous coordinates to get

(x, y, z, 1) = (X1/X4, X2/X4, X3/X4, 1)

or equivalently

(X1, X2, X3, X4) where X1 = xX4, X2 = yX4, X3 = zX4.

Substitute to find the equation of the corresponding plane in projective 3-space
aX1 + bX2 + cX3 + dX4 = 0 or aTX = 0. A set of four homogenous coordinates
can be used to describe either a point in projective 3-space or a plane in projective
3-space.

Remember this: A plane in projective 3D is the set of points X such
that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
plane.
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Remember this: Write P1, P2 and P3 for three points in projective
3D that are represented in homogeneous coordinates, are different points,
and are not collinear. From the exercises, the plane through these points is
given by

a = NullSpace

 PT
1

PT
2

PT
3

 .

From the exercises, a parametrization of this plane is given by

UP1 + VP2 +WP3.

12.1.3 Homographies

Write X = (X1, X2, X3) for the coordinates of a point on the projective plane. Now
consider V = MX, where M is a 3× 3 matrix with non-zero determinant. We can
interpret V as a point on the projective plane, and in fact M is a mapping from
the projective plane to itself. There is something to check here. Write M(X) for
the point that X maps to, etc. Because X ≡ λX (for λ ̸= 0), we must have that
M(X) ≡ M(λX) otherwise one point would map to several points. But

M(X) = MX ≡ λMX = M(λX)

so M is a mapping. Such mappings are known as homographies. You should check
thatM(−1) is the inverse ofM, and is a homography. You should check thatM and
λM represent the same homography. Homographies are interesting to us because
any view of a plane by a perspective (or orthographic) camera is a homography,
and a variety of useful tricks rest on understanding homographies.

Any homography will map every line to a line. Write a for the line in the
projective plane whose points satisfy aTX = 0. Now apply the homography M to
those points to get V = MX. Notice that

aTM(−1)V = aTX = 0,

so that the line a transforms to the line M(−T )a. Homographies are easily inverted.

Remember this: A homography is a mapping from the projective plane
to the projective plane. Assume M is a 3×3 matrix with non-zero determi-
nant; then the homography represented by M maps the point with homoge-
neous coordinates X to the point with homogeneous coordinates MX. The
two matrices M and λM represent the same homography, and the inverse
of this homography is represented by M−1. The homography represented by
M will map the line represented by a to the line represented by M−Ta.
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12.2 CAMERA MATRICES AND TRANSFORMATIONS

12.2.1 Perspective and Orthographic Camera Matrices

In affine coordinates we wrote perspective projection as (X,Y, Z) → (X/Z, Y/Z)
(remember, we will account for f later). Now write the 3D point in homogeneous
coordinates, so

X = (X1, X2, X3, X4) where X1 = XX4, etc.

Write the point in the image plane in homogeneous coordinates as well, to obtain

I = (I1, I2, I3) where I1 = (X/Z)I3 and I2 = (Y/Z)I3.

So we could use

I = (X,Y, Z) ≡ (X/Z, Y/Z, 1) ≡ (X1/X4, X2/X4, X3/X4) ≡ (X1, X2, X3).

Notice that (X,Y, Z) is a natural choice of homogeneous coordinates for the point
in the image plane. This means that, in homogeneous coordinates, we can represent
perspective projection as

(X1, X2, X3, X4) → (X1, X2, X3) ≡ (X1, X2, X3).

or  I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X1

X2

X3

X4


where the matrix is known as the perspective camera matrix (write Cp). Notice
that this representation preserves the property that the focal point of the camera
cannot be imaged, and is the only such point. The focal point can be represented
in homogeneous coordinates by (0, 0, 0, T ), for T ̸= 0. This maps to (0, 0, 0), which
is meaningless in homogeneous coordinates. You should check no other point maps
to (0, 0, 0).

Remember this: The perspective camera matrix is

Cp =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

In affine coordinates, in the right coordinate system and assuming that the
scale is chosen to be one, scaled orthographic perspective can be written as (X,Y, Z) →
(X,Y ). Following the argument above, we obtain in homogeneous coordinates I1

I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 0 1



X1

X2

X3

X4
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where the matrix is known as the orthographic camera matrix (write Co).

Remember this: The orthographic camera matrix is

Co =

 1 0 0 0
0 1 0 0
0 0 0 1



12.2.2 Cameras in World Coordinates

The camera matrix describes a perspective (resp. orthographic) projection for a
camera in a specific coordinate system – the focal point is at the origin, the camera
is looking down the z-axis, and so on. In the more general case, the camera is placed
somewhere in world coordinates looking in some direction, and we need to account
for this. Furthermore, the camera matrix assumes that points in the camera are
reported in a specific coordinate system. The pixel locations reported by a practical
camera might not be in that coordinate system. For example, many cameras place
the origin at the top left hand corner. We need to account for this effect, too.

A general perspective camera transformation can be written as:

 I1
I2
I3

 =


Transformation
mapping image
plane coords to
pixel coords

 Cp


Transformation
mapping world
coords to camera

coords



X1

X2

X3

X4



= TiCpTe


X1

X2

X3

X4


The parameters of Ti are known as camera intrinsic parameters or camera intrin-
sics, because they are part of the camera, and typically cannot be changed. The
parameters of Te are known as camera extrinsic parameters or camera extrinsics,
because they can be changed.

12.2.3 Camera Extrinsic Parameters

The transformation Te represents a rigid motion (equivalently, a Euclidean transfor-
mation, which consists of a 3D rotation and a 3D translation). In affine coordinates,
any Euclidean transformation maps the vector x to

Rx+ t

where R is an appropriately chosen 3D rotation matrix (check the endnotes if
you can’t recall) and t is the translation. Any map of this form is a Euclidean
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FIGURE 12.1: A perspective camera (in its own coordinate system, given by X, Y
and Z axes) views a point in world coordinates (given by (u, v, w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u, v, w) to (s, t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.

transformation. You should confirm the transformation that maps the vector X
representing a point in 3D in homogeneous coordinates to

λ

[
R t
0T 1

]
X

represents a Euclidean transformation, but in homogeneous coordinates. It follows
that any map of this form is a Euclidean transformation. Because Te represents
a Euclidean transformation, it must have this form. The exercises explore some
properties of Te.

12.2.4 Camera Intrinsic Parameters

Camera intrinsic parameters must model a possible coordinate transformation in
the image plane from projected world coordinates (write (x, y)) to pixel coordinates
(write (u, v)), together with a possible change of focal length. This change is caused
by the image plane being further away from, or closer to, the focal point. The
coordinate transformation is not arbitrary (Figure 12.2). Typically, the origin of
the pixel coordinates is usually not at the camera center. Write ∆x for the step in
the image plane from pixel (i, j) to (i+1, j) and ∆y for the step to (i, j+1). These
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are vectors parallel to the camera coordinate axes. The vector ∆x may not be
perpendicular to the vector ∆y, causing skew. For many cameras, ||∆x || is different
from ||∆y || – such cameras have non-square pixels, and ||∆x ||/||∆y || is known as
the aspect ratio of the pixel. Furthermore, ||∆x || is not usually one unit in world
coordinates.

There is one tricky point here. Rotating the world about the Z axis has
an effect equivalent to rotating the camera coordinate system (Figure ??). This
means we cannot tell whether this rotation is the result of a change in the extrinsics
(the world rotated) or the intrinsics (the camera coordinate system rotated). By
convention, there is no rotation in the intrinsics, so a pure rotation of the image is
always the result of the world rotating.

There are two possible parametrizations of camera intrinsics. Recall f is the
focal length of the camera. Write (c′x, c

′
y) for the location of the camera center in

pixel coordinates; a for the aspect ratio of the pixels ; and k′ for the skew. Then
Ti is parametrized as ||∆x || k′ c′x

0 ||∆y || c′y
0 0 1/f

 ≡

 af ||∆y || fk′ fc′x
0 f ||∆y || fc′y
0 0 1


Notice in this case we are distinguishing between scaling resulting from ||∆y || and
scaling resulting from the focal length. This is unusual, but can occur. More usual
is to conflate these effects and parametrize the intrinsics as as k cx

0 s cy
0 0 1


where s = f ||∆y ||, a = ||∆x ||∆y, k = fk′, cx = fc′x, cy = fc′y.

Remember this: A general perspective camera can be written in
homogeneous coordinates as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4



=

 as k cx
0 s cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 −1 0

[ R t
0T 1

]
X1

X2

X3

X4


where R is a rotation matrix.
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FIGURE 12.2: The camera reports pixel values in pixel coordinates, which are not
the same as world coordinates. The camera intrinsics represent the transformation
between world coordinates and pixel coordinates. On the left, a camera (as in
Figure 2.1), with the camera coordinate system shown in heavy lines. On the right,
a more detailed view of the image plane. The camera coordinate axes are marked
(u, v) and the image coordinate axes (x, y). It is hard to determine f from the
figure, and we will conflate scaling due to f with scaling resulting from the change
to camera coordinates. The camera coordinate system’s origin is not at the camera
center, so (cx, cy) are not zero. I have marked unit steps in the coordinate system
with ticks. Notice that the v-axis is not perpendicular to the u-axis (so k - the skew
- is not zero). Ticks in the u, v axes are not the same distance apart as ticks on the
x, y axes, meaning that s is not one. Furthermore, u ticks are further apart than v
ticks, so that a is not one.

By the arguments above, a general orthographic camera transformation can
be written as:  I1

I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4


PROBLEMS

12.1. We construct the vanishing point of a pair of parallel lines in homogeneous
coordinates.
(a) Show that the set of points in homogeneous coordinates in 3D given by

(s,−s, t, s) (for s, t parameters) form a line in 3D.
(b) Now image the line (s,−s, t, s) in 3D in a standard perspective camera

with focal length 1. Show the result is the line (s,−s, t) in the image
plane.

(c) Now image the line (−s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (−s,−s, t) in the image
plane.

(d) Show that the lines (s,−s, t) and (−s,−s, t) intersect in the point (0, 0, t).
12.2. We construct the horizon of a plane for a standard perspective camera with
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focal length 1. Write a = [a1, a2, a3, a4]
T for the coefficients of the plane, so

that for every point X on the plane we have aTX = 0.
(a) Show that the plane given by u = [a1, a2, a3, 0] is parallel to the plane

given by a, and passes through (0, 0, 0, 1).
(b) Write the points on the image plane (u, v, 1) ≡ (U, V,W ) in homogeneous

coordinates. Show that the horizon of the plane is the set of points u in
the image plane given by lTu = 0, where l = [a1, a2, a3]

T .
12.3. A pinhole camera with focal point at the origin and image plane at z = f

views two parallel lines u+ tw and v + tw. Write w = [w1, w2, w3]
T , etc.

(a) Show that the vanishing point of these lines, on the image plane, is given
by (f w1

w3
, f w2

w3
).

(b) Now we model a family of pairs of parallel lines, by writing w(r, s) =
ra + sb, for any (r, s). In this model, u + tw(r, s) and v + tw(r, s) are
the pair of lines, and (r, s) chooses the direction. First, show that this
family of vectors lies in a plane. Now show that the vanishing point for
the (r, s)’th pair is (f ra1+sb1

ra3+sb3
, f ra2+sb2

ra3+sb3
).

(c) Show that the family of vanishing points (f ra1+sb1
ra3+sb3

, f ra2+sb2
ra3+sb3

) lies on a

straight line in the image. Do this by constructing c such that cT a =
cTb = 0. Now write (x(r, s), y(r, s)) = (−f ra1+sb1

ra3+sb3
,−f ra2+sb2

ra3+sb3
) and

show that c1x(r, s) + c2y(r, s) + c3 = 0.
12.4. All points on the projective plane with homogeneous coordinates (U, V, 0) lie

“at infinity” (divide by zero). As we have seen, these points form a projective
line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).

(b) A homography M =
[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective plane.

Show that the line whose coefficients are v3 maps to the line at infinity.
(c) Now write the homography as M =

[
m′

1,m
′
2,m

′
3

]
(so m′ are columns).

Show that the homography maps the points at infinity to a line given in
parametric form as sm′

1 + tm′
2.

(d) Now write n for a non-zero vector such that nTm′
1 = nTm′

2 = 0. Show
that, for any point x on the line given in parametric form as sm′

1 + tm′
2,

we have nTx = 0. Is n unique?
(e) Use the results of the previous subexercises to show that for any given line,

there are some homographies that map that line to the line at infinity.
(f) Use the results of the previous subexercises to show that for any given

line, there are some homographies that map the line at infinity to that
line.

12.5. We will show that there is no significant difference between choosing a right-
handed camera coordinate system and a left-handed camera coordinate system.
Notice that, in a right handed camera coordinate system (where the camera
looks down the negative z-axis rather than the positive z-axis) the image plane
is at z = −f .
(a) Show that, in a right-handed coordinate system, a pinhole camera maps

(X,Y, Z) → (−fX/Z,−fY/Z).

(b) Show that the argument in the text yields a camera matrix of the form

C′p =

 1 0 0 0
0 1 0 0
0 0 −1/f 0

 .



Section 12.2 Camera Matrices and Transformations 155

(c) Show that, if one allows the scale in Ti to be negative, one could still use

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0


as a camera matrix.


