
C H A P T E R 15

Registration

Computing a transformation that aligns an image or a depth map or a set
of images with another such is generally known as registration. One approach to
registration is to abstract the image (etc.) as a set of points, yielding the following
general problem. Assume we know a set of N reference points in d dimensions. We
observe M points in d dimensions, and these observed M points are obtained by
transforming the reference points with some transformation and adding noise, then
dropping some points and including some pure noise points. The two sets of points
are often referred to as point clouds. We want to determine the transformation
from the two point clouds.

This problem occurs in a wide range of practical applications. As we shall
see, calibrating a camera involves solving a version of this problem (Section 32.2).
Determining where you are in a known map very often involves solving a version
of this problem. Imagine, for example, a camera looking directly downwards from
an aircraft flying at fixed height. The image in the camera translates and rotates
as the aircraft moves. If we can compute the transformation from image i to image
i+ 1, we can tell how the aircraft has moved. Another useful case occurs when we
have a depth map of a known object and want to compute the pose of the object
(its position and orientation in the frame of the depth sensor). We could do so
by having reference points on the object, finding interest points in the depth map,
then solving for a transformation that maps reference points to depth points.

How one approaches this class of problem depends on three important factors.

� Correspondence: if it is known which observation corresponds to which
reference point, the problem is relatively straightforward to solve (unless
there are unusual noise effects). This case is uncommon, but does occur.
In robotics, beacons are objects that identify themselves (perhaps by wearing
a barcode; by transmitting some code; by a characteristic pattern) and can be
localized. They are useful, precisely because they yield correspondence and
so simplify computing the transformation. If correspondence is not known,
which is the usual case, computing the transformation becomes rather harder.

� Transformation: there are closed form solutions for known correspondence
and Euclidean or affine transformations. Homographies (and higher dimen-
sional analogs) do not admit closed form transformations.

� Noise: computing a transformation can become very hard if many of the
observations do not come from reference points, if many of the reference
points are dropped, or if some observations are subject to very large noise
effects.

174

Section 15.1 Registration with Known Correspondence and Gaussian Noise 175

15.1 REGISTRATION WITH KNOWN CORRESPONDENCE AND GAUSSIAN NOISE

15.1.1 Affine Transformations and Gaussian Noise

In the simplest case, the correspondence is known – perhaps the reference points
are beacons – and the only noise is Gaussian (so N = M). Write xi for the i’th
observation and yi for the i’th reference point. We will assume the noise is isotropic,
which is by far the most usual case. Once you have followed this derivation, you
will find it easy to incorporate a known covariance matrix. We have

xi = Myi + t+ ξi

where ξi is the value of a normal random variable with mean 0 and covariance matrix
Σ = σ2I. A natural procedure to estimate M and t is to maximize the likelihood
of the noise. Because it will be useful later, we assume that there is a weight wi for
each pair, so the negative log-likelihood we must minimize is proportional to∑

i

wi (xi −Myi − t)
T
(xi −Myi − t)

(the constant of proportionality is σ2, which doesn’t affect the optimization prob-
lem). The gradient of this cost with respect to t is

−2
∑
i

wi (xi −Myi − t)

which vanishes at the solution. In turn, if
∑

i wixi =
∑

i wiMyi, t = 0. One
straightforward way to achieve this is to ensure that both the observations and the
reference points have a center of gravity at the origins. Write

cx =

∑
i wixi∑
i wi

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy

and if we use ui as observations and vi as reference points, then the translation will
be zero. In turn, the translation from the original reference points to the original
observations is cx − cy.

We obtain M by minimizing∑
i

wi (ui −Mvi)
T
(ui −Mvi) .

Now write W = diag ([w1, . . . , wN]), U = [u1, . . . ,uN] (and so on). You should
check that the objective can be rewritten as

Tr
(
W(U −MV)T (U −MV)

)
.

Now the trace is linear; UTU is constant; and we can rotate matrices through the
trace (Section 32.2). This means the cost is equivalent to

Tr
(
−2MVUT +MTMVVT

)

176 Chapter 15 Registration

which will be minimized when

MVWVT = VWUT

(which you should check). Many readers will recognize a least squares solution here.
The trace isn’t necessary here, but it’s helpful to see an example using the trace,
because it will be important in the next case.

15.1.2 Euclidean Motion and Gaussian Noise

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because the M obtained that
way won’t be a rotation matrix. But we can obtain a least squares solution with a
rotation matrix, using a neat trick. We adopt the notation of the previous section,
and change coordinates from xi to ui as above to remove the need to estimate
translation.

We must choose R to minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi).

This can be done in closed form (a fact you should memorize). Equivalently, we
must minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U −RV)(U −RV)T

)
= Tr

(
−2UWVTRT

)
+K

(because RTR = I)
= −2Tr

(
RUWVT

)
Now we compute an SVD of UVT to obtain UWVT = ASBT (where A, B are
orthonormal, and S is diagonal – Section 32.2 if you’re not sure). Now BTRA is
orthonormal, and we must maximize Tr

(
BTRAS

)
, meaning BTRA = I (check this

if you’re not certain), and so R = BAT .

Section 15.1 Registration with Known Correspondence and Gaussian Noise 177

Procedure: 15.1 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Then the least squares estimate t̂ of t is

t̂ = cx − cy

Write U = [u1,u2, . . . ,uN] (etc); W = diag(w1, . . . , wN); and
SVD(USV) = AΣBT . The least squares estimate R̂ is

R̂ = BAT

15.1.3 Homographies and Gaussian Noise

We now work with d = 2, and allow the transformation to be a homography.
Solving for a homography requires solving an optimization problem, but estimating
a homography from data is useful, and relatively easy to do. Furthermore, we can’t
recover the translation component from centers of gravity (exercises TODO:
homography exercise). In all cases of interest, the points xi and yi will be
supplied in affine coordinates, rather than homogeneous coordinates, and we convert
to homogeneous coordinates by attaching a 1, as before. Write mij for the i, j’th
element of matrix M. In affine coordinates, a homography M will map yi =
(yi,x, yi,y) to xi = (xi,x, xi,y) where

xi,x =
m11yi,x +m12yi,y +m13

m31xi,x +m32xi,y +m33
and xi,y =

m21yi,x +m22yi,y +m23

m31xi,x +m32xi,y +m33

Write M(y) for the result of applying the homography to y, in affine coordinates.
In most cases of interest, the coordinates of the points are not measured precisely, so

178 Chapter 15 Registration

we observe xi = M(yi) + ξi, where ξi is some noise vector drawn from an isotropic
normal distribution with mean 0 and covariance Σ.

The error will be in affine coordinates – for example, in the image plane –
which justifies working in affine rather than homogeneous coordinates. Again, we
assume that the noise is isotropic, and so that Σ = σ2I. The homography can
be estimated by minimizing the negative log-likelihood of the noise, so we must
minimize

∑
i

wiξ
T
i ξi

where

ξi =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]

using standard methods (Levenberg-Marquardt is favored; Chapter 32.2). This
approach is sometimes known as maximum likelihood . Experience teaches that
this optimization is not well behaved without a strong start point.

There is an easy construction for a good start point. Notice that the equations
for the homography mean that

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0

so each corresponding pair of points xi, yi yields two homogeneous linear equa-
tions in the coefficients of the homography. They are homogeneous because scaling
M doesn’t change what it does to points (check this if you’re uncertain). If we
obtain sufficient points, we can solve the resulting system of homogeneous linear
equations. Four point correspondences yields an unambiguous solution; more than
four – which is better – can be dealt with by least squares (exercises TODO:
fourpoint homography). The resulting estimate of M has a good reputation as a
start point for a full optimization.

Section 15.1 Registration with Known Correspondence and Gaussian Noise 179

Procedure: 15.2 Estimating a Homography from Data

Given N known source points yi = (yi,x, yi,y) in affine coordinates and
N corresponding target points xi with measured locations (xi,x, xi,y)
and where measurement noise has zero mean and covariance Σ = σ2I,
estimate the homography M with i, j’th element mij by minimizing:∑

i

ξTi ξi

where

ξ =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
Obtain a start point by as a least-squares solution to the set of homo-
geneous linear equations

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0.

15.1.4 Projective Transformations and Gaussian Noise

A projective transformation is the analogue of a homography for higher dimensions.
In affine coordinates, a projective transformation M will map yi = (yi,1, . . . , yi,d)
to xi = (xi,1, . . . , xi,d) where

xi,1 =
m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)

and

xi,d =
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)

Estimating this transformation follows the recipe for a homography, but there are
now more parameters. I have put the result in a box, below.

180 Chapter 15 Registration

Procedure: 15.3 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and where measurement noise has zero mean and is
isotropic, the homography M with i, j’th element mij by minimiz-
ing: ∑

i

ξTi Σ
−1ξi

where

ξi =

 xi,1 −
m11yi,1+...+m1dyi,d+m1(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

. . .

xi,d −
md1yi,1+...+mddyi,d+md(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

Obtain a start point by as a least squares solution to the set of homo-
geneous linear equations

0 = xi,1(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m11yi,1 + . . .+m1dyi,d +m1(d+1)

. . .

0 = xi,d(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

15.2 UNKNOWN CORRESPONDENCE

15.2.1 Unknown Correspondence and ICP

Now assume correspondences are not known, and some reference (resp. observed)
points may not even have corresponding observed (resp. reference) points. We
have N reference points yi and M observed points xi. For the moment, we will
assume that all weights wi are 1. A straightforward, and very effective, recipe
for registering the points is iterative closest points or ICP. The key insight here is
that, if the transformation is very close to the identity, then the yc(i) that corre-
sponds to xi should be the closest reference point to xi. This finding the closest
reference point to each measurement and computing the transformation using that
correspondence. But the transformation might not be close to the identity, and so
the correspondences might change. We could repeat the process until they stop
changing.

Formally, start with a transformation estimate T1, a set of m
(1)
i = T (1)(yi)

and then repeat two steps:

� Estimate correspondences using the transformation estimate. Then, for

each xi, we find the closest m(n) (say m
(n)
c); then xi corresponds to m

(n)
c(i).

Section 15.2 Unknown Correspondence 181

� Estimate a transformation T (n+1) using the corresponding pairs. This

maps each m
(n)
c(i) to its corresponding xi.

These steps are repeated until convergence, which can be tested by checking if
the correspondences don’t change or if T (n+1) is very similar to the identity. The
require transformation is then

T (n+1) ◦ T (n) ◦ . . . T (1)

There are a number of ways in which this very useful and very general recipe
can be adapted. First, if there is any description of the points available, it can be
used to cut down on correspondences (so, for example, we match only red points
to red points, green points to green points, and so on). Second, finding an exact
nearest neighbor in a large point cloud is hard and slow, and we might need to
subsample the point clouds or pass to approximate nearest neighbors (more details
below). Third, points that are very far from the nearest neighbor might cause
problems, and we might omit them (again, more details below).

15.2.2 ICP and Sampling

One particularly useful application of ICP occurs when one wishes to register a mesh
to a set of points. For example, you might want to register a cloud of measured
points to a mesh model of an object built using a CAD modelling system. A natural
procedure is to sample points on the mesh model to get a point cloud, then treat the
problem using ICP. Another useful application is when one has two mesh models,
where the triangulation of the meshes might not be the same. In this case, you
could sample both meshes to end up with two point clouds, then register the point
clouds. How one samples the mesh or meshes is important.

The ICP recipe becomes difficult to apply to point clouds when M or N are
very large. One obvious strategy to control this problem applies when something
else – say, a color measurement – is known about each point. For example, we
might get such data by using a range camera aligned with a conventional camera,
so that every point in the depth map comes with a color. When extra information
is available, one searches only compatible pairs for correspondences.

Large point clouds are fairly common in autonomous vehicle applications. For
example, the measurements might be LIDAR measurements of some geometry. It
is quite usual now to represent that geometry with another, perhaps enormous,
point cloud, which you could think of as a map. Registration would then tell the
vehicle where it was in the map. Notice that in this application, there is unlikely
to be a measurement that exactly corresponds to each reference point. Instead,
when the registration is correct, every xi is very close to some transformed yi, so
a least squares estimate is entirely justified. In cases like this, one can subsample
the reference point cloud, the measurement point cloud, or both.

The sampling procedure depends on the application, and can have significant
effects. For example, imagine we are working with LIDAR on a vehicle which is
currently in an open space next to a wall (Figure ??). There will be many returns
from the wall, and likely few from the open space. Uniformly sampled measurements
would still have many returns from the wall, and few from the open space. This

182 Chapter 15 Registration

Sample

Register

FIGURE 15.1: In many problems, one has to register a mesh – which might come
from a CAD model – to a set of measurements – which might come from LIDAR
or from a range camera. Top left: shows a view of a very simple 1D mesh, in
2D. Registering this mesh to a set of measurements bottom is a straightforward
application of ICP. One samples the mesh top left, then registers this set of points
to the measurements.

FIGURE 15.2: On the left a map of a simple arena, represented as a point cloud.
Such a map could be obtained by registering LIDAR measurements to one another.
A LIDAR or depth sensor produces measurements in the sensor’s coordinate sys-
tem, and registering these measurements to the map will reveal where the sensor is.
However, the sensor may measure points more densely at some positions than at
others. Left shows such a measurement; note the heavy sampling of points near the
corner and the light sampling on the edges. This can bias the registration, because
the large number of points near the corner mean that the registration error consists
mostly of errors from these points. It can also create significant computational prob-
lems, because finding the closest points will become slower as the number of points
increases. A stratified sample of the measurements (right) is obtained by dividing
the plane (in this case) into cells of equal area (usually a grid), then resampling the
measurements at random so there are no more than a fixed number of samples in
each box. Such a sample can both reduce bias and improve the speed of registration.
TODO: Source, Credit, Permission

Section 15.2 Unknown Correspondence 183

FIGURE 15.3: The sample of points used in registration can be biased in useful ways.
For example, (a) shows a cross section of a flat surface with a small groove (above)
which needs to be registered to a similar surface (below). If point samples are drawn
on the surface at random, then there will be few samples in the groove; the dashed
lines indicate correspondences. In turn, the registration will be poor, because the
surfaces can slide on one another. In (b), the samples have been drawn so that
normal directions are evenly represented in the samples. Notice this means more
samples concentrated in the groove, and fewer on the flat part. As a result, the
surface is less free to slide, and the registration improves.
TODO: what do c and d show? TODO: Source, Credit, Permission

could bias the estimate of the vehicle’s pose. A better alternative would be to
build a stratified sample by breaking the space around the vehicle into blocks of
fixed size, then choosing uniformly at random a fixed number of samples in each
block. In this scheme, the wall would be undersampled, and the open space would
be oversampled, somewhat resolving the bias.

Another stratified sampling strategy is to ensure that surface normal direc-
tions are evenly represented in the samples. Make an estimate of a surface normal
at each point (for example, by fitting a plane to the point and some of its nearest
neighbors). Now break the unit sphere, which encodes the surface normals, into
even cells, and sample the points so that each cell has the same number of samples.
This approach is particularly useful when we are trying to register flat surfaces with
small relief details on them (Figure ??).

15.2.3 ICP: Finding Nearest Neighbors

Finding the exact nearest neighbor of a query point in a large collection of reference
points is more difficult than most people realize (one can beat linear search, but
by only a very small factor []). However, finding a point that has high probability
of being almost as close as the nearest neighbor (an approximate nearest neighbor)
can be done rather fast using a variety of approximation schemes []. It is usual to
substitute an approximate nearest neighbor, found using a k-d tree (eg []).

184 Chapter 15 Registration

FIGURE 15.4: Significant registration errors can be caused by just one point that is
in the wrong place. On the left, a set of empty points must be registered to a set of
filled points. Notice that one empty point is badly out of place. An ideal registration
would ignore this, and put the approximate line of empty points on the line of filled
points. On the right, the registration that actually results. The square of a large
number is very large, meaning the minimum of the squared error isn’t where you
might think; reducing the large offset entirely justifies a set of medium sized errors.
Points that lie significantly far from their “natural” positions are often known as
outliers.

Resources: ICP TODO: ICP Resources

15.3 NOISE THAT ISN’T GAUSSIAN: ROBUSTNESS AND IRLS

In our examples, if we assume the noise is normal and isotropic, the squared error
is reasonably described as negative log-likelihood. But in some cases, even when
the measurements and the reference points are properly aligned, some measurement
points may lie quite far from the closest reference point. One reason is pure error.
Effects like scattering from rain or translucency can cause LIDAR or depth sensors
to report measurements that are quite different from the actual geometry. Another
is overhangs, which occur when either the reference or measured set contains points
representing geometry that isn’t in the other set. In this case, some points from
one set should be far away from the closest point in the other set. Each of these
effects (Figure 32.2) means that modelling noise as Gaussian may not be justified.

Large distances between some point pairs could have a significant effect on
the estimate of the transformation. The square of a large number is very large
indeed, so that reducing a large distance somewhat can justify incurring small to
medium error on many other pairs (Figure ??). A simple procedure to manage this
effect is to ignore corresponding pairs if the distance between them is too large.
One estimates the transformation using only pairs where distances are small. If

Section 15.3 Noise that isn’t Gaussian: Robustness and IRLS 185

points were omitted in one step of the iteration, they may return in another. This
strategy can be helpful, but there is a danger that too many pairs are omitted
and the iteration does not converge. Corresponding pairs with large distances
between them are likely outliers – measurements or data that will not conform to a
model, but can have significant impact on estimating the model. Well established
procedures for handling outliers are easily adapted to registration problems.

15.3.1 IRLS: Weighting Down Outliers

Rather than just ignoring big distances, one might weight down correspondences
that seem implausible. Doing so requires some way to estimate an appropriate
set of weights. A large weight for errors at points that are “trustworthy” and a
low weight for errors at “suspicious” points should result in a registration that
is robust to outliers. We can obtain such weights using a robust loss, which will
reduce the cost of large errors. This can be seen as modifying the probability model.
Gaussian noise tends to produce few large values (which so have very large negative
log-likelihood), and we want a model that has higher probability of large errors
(equivalently, penalizes them less severely than a normal model would). Write θ for
the parameters of the transformation, Tθ for the transformation, and ri(xi,yc(i), θ)
for the residual error of the model on the ith measurement and its corresponding
reference point. For us, ri will always be l2normxi − Tθ(yc(i)). So rather than
minimizing ∑

i

(ri(xi,yc(i), θ))
2

as a function of θ, we will minimize an expression of the form∑
i

ρ(ri(xi,yc(i), θ);σ),

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick is to make ρ(u;σ) look like u2 for
smaller values of u, but ensure that it grows more slowly than u2 for larger values
of u.

The Huber loss uses

ρ(u;σ) =

{
u2

2 |u | < σ

σ|u | − σ2

2

which is the same as u2 for −σ ≤ u ≤ σ, switches to |u | for larger (or smaller) σ,
and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter σ (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can
lie from the fitted function while still being seen as an inlier (anything that isn’t
even partially an outlier).

The Pseudo Huber loss uses

ρ(u;σ) = σ2

(√
1 +

(u
σ

)
− 1

)
.

186 Chapter 15 Registration

FIGURE 15.5:

TODO: Figure showing a bunch of robust loss functions TODO: Source, Credit,
Permission

A little fiddling with Taylor series reveals this is approximately u2 for |u |/σ small,
and linear for |u |/σ big. This has the advantage of being differentiable.

The **** TODO: what is this loss called uses

ρ(u;σ) =
σ2u2

u2 + σ2

which is approximately u2 for |u | much smaller than σ, and close to σ2 for |u |
much larger than σ.

Each of these losses increases monotonically in |u | (the absolute value is im-
portant here!), so it is always better to reduce the residual. For the Huber loss and
the Pseudo-Huber loss, the penalty grows with |u |, but grows more slowly with
big |u | than with small |u |. This implies that the underlying probability model
will produce very large distances less often than large distances, but more often
than a Gaussian model would. For the **** loss, the penalty eventually increases
extremely slowly with increasing |u |, implying the underlying probability model is
willing to produce arbitrarily large distances on occasion, and that the probability
of large distances declines very slowly.

Our minimization criterion is

∇θ

(∑
i

ρ(r(xi,yi, θ);σ)

)
=

∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ)

= 0.

Here the derivative ∂ρ
∂u is evaluated at r(xi,yi, θ, so it is a function of θ. Now notice

that∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ) =

∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
r(xi,yi, θ)∇θr(xi,yi, θ)

=
∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
∇θ [r(xi,yi, θ)]

2

= 0.

Now [r(xi,yi, θ)]
2
is the squared error. If we happened to know the true minimum

θ̂ and wrote

wi =

(
∂ρ
∂u

r(xi,yi, θ)

)
(evaluated at that minimum), then∑

i

wi∇θ [r(xi,yi, θ)]
2
= 0

Section 15.3 Noise that isn’t Gaussian: Robustness and IRLS 187

at θ = θ̂. We do not know wi, but if we did, we already have a recipe to solve this
problem for a variety of different transformations (Sections 32.2, 32.2 and 32.2). A
natural strategy to adopt is to start with some transformation estimate and unit
weights, then repeat:

� Estimate correspondences using the estimated transformation. Because
all the robust losses are monotonic in |u |, finding the closest reference point
to each measurement will do.

� Re-estimate weights using the new correspondences and the transforma-
tion.

� Re-estimate transformation using the new correspondences and the new
weights, and the closed form algorithms from Sections 32.2, 32.2 and 32.2.

This procedure is known as iteratively reweighted least squares

Procedure: 15.4 Estimating a Transformation from Data with a Robust
Loss: Initialization

Given N known reference points yi = (yi,1, . . . , yi,d) in affine co-
ordinates and M measurements xi = (xi,1, . . . , xi,d), initialize by:
TODO: What is best? likely translation from cogs, affine / euclidean
from second moments, but how do you compute second moments ro-
bustly?

188 Chapter 15 Registration

Procedure: 15.5 Estimating a Transformation from Data with a Robust
Loss: Iteration

Start with N known reference points yi = (yi,1, . . . , yi,d) in affine coor-
dinates andM measurements xi = (xi,1, . . . , xi,d), and a transformation

estimate Tθ(1) with parameters θ1. Form m
(1)
i = Tθ(1)(yi), then iterate:

� for each xi, find m
(n+1)
c(i) that is closest;

� for each pair (xi,m
(n+1)
c(i)), form ui = ||xi −m

(n+1)
c(i) ||2 and

wi =

(
∂ρ
∂u

ui

)
;

� estimate Tθ(n+1) using the set of pairs (xi, mc(i)) and the weights
wi;

� form mi = Tθ(n+1)(mi).

Test for convergence by testing either that the correspondences did not
change in a round, or by checking that Tθ(n+1) is close to the identity.
The required transformation is Tθ(n+1) ◦ Tθ(n) ◦ . . . ◦ Tθ(1) .

