The Kalman Filter in ID

D.A. Forsyth, UIUC

A 1D Problem

- Drop a measuring device on a cable down a hole
 - where is it?
- Setup:
 - ullet measurement of depth ${\mathcal X}$
 - ullet actual distance down the hole heta
 - ullet known p(heta) which will be normal, $N(heta_c;\sigma_c^2)$
 - ullet known p(x| heta) which will be normal, $N(c heta;\sigma_m^2)$
- Q: what is $p(\theta|x)$?

A 1D problem, II

$$p(heta|x) = rac{p(x| heta)p(heta)}{p(x)}$$
 (Bayes rule), so that:
$$p(heta|x) \propto p(x| heta)p(heta)$$

And:

$$\log p(\theta|x) = \log p(x|\theta) + \log p(\theta) + K$$

$$= -\frac{(c\theta - x)^2}{2\sigma_m^2} - \frac{(\theta - \theta_c)^2}{2\sigma_c^2} + K'$$

A 1D problem, III

$$\log p(\theta|x) = \frac{-\frac{(c\theta - x)^2}{2\sigma_m^2} - \frac{(\theta - \theta_c)^2}{2\sigma_c^2} + K'}{-\frac{\theta^2}{2\sigma_m^2} \left[\frac{\sigma_m^2 + c^2\sigma_c^2}{\sigma_m^2\sigma_c^2}\right] + \theta\left[\frac{\theta_c\sigma_m^2 + cx\sigma_c^2}{\sigma_m^2\sigma_c^2}\right] + K''}$$

A 1D problem, IV

• Now *IF*

$$p(\theta|x)$$
 is normal (say $N(\mu_t; \sigma_t^2)$)

Then

$$\log p(\theta|x) = -\frac{(\theta - \mu_t)^2}{2\sigma_t^2} + K'''$$

$$= -\frac{\theta^2}{2\sigma_t^2} + \theta \frac{\mu_t}{\sigma_t^2} + K'''$$

Pattern match

$$\log p(\theta|x) = \frac{-\frac{(c\theta - x)^2}{2\sigma_m^2} - \frac{(\theta - \theta_c)^2}{2\sigma_c^2} + K'}{-\frac{\theta^2}{2\sigma_m^2} \left[\frac{\sigma_m^2 + c^2\sigma_c^2}{\sigma_m^2\sigma_c^2}\right] + \theta\left[\frac{\theta_c\sigma_m^2 + cx\sigma_c^2}{\sigma_m^2\sigma_c^2}\right] + K''}$$

$$\log p(\theta|x) = -\frac{(\theta - \mu_t)^2}{2\sigma_t^2} + K'''$$

$$= -\frac{\theta^2}{2\sigma_t^2} + \theta \frac{\mu_t}{\sigma_t^2} + K'''$$

A 1D Problem, V

$$\mu_t = \frac{\theta_c \sigma_m^2 + cx \sigma_c^2}{\sigma_m^2 + c^2 \sigma_c^2}$$

$$\sigma_t^2 = \frac{\sigma_c^2 \sigma_m^2}{\sigma_m^2 + c^2 \sigma_c^2}$$

- Important checks:
 - what happens if measurement is unreliable?
 - what happens if prior is very diffuse?

Summary, with change of notation

Useful Fact: 9.2 The parameters of a normal posterior with a single measurement

Assume we wish to estimate a parameter θ . The prior distribution for θ is normal, with known mean μ_{π} and known standard deviation σ_{π} . We receive a single data item x_1 and a scale c_1 . The likelihood of x_1 is normal with mean $c_1\theta$ and standard deviation $\sigma_{m,1}$, where $\sigma_{m,1}$ is known. Then the posterior, $p(\theta|x_1, c_1, \sigma_{m,1}, \mu_{\pi}, \sigma_{\pi})$, is normal, with mean

$$\mu_1 = \frac{c_1 x_1 \sigma_{\pi}^2 + \mu_{\pi} \sigma_{m,1}^2}{\sigma_{m,1}^2 + c_1^2 \sigma_{\pi}^2}$$

and standard deviation

$$\sigma_1 = \sqrt{\frac{\sigma_{m,1}^2 \sigma_{\pi}^2}{\sigma_{m,1}^2 + c^2 \sigma_{\pi}^2}}.$$

Now a second measurement arrives...

- We know that $p(\theta|x)$ is normal
 - think of this as the prior
- We know that $p(x_1|\theta)$ is normal
 - think of this as the likelihood
- So:
 - the posterior $p(\theta|x_1,x)$ must be normal
 - and we can update as before!