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A 1D Problem

® Drop a measuring device on a cable down a hole
® where is it?

® Setup:
® measurement of depth £
® actual distance down the hole 9
® known p(@ ) which will be normal, N ((9 e 0'(2:)

® known p(gj"@) which will be normal, N(CH, 0-7277,)

e Q: whatis  p(f|x)?



A 1D problem, II

p(z|0)p(0)
(9 ) = (Bayes rule), so that:
PO ="y o
p(0|z) o< p(z|0)p(6)
And:
log p(0z) = log p(z|0) + log p(#) + K
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A 1D problem, III
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A 1D problem, IV

® Now *[F* p(9|$) 1s normal (say N(,ut;Utz))
® Then
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log p(0|x)

Pattern match




A 1D Problem, V
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® Important checks:
® what happens if measurement is unreliable?
® what happens if prior is very diffuse?




Summary, with change of notation

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter #. The prior distribution for
# is normal, with known mean p, and known standard deviation o.
We receive a single data item 2; and a scale ¢;. The likelihood of z;
is normal with mean ¢16 and standard deviation 0,1, where o, 1 is
known. Then the posterior, p(f|z1,¢1,0m.1, ltx,0x), is normal, with
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Now a second measurement arrives...

® We know that p(@\az‘ ) 1s normal
® think of this as the prior

® We know that p(x1|6) is normal
® think of this as the likelihood

® So:
® the posterior p(@ ’ L1, Zl?) must be normal

® and we can update as before!



