Bird’s Eye Views

D.A. Forsyth, UIUC



Bird’s Eye Views (BEVs)

® [ssue:
® what coordinate frame should we use to make decision
® [dea:
® Ground plane is better than image
® Why:
® relations between objects are preserved



Bird’s Eye Views (BEVs)
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Figure 1: Our goal is to infer the layout of complex driving
scenes from a single camera. Given a perspective image (top
left) that captures a 3D scene, we predict a rich and inter-
pretable scene description (bottom right), which represents

. the scene in an occlusion-reasoned semantic top-view.
Chitta et al 22 P

Wang et al 19




(a) The expert waits before taking the turn because the trajec-
tory forecasting predicts a collision if the expert would drive.

Chitta et al 22

(b) After the oncoming cars have passed, the expert crosses
the intersection.



In BEV, layout 1s stylized
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Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.

Schulter et al 18



Q: How do we get one from sensors?

Prediction

Ground Truth

Fig. 4. Visualization results of BEVFormer on nuScenes val set. We show the
3D bboxes predictions in multi-camera images and the bird’s-eye-view.

Lietal 22



Issues




Technologies

Camera Geometry
Segmentation

Depth from single image
Normal from single image
Inpainting

Registration

Adversarial Losses



Camera Geometry

horizon (v=0)

(s, t, -h)
(u, v)=(-s/t, -h/t)

Plane z=-h




Semantic segmentation

D.A. Forsyth



The problem
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Variants: Semantic Instance Segmentation

® Tag every pixel,
e BUT different instances of the same class get different tags

instance-level labelling

pixel-level labelling



Variants: 3D semantic segmentation

Figure 5. Results for terrestrial laser scans. Top row: urban street in St. Gallen (left), market square in Feldkirch (right). Bottom row:
church in Bildstein (left), cathedral in St. Gallen (right) with classes: man-made terrain, natural terrain, high vegetation, .
buildings, remaining hard scape and scanning artefacts. Hackel et al



Variants: Map to Scene model

Fig. 6: Semantic image segmentation: The top row shows
the input street-level images and the middle row shows
the output of the CRF labeller. The bottom row shows the
corresponding ground truth for the images.

Fig. 3: Bundle adjustment results, showing camera centres
and 3D points, registered manually to the Google map.

Sengupta et al



Variants: Map to Scene model

Fig. 4: Volumetric surface reconstruction. Top figure shows
the 3D surface reconstruction over 250 frames (KITTI se-
quence 15, frames 1-250) with street image shown at the
bottom. The arrow highlights the relief of the sidewalk which
is correctly captured in the 3D model.

Pavement Car Building

Signage Poles

Pedestrian

Fig. 8: Semantic model of the reconstructed scene overlayed
with the corresponding Google Earth image. The inset image
shows the Google earth track of the vehicle.

Sengupta et al



Variants: Stixels
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Figure 1: The multi-layer Stixel World result as output of the optimization. The captured scene is
segmented into planar Stixel segments that correspond to either ground or object. The color represents

the distance to the obstacle with red being close and green far away. Grey pixels belong to the ground
surface.

Pfeiffer + Franke



Why bother?

Driving (maybe - why everything?)



Why bother?

Medical applications (compelling)



Important variants

Partial semantic segmentation
® some pixels unlabelled

Thing segmentation
® Jabel “things”

® count nouns (car, person, dog...)
Stuff segmentation

® label “stuff™
® mass nouns (grass, sky, water...)

Panoptic segmentation
® cach pixel gets a label

® cach instance of a count noun gets a different label (person-a, etc)
® [ *think* MS-COCO and Cityscapes use the term differently



Issues

® ][.abel distributions are skewed
® Pascal 2010

® from Mottaghi et al 14
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Figure 2. Distribution of pixels and images for the 59 most frequent categories. See text for the statistics.



Issues

® Some ambiguity in labelling
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Spatial structure 1s an 1ssue

Geometric
models

Pix

Road
class

Lane
markers

Mansinghka et al 13



Small things are important

Input: car front bumper and cardboard box Input: tire and square timber

on

Pinggera et al 16



More 1ssues

Data

Spatial models

Appearance models
Managing scale, context, etc.



Contrast with segmentation

Learning a semantic segmenter should be *MUCH?* easier
cause you KNOW what label each pixel should have
and labels transfer across images



Evaluation

To assess performance, we rely on the standard Jaccard Index, commonly known as
the PASCAL VOC intersection-over-union metric loU = TP / (TP+FP+FN) [1], where
TP, FP, and FN are the numbers of true positive, false positive, and false negative
pixels, respectively, determined over the whole test set. Owing to the two semantic
granularities, i.e. classes and categories, we report two separate mean

performance scores: 10U ategory and 10Ujass. In either case, pixels labeled as void do
not contribute to the score.

Cityscapes



Evaluation, II

It is well-known that the global loU measure is biased toward object instances that
cover a large image area. In street scenes with their strong scale variation this can be
problematic. Specifically for traffic participants, which are the key classes in our
scenario, we aim to evaluate how well the individual instances in the scene are
represented in the labeling. To address this, we additionally evaluate the

semantic labeling using an instance-level intersection-over-union metric iloU = iTP /

(iTP+FP+iFN). Again iTP, FP, and iFN denote the numbers of true positive, false
positive, and false negative pixels, respectively. However, in contrast to the standard
loU measure, iTP and iFN are computed by weighting the contribution of each pixel by
the ratio of the class’ average instance size to the size of the respective ground truth
instance. It is important to note here that unlike the instance-level task below, we
assume that the methods only yield a standard per-pixel semantic class labeling

as output. Therefore, the false positive pixels are not associated with any instance and
thus do not require normalization. The final scores, iloUcategory and iloU|ass, are

obtained as the means for the two semantic granularities.

Cityscapes



(Some) Datasets

Cityscapes

® https://www.cityscapes-dataset.com/benchmarks/
Pascal VOC 2010 context

® https://cs.stanford.edu/~roozbeh/pascal-context/

Kitti

® http://www.cvlibs.net/datasets/kitti/eval_semantics.php
® also see other annotations at bottom of page

Mapillary vistas
® https://research.mapillary.com/img/publications/ICCV 17a.pdf
MS COCO

® http://cocodataset.org/#panoptic-2018




Procedure

Produce a feature vector at each pixel
Classity into k classes using that

Optional
® (apparently of declining importance)
® Use conditional random field, etc. to clean up predictions



Early 1deas

® [abel pixel using oar” §
. softmax layer
® its appearance :
® features for context, etc. fully connected layer(s)
® proximal el Bl
o distant global distant |)1‘<1,\1111;1l| local
® global

I convnet I convnet |

® cfc




Procedure

Fully convolutional network

® with very large receptive fields
® some skip connections

Train with cross-entropy loss

forward /inference

-

backward /learning

Long et al



Procedure, 11

“tabby cat”
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Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Long et al



Procedure, 111

3/X upsamplea
image convl pooll conv2Z pool2 convd poold convd  poold convd  poold conv6-7  prediction (FCN-32s)

2% conv’7 lfix _upsampled
prediction (FCN-16s)
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Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from poo13, at stride 8, provide further precision.

Long et al



Procedure, IV

FCN-32s FCN-16s FCN-8s Ground truth

| 4
O

Figure 4. Refining fully convolutional nets by fusing information
from layers with different strides improves segmentation detail.
The first three images show the output from our 32, 16, and 8
pixel stride nets (see Figure 3).

Long et al



Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [ 17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a

failure case: the net sees lifejackets in a boat as people.
Long et al



SOTA early 22

Semantic Segmentation on Cityscapes test
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SOTA - early 23
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More SOTA

Kitti
® http://www.semantic-kitti.org/tasks.html

Robust Vision
® http://www.robustvision.net/leaderboard.php?benchmark=semantic




Depth from one image

D.A. Forsyth



Regression

® We must make image-like things from images

® Running example:
® depth map from image

® A depth map has the depth to closest surface at every pixel

® it is the same size as the image



Monocular depth estimation

® Simplest:
® compute feature vector at each pixel
® predict depth from that feature vector
® linear regression/more complex regression/classification

® Alternative:

® impose structural model (“it’s a box™)
® ogect estimates of parameters

® (Current

® FEncode image
® Decode to depth map



Figure 3: Results for a varied set of environments, showing original 1image (column 1),
ground truth depthmap (column 2), predicted depthmap by Gaussian model (column 3),
predicted depthmap by Laplacian model (column 4). (Best viewed in color)

Regression against simple features Saxena et al 05



Figure 1: Our system automatically constructs a rough 3D environment from a single image by learning a statistical model of geometric
classes from a set of training images. A photograph of the University Center at Camegie Mellon is shown on the left, and three novel views
from an automatically generated 3D model are to its right.

(a) input image (b) sﬁbérpixels (c) constellations (d) labeling (e) novel view

Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

(Essentially) Classification Hoiem et al, 05



A B

Figure 2. Our process takes the original image, identifies long line segments (A), and uses these to find vanishing points (B). The line
segments in (A) are colored with the color of the vanishing point they vote for. This information, and other features, are used to produce
a set of possible layouts, which are ranked by a function learned with structure learning (four are shown in C). The top ranked layouts
produce maps of label probabilities (shown in D for “left wall”,“floor”, “right wall” and “object”). In turn these maps are used to re-estimate
features, and the re-estimated features are used to produce a second ranking. The top ranked layout for this image is in (E).

(Essentially) Parameter estimation Hedau et al, 09



Convolutional encoders

e Apply “pattern detector” to image
another to the result

another to the result

etc

occasionally reducing the spatial size of the block of data representing
patterns to control redundancy

® The resulting block of data is spatially small



Convolution

conv(Z, W)

where

Z Ii—u,j—kuv-
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FIGURE 6.1: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
7 that lie on top of one another; and you sum the results.



Convolution

® Think of this as a form of dot-product
® between kernel and window

® [ike dot-products

® Jargest value when kernel matches window
® smallest when kernel matches window with contrast reversal

e > SIMPLE PATTERN DETECTOR!
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f(z)

The RelLU

r iftx>0
0 otherwise

Issue: contrast reversal in pattern

If we apply a relu to a conv, then
we have a *signed* pattern detector

A

Y



< 3>30N

Basic pattern detector

Notice - not very many parameters
detects the same pattern at each location

cC —m X0




Patterns of patterns of patterns....
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Encoders

o vo-a1D

VvVOc>0—>S+—=0C

o vo-1D
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Encoder




Convolutional encoders

e Apply “pattern detector” to image
another to the result

another to the result

etc

occasionally reducing the spatial size of the block of data representing
patterns to control redundancy

® The resulting block of data is spatially small



We could now predict an image by..

® Take pattern detector results and decode into pattern
® ‘“‘pattern producer”

® Apply pattern producer to feature block
® another to result
® another to result
® occasionally upsampling as required

® Pattern producer is itself a convolution

a feature location detects a particular pattern

scale that pattern by the strength of the response, and place down
sum at overlap

=> convolution (sometimes called transpose convolution, inverse
convolution)



cCc o4d1>D

VvOc>0—>S+—=0C

Decoders
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Decoder



Regression

Skip connections

Encoder Decoder Encoder Decoder

Sometimes known as a U-net




Regression

® Train with pairs (1mage, depth)
® [oss
® Squared error +abs value of error+other terms as required

® Very powerful general recipe
® depth from image
® normal from image
® superresolution
® ctc.
® Variants
® more sophisticated encoder



Monocular Depth Estimation

236 papers with code - 14 benchmarks - 20 datasets

Monocular Depth Estimation is the task of estimating the depth value (distance relative to the camera) of

each pixel given a single (monocular) RGB image. This challenging task is a key prerequisite for determining

scene understanding for applications such as 3D scene reconstruction, autonomous driving, and AR. State- D t t
of-the-art methods usually fall into one of two categories: designing a complex network that is powerful a a S e S
enough to directly regress the depth map, or splitting the input into bins or windows to reduce

computational complexity. The most popular benchmarks are the KITTI and NYUv2 datasets. Models are Lift from

typically evaluated using RMSE or absolute relative error.

Source: Defocus Deblurring Using Dual-Pixel Data

https://paperswithcode.com/task/monocular-depth-estimation

Benchmarks Add a Result

These leaderboards are used to track progress in Monocular Depth Estimation

Trend Dataset Best Model Paper Code Compare
. KTiEigensplt DwinFormer o [ secat
\ NYU-Depth v2 VPD ® 0 m
-~ KITTiEigensplitunsupervised  PlaneDepth e o B9
::f./ Make3D GCNDepth e © @
~—_ Mid-AirDataset Mé4Depth-dé (VMD) ® © m
______ I1Bims-1 LeReS ® 0 m
_ Middiebury 2014 Miangoleh et al. (MiDaS) ® © m
T ximm MonoViT e o
UASOL FCRN-DepthPrediction from Iro Lainaet al. (2016) m

o suw RPSF o m

Show all 14 benchmarks



Typical Dataset NYU-V?2

NYU Depth Dataset V2

Nathan Silberman, Pushmeet Kohli, Derek Hoiem, Rob Fergus

If you use the dataset, please cite the following work-
Indoor Segmentation and Support Inference from RGBD Images
ECCYV 2012 [PDE][Bib]

Samples of the RCB image, the raw depth image, and the dass labels from the dataset.

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html



How to evaluate?

® RMSE in depth is often used

® root mean square error

® but presents problems:
® typically dominated by errors in large depths
® which may not be all that important

® AbsRel:
® mean Abs([error/depth])
® Jlikely better unless depth range is relatively small



SOTA (early 23)

Monocular Depth Estimation on NYU-Depth V2

Leaderboard Dataset
iew [fRmst v JE ¢ 9 o |
.
Elgen et al. L et al.
Xu et al.
SENet-154
" A Densgl)epth
- . BTS
AdaBins
N NVS-MonoDepth
Swm\«ﬁ-L 1K-MIM
b e-\{PD
)15 2019 2020 2021
Other models -e- Models with lowest RMSE

https://paperswithcode.com/sota/monocular-depth-estimation-on-nyu-depth-v2



What to predict?

o Q:
® Should we predict absolute depth?
® on what scale?
® Or relative depth?
® Or what?

® (Considerations:
® somewhat depends on application and dataset
large depths don’t really occur in some cases
in others, they can be relatively rare *and* dominate the error
small errors in small depths mostly worse than small errors in large depths



Midas (one useful example, w/github)

MiDaS was trained on up to 12 datasets (ReDWeb, DIML, Movies, MegaDepth, WSVD, TartanAir,
HRWSI, ApolloScape, BlendedMVS, IRS, KITTI, NYU Depth V2) with multi-objective optimization.
The original model that was trained on 5 datasets ( MIX 5 in the paper) can be found here. The
figure below shows an overview of the different MiDaS models; the bubble size scales with number
of parameters.

Improvement vs FPS
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I @ @ o o
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https://github.com/isl-org/MiDaS



What to predict?

® Midas predicts

® a*(1/depth)+b

® where a, b are unknown constants dependent on scene
® So if you want true depth, you need to estimate these
® very seldom important
® Advantage of 1/d
® (note: min depth > 0)
® small errors in small depths are emphasized



Omnimap

® Huge collection of 3D scanned data+images

® https://omnidata.vision

® Maybe current SOTA on many depth/normal predictions



Notes

® Depth prediction is quite strongly affected by lighting

® Implies you should be able to predict normal
® True: usually better done using a normal predictor, below



Lighting problems

Depth (omnimap, current bestish depth est) Normal (omnimap, current bestish normal est)




Lighting problems

Depth (omnimap, current bestish depth est)




Normal from one image

D.A. Forsyth



Monocular Normal Estimation

® Deep history

® line labelling

Fic. 6. Huffman-Clowes-Waltz labeling representing a cube-like configuration.

From Kanade, 1980, after Huffman, 71; Clowes, 71; Waltz 72



Monocular normal estimation

® Simplest:
® compute feature vector at each pixel
® predict normal from that feature vector
® linear regression/more complex regression/classification

® Alternative:

® impose structural model
® ‘“there are only three normals”=Manhattan world
® decide
® what the directions are; which pixel has which dirn

® Current
® FEncode image
® Decode to normal map



Local Surface Normals

Direction 1 Direction 2 Direction 3 Continuous Interpretation

Surface Normals with Mid-level Constraints

Fig. 1. We propose the use of mid-level constraints from the line-labeling era and a
parametrization of indoor layout to “unfold” a 3D interpretation of the scene in the
form of large planar surfaces and the edges that join them. In contrast to local per-pixel
normals, we return a discrete parse of the scene in terms of surfaces and the edges
between them in the style of Kanade’s Origami World as well updated continuous
evidence integrating these constraints. Normal legend: blue — X; creen — V3
red — Z. Edge Legend: convex +; concave —. Figures best viewed in color.

Local prediction using simple features; cleanup using line labels Saxena et al 05



History

Input: Single Image Output: Surface Normals

Edges

Figure 2: An overview of our approach to predicting surface normals of a scene from a single image. We separately learn
global and local processes and use a fusion network to fuse the contradictory beliefs into a final interpretation. Global
processes: our network predicts a coarse 20 x 20 structure and a vanishing-point-aligned box layout from a set of discrete
classes. Local processes: our network predicts a structured local patch from a part of the image and line-labeling classes:
convex-blue, concave-green, and occlusion-red. Fusion process: our network fuses the outputs of the two input networks,
the rectified coarse normals with vanishing points (VP) and images to produce substantially better results.

Make local predictions of normal, edges; global Wang et al, 15
predictions of layout, normals; fuse



Surface Normals Estimation

22 papers with code - 6 benchmarks « 8 datasets

Datasets

Surface normal estimation deals with the task of predicting the surface onentation of the objects present mside a
scene. Refer to Designing Deep Networks for Surface Normal Estimation (Wang et al) to get a good overview of

Lift from

several design choices that led to the development of a CNN-based surface normal estimator.

Benchmarks

These leaderboards are used to track progress in Surface Normals Estimation

Trend
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_https://paperswithcode.com/task/surface-normals-estimation
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Evaluation

® Usual to report

® Y% predicted normals within some range of angle of ground truth
® for various ranges

® Don’t get mixed up by:
® numerical issues (arccos(x) is complex for x>1, x<-1!)
® degrees vs radians
® ysually, angles in degrees

Useful info in:

https://web.eecs.umich.edu/~fouhey/2016/evalSN/evalSN.html



SOTA (early 23)

Surface Normals Estimation on NYU Depth v2

Leaderboard Dataset

View [=t+25 8 by (st

Tloc-'-,v.uc Flat

Other models -e- Models with highest % < 11.25

https://paperswithcode.com/sota/surface-normals-estimation-on-nyu-depth-v2-1



SOTA-1sh estimator

https://github.com/baegwangbin/surface_normal_uncertainty




Omnimap

® Huge collection of 3D scanned data+images

® https://omnidata.vision

® Maybe current SOTA on many depth/normal predictions



Lighting problems

Normal (omnimap, current bestish normal est)




Inpainting
(super quick!)

D.A. Forsyth, UIUC



General 1inpainting

® Find sensible replacements for missing pixels
® ¢g fill in text; fill in removed object; etc
® History:
® [.ocal non-parametric models of pixels conditioned on neighbors
® with many variants
® Patch replacement
® some variants
® Denoising autoencoders
® huge number of variants



Local Non-parametric models

® (: Conditioned on a window of known pixels
® what value should this pixel take?

® A: Match surrounding windows to collect examples
® choose at random from collection



How to paint this pixel?
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Concerns

® Distance metric
® Neighborhood size

® QOrder to paint



Neighborhood size

Efros & Leung ICCV99



Growing Regions
Hole Filling

Efros & Leung ICCV99
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Inpainting

Criminisi et.al. CVPRO03



Order of inpainting matters

Onionskin order

Image Hole

Criminisi et al, 04

Boundary edges



Long Scale Non-parametric models

® (: Conditioned on most of the image
® what does the missing bit look like?

® A: Match image to others to collect examples

® choose “at random” from collection
® variants: how you choose; how you match



Hays+Efros, 07 Scene Matches



Denoising autoencoders

Use an encoder-decoder stack
® predict denoised image from noisy image

Training requires some care

Skip connections

Encoder

® skip connections useful for improved resolution BUT

® make it easy for network to cheat

Immense number of variants

Decoder




Issues

® Noise process
® depends on application

® Architecture
® the decoder could be more sophisticated
® some form of vector quantization, eg VQVAE
® the encoder could be more sophisticated
® cg multiple scales; transformer, etc.

® [.0ss
® (how do we compare output image to input image)
o LI/L2
® VGG
® compute a set of deep features and match those



For example...

MMosses . ,
T F N\ Confidence-driven l
reconstruction loss I

B1 Filter size: 7=7 I
|
: 1 ID-MRF loss |
I
I

/
00000008
\
N

. |
Adversarial loss I

Filter size: 5<5

||||||||U

Input 1mage

with mask Filter s1ze: 3+3

|Jocceses(

@D convolution @D dilated convolution CDdeconvolution 12 7 Mlosses ®upsampling @ concatenation
Figure 2: Our framework.
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Wang et al, 18



Figure 1: Our inpainting results on building, face, and natural scene.

Wang et al, 18



Inpainting for BEV purposes

Want to inpaint depth and semantic labels
Should be easier than inpainting pixels

Masked RGB i

Mask

P - .‘,l*-'—dll N

L__Semantics _|

| Deith '

(a) (b)

Fig.2: (a) The inpainting CNN first encodes a masked image and the mask itself.
The extracted features are concatenated and two decoders predict semantics and
depth for visible and occluded pixels. (b) To train the inpainting CNN we ignore
foreground objects as no ground truth is available (red) but we artificially add

masks (green) over background regions where full annotation is already available.
Schulter et al 2018
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Registration

D.A. Forsyth



Mostly, we’ve done this

® [seful

® if we know where vehicle is (roughly)
® we know a lot about likely layout in front of vehicle (openmaps, etc.)



Adversarial Losses

D.A. Forsyth, UIUC



Layout 1s stylized

) Number of lanes
() One-way or not
® Lane widths

Lanes

3 () Existence of sideroad

% (5 Distance to sideroad

§ (3 Main road ends I '
% (® Existence of crosswalks

g () Existence of sidewalks

é © Width of sidewalks

¥ Road Lanes [ Sidewalk @ Crosswalk

Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.



Q: How do we impose structure?

® We want to the network to produce layout maps that are

“like real maps”
® How?



Side topic - Adversarial losses

® [ssue:
® we are making pictures that should have a strong structure
® albedo piecewise constant, etc.
® but we don’t know how to write a loss that imposes that structure

® Strategy:
® build a classifier that tries to tell the difference between
® true examples
® cxamples we made
® use that classifier as a loss



Generative
Adversarial
Network

e

X

real-world
image
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discriminator
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N —p —

code vector

Grosse slides



@ Let D denote the discriminator’s predicted probability of being data

e Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Exp[—log D(x)] + E;[— log(1 — D(G(2)))]

Notice: we want the discriminator to make a 1 for real data, O for fake data
@ One possible cost function for the generator: the opposite of the

discriminator's

Je =—Jb
= const + K, [log(1 — D(G(z)))]

@ This is called the minimax formulation, since the generator and

discriminator are playing a zero-sum game against each other:
Solution (if exists, which is uncertain; and if mg X ml;n Jo
can be found, ditto) is known as a saddle point.
It has strong properties, but not much worth

talking about, as we don’t know if it is there or
whether we have found it. Grosse slides



Quote from the original paper on GANs:

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to
improve their methods until the counterfeits are
indistinguishable from the genuine articles."

-Goodfellow et. al., "Generative Adversarial Networks" (2014)

Thakar slides



Important, general 1ssue

If either generator or discriminator “wins” -> problem

Discriminator “wins”’

® it may not be able to tell the generator how to fix examples
® discriminators classify, rather than supply gradient

Generator “wins”
® likely the discriminator is too stupid to be useful

Very little theory to guide on this point



Updating the discriminator:

D(x)

update the discriminator
T weights using backprop

on the classification objective

X OR x=0G(z)

real-world 1
image generator

t

| Z \ code vector

—_ - R --

Grosse slides



Updating the generator:

D(x)
backprop the derivatives,
but don't modify the
f discriminator weights
flip the sign
of the derivatives

update the generator
f weights using backprop

Grosse slides



One must be careful about losses...

@ We introduced the minimax cost function for the generator:
Je = Ez[log(1 — D(G(z)))]

@ One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

o “Logistic 4+ squared error’ gets a weak gradient signal
o “Logistic + cross-entropy” gets a strong gradient signal

@ Here, if the generated sample is really bad, the discriminator’'s
prediction is close to 0, and the generator's cost is flat.

Grosse slides



One must be careful about losses...

e Original minimax cost: modified
cost
Jc = E,[log(1 — D(G(2)))]

e Modified generator cost:

minimax
J6 = Ez[—log D(G(2))] cost
@ This fixes the saturation problem. 4o 02 o4 06 08 10
s
DI(G(z))
(how well it fooled
the discriminator)

Grosse slides



Alternative losses

e Hinge:
® Discriminator makes D(im)
® want
® real images -> -1
® fake ->1

® Discriminator loss: Z max((), 1 — yzD(Iz))

fakes and real

® where y_i=-1 for real, y_i=1 for fake

> D(IL)

fakes

® (Generator loss:
°



Adversarial loss

Adversarial loss

discriminator

Estimated Albedo

Paradigm Albedo

Image

Grosse slides



Theory

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ez~piaa108 D (2)] + Eznp, [log(1 — D ()]
then pgy converges t0 Pdata

Goodfellow et al 14



“Theory”

Proposition 2. If G and D lhave enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and

Erpue 102 DG(@)] + Banp, log(1 — D& ()]

thet py CONVEIges 10 paaa

® What if they don’t have enough capacity?
® What if p_g doesn’t make “enough progress”?

® In what sense converges?

® p_datais a set of samples

® we DON’T WANT usual convergences

® we WANT convergence to some smoothed p_data
® how smoothed? how controlled?

Goodfellow et al 14



Questions

How do we hobble an adversary in a useful way?
® dunno

When 1s an adversarial smoother helptul?
® dunno



Layout 1s stylized

) Number of lanes
() One-way or not
® Lane widths
& () Existence of sideroad
(3 Distance to sideroad
(7 Main road ends r '
(® Existence of crosswalks
() Existence of sidewalks
@ Width of sidewalks

¥ Road Lanes [ Sidewalk @ Crosswalk

Figure 2: Our scene model consists of several parameters that capture a variety of complex driving scenes. (Left) We illustrate
the model and highlight important parameters (A-I), which are grouped into three categories (middle): Lanes, to describe the
layout of a single road; Topology, to model various road topologies; Walkable, describing scene elements for pedestrians. Our
model is defined as a directed acyclic graph enabling efficient sampling and is represented in the top-view, making rendering
easy. These properties turn our model into a simulator of semantic top-views. (Right) We show rendered examples for each of
the above groups. A complete list of scene parameters and the corresponding graphical model is given in the supplementary.

Wang et al 18
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