Actually Making BEVs

D.A. Forsyth



BEVs from images (with all tech)

® Idea:
® Predict and complete labels; project; cleanup
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Fig. 1: Given a single RGB image of a typical street scene (left), our approach
creates an occlusion-reasoned semantic map of the scene layout in the
bird’s eye view. We present a CNN that can hallucinate depth and semantics in
areas occluded by foreground objects (marked in red and obtained via standard
semantic segmentation), which gives an initial but noisy and incomplete estimate
of the scene layout (middle). To fill in unobserved areas in the top-view, we further
propose a refinement-CNN that induces learning strong priors from simulated
and OpenStreetMap data (right), which comes at no additional annotation costs.

Schulter et al, 2018



Warp into
bird's eye
view

Hallucination CNN

Hallucinating semantics and depth of occluded areas
enables an initial occlusion-reasoned BEY map of the
scene
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Fig. 6: Qualitative example of our halluci-
nation CNN: Semantics and depth without
(left) and with (right) hallucination.
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Fig.4: (a) Simulated road shapes in the top-view. (b) The refinement-
CNN is an encoder-decoder network receiving three supervisory signals: self-
reconstruction with the input, adversarial loss from simulated data, and recon-
struction loss with aligned OpenStreetMap (OSM) data. (c) The alignment
CNN takes as input the initial BEV map and a crop of OSM data (via noisy
GPS and yaw estimate given). The CNN predicts a warp for the OSM map and
is trained to minimize the reconstruction loss with the initial BEV map.

Schulter et al, 2018
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Fig.5: (a) We use a composition of similarity transform (left, “box”) and a non-
parametric warp (right, “flow”) to align noisy OSM with image evidence. (b, top)
Input image and the corresponding B™*. (b, bottom) Resulting warping grid
overlaid on the OSM map and the warping result for 4 different warping functions,

respectively: “box”, “flow”, “box+flow”, “box+flow (with regularization)”. Note
the importance of composing the transformations and the induced regularization.

Schulter et al, 2018



Fig. 7: One example of the influence of \ (trade-off between adversarial and
reconstruction loss, i.e., OSM and simulation data). (left) input image and B™?;
(right) 6 final BEV maps for A = {0, 1,5, 100, 500, 1000, 10°}. One can see that
higher \ leads to higher alignment with B™®,

Schulter et al, 2018



The impact of the
hallucination - CNN

The impact of induced
priors from the learned
refinement CNN

Fig.8: Examples of our BEV representation. Each one shows the masked
RGB nput, the hallucinated semantics and depth. as well as three BEV maps.
which are (from left to right), The BEV map without hallucination, with halluci-

nation, and after refinement. The last example depicts a fallure case.
Schulter et al, 2018



Issues

Something of a jumble of parts
® cach trained separately

Results aren’t super
® why doesn’t registration help more?

Shouldn’t temporal consistency help?
® why only per frame?

Depth prediction then “dropping” seems like a bad idea
® the ground depth map is pretty much a plane, so why not camera model?
® why not more sophisticated ground plane model?

® plane+relief?

BIG Q: could you use this to plan?



Building BEVs from LIDAR alone

® Build feature map by:

® cut space into voxels

® cach voxel gets 1 (return) or O (no return)
® now interpret voxel grid as a feature map over the ground

® (lassify/predict motion using these features

1. A system for autonomous driving
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Color: category: Arrow: motion
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Output BEV map for time 7

A sequence of LiDAR sweeps BEV maps

Figure 2. Overview of MotionNet. Given a sequence of LiDAR sweeps, we first represent the raw point clouds into BEV maps, which
are essentially 2D images with multiple channels. Each pixel (cell) in a BEV map is associated with a feature vector along the height
dimension. We then feed the BEV maps into the spatio-temporal pyramid network (STPN) for feature extraction. The output of STPN is
finally delivered to three heads: (1) cell classification, which perceives the category of each cell, such as vehicle, pedestrian or background;
(2) motion prediction, which predicts the future trajectory of each cell; (3) state estimation, which estimates the current motion status of
each cell, such as static or moving. The final output is a BEV map, which includes both perception and motion prediction information.

Wu, 20



orange: bicycle; green: others. (Zoom in for best view.)

Wu, 20

Figure 5. Qualitative results show that MotionNet produces both high-quality classification and motion prediction. Top row: ground-truth.

Bottom: MotionNet predictions. Gray: background; blue: vehicle; red: pedestrian;




Issues

Neat to do BEV with LIDAR

Not shocking that this feature construction beats det’n
® above the ground and moving - wheelchair eg

Why not use camera info as well?
® we’ll see riffs on this

BIG Q: could you use this to plan?



Lagniappe: Neat 1dea

® Neat idea I heard from Killian Weinberger
® repeated drives around an area reveal partial labels
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1. Compute Ephemerality Scores 2. Cluster Ephemeral Objects 3. Fit Bounding Boxes 4. Filter with Properties | Ground Truth Boxes

Figure 2. Generation of seed labels. Seed labels from object discovery are used to train downstream detectors. We begin by computing
the PP score for each point. Then we segment out clusters that are non-persistent and apply a box-fitting algorithm to each cluster. We
filter out superfluous bounding boxes using our common-sense assumptions. This entire process is supervision-free.

You et al, 22

Detector Trained on Seed

Figure 1. Visualizations of MODEST outputs. We show LiDAR scans from two scenes in the Lyft dataset in two rows. From zero labels
our method is able to bootstrap a detector that achieves results close to the ground truth. The key insight is to utilize noisy “seed" label
produced from an ephemerality score and filtered with common-sense properties, and self-train upon them to obtain high quality results.



Monolayout

® Building a BEV as an amodal scene completion problem
® amodal
® we impute location/labels of stuff we can’t see
® by exploiting properties of shape, priors
® cg, we know how big cars are, and can guess road is behind

® Jdea

® Predict on ground plane directly
® rather than predict, then map
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Figure 1: MonoLayout: Given only a single image of a road scene, we propose a neural network architecture that reasons
about the amodal scene layout in bird’s eye view in real-time (30 fps). Our approach, dubbed MonoLayout can hallucinate
regions of the static scene (road, sidewalks)—and traffic participants—that do not even project to the visible regime of the
image plane. Shown above are example images from the KITTI [10] (left) and Argoverse || (right) datasets. MonoLayout
outperforms prior art (by more than a 20% margin) on hallucinating occluded regions.

Mani et al 20



Amodal Layout
Adversarial Feoture
. . . . . Learning :
Figure 2: Architecture: MonoLayout takes in a color image of an urban driving scenario, and predicts an amodal scene
layout in bird’s eye view. The architecture comprises a context encoder, amodal layout decoders, and two discriminators.

Mani et al 20
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Figure 3: Static layout estimation: Observe how MonoLayout performs amodal completion of the static scene (road
shown in , sidewalk shown in gray. MonoOccupancy [2!] fails to reason beyond occluding objects (top row), and does
not hallucinate large missing patches (bottom row), while MonoLayout(Ours) is accurately able to do so. Furthermore,
even in cases where there is no occlusion (row 2), MonoLayout(Ours) generates road layouts of much sharper quality. Row
3 show extremely challenging scenarios where most of the view is blocked by vehicles, and the scenes exhibit high-dynamic
range (HDR) and shadows.

Mani et al 20
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Figure 4: Dynamic layout estimation: We show vehicle occupancy estimation results on the KITTI [10] 3D Object
detection benchmark. From left to right, the column corresponds to the input image, MonoOccupancy [24], Mono3D |[(],
OFT [30], MonoLayout (Ours), and ground-truth respectively. While the other approaches miss out on detecting cars (top
row), or split a vehicle detection into two (second row), or stray detections off road (third row), MonoLayout (Ours) produces
crisp object boundaries while respecting vehicle and road geometries.

Mani et al 20



RGB MonoLayout  GroundTruth

Figure 6: Amodal scene layout estimation on the Ar-
goverse || dataset. The dataset comprises multiple chal-
lenging scenarios, with low illumination, large number of
vehicles. MonoLayout is accurately able to produce sharp
estimates of vehicles and road layouts. (Sidewalks are not
predicted here, as they aren’t annotated in Argoverse).

Mani et al 20



MonoLayout-no-disc ~ MonoLayout

Figure 7: Effect of adversarial learning: As can be
clearly seen here, the discriminators help enhance both the
static (road) layout estimation (top and middle rows), as
well as produce sharper vehicle boundaries (bottom row).
While this translates to performance gains in static layout
estimation (c.f. Table 3), the gains in dynamic layout esti-
mation are more cosmetic in nature.

Mani et al 20



Issues

® Shouldn’t temporal consistency help?
® why only per frame?

® Depth prediction then “dropping” seems like a bad 1dea
® the ground depth map is pretty much a plane, so why not camera model?
® why not more sophisticated ground plane model?
® plane+relief?

e BIG Q: could you use this to plan?



Liu et al 20
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Figure 1: Given perspective images (top left) that captures a
3D scene, our goal is to predict the layout of complex driving
scenes in top-view both accurately and coherently.



Temporal consistency

Estimates camera motion
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Figure 2: Overview of our proposed framework: Given videos as input, top-vief maps aggregated from local, global and
context information, are fed into our FTM/LSTM network to predict the parametrit road scene layout.

Liu et al 20 Temporal smoothing
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Figure 1. We propose an end-to-end model that inputs perspective
image and outputs parametric layouts in top-view. Compared to ex-
isting methods, ours requires only the parametric layout annotations
during training and achieves SOTA performance under complex

Liu et al 22 road scenarios. Moreover, it generates occlusion-reasoned (see
the predicted semantics on regions occluded by cars) pixel-level
semantics in both perspective and top view.
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Figure 2. Overview of our proposed framework: Taking a single RGB as input, our model predicts (1) occlusion-reasoned semantics
in perspective view, (2) hallucinated semantics in top-view and (3) parametric layout predictions in top-view, with only attribute-level
annotations in top-view. This is achieved with multiple intermediate modules and deeply supervised training.

Liuetal 22
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Training

® Train each separately, then end-to-end

Actual labels, from human labeller \

——

Figure 5. Examples of rendered ground-truth for TS module. From
left to right: RGB, parametric human annotations and rendered

pixel-level semantics in top-view.
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Sideroad distance: 12.4m

round rendering, predicted
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Does 1t work?

= O\ g

| Input RGB OSP HST Prediction BEV-J-O  GT

Figure 6. Full predictions of our proposed model. From left to right: input RGB, OSP, HST, image rendered from parametric predictions,
results from [23] and image rendered from ground-truth attributes.

23 1s Liu, 20!
Liuetal 22



Liuetal 22

Input RGB HST BEV

Figure 8. We demonstrate input RGB, predicted HST as well
as BEV of [16], which is trained with thousands of pixel-level
annotated images and LiDAR images. As can be seen in these
examples, our model is able to hallucinate far away regions in a
realistic manner, even on curved road, with VO pixel-level human
annotations.
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OSP Prediction
Figure 9. Input image, generated ground-truth pixel-level semantics

and predicted semantics from top to bottom row. Our model 1s able

to predict the semantics quite well despite occlusions.
Liu et al 22




Issues

® Shouldn’t temporal consistency help?
® why only per frame?

® Why not more sophisticated ground plane model?

® plane+relief?
® this is very likely do-able

® BIG Q: could you use this to plan?



AutoLay - using Lidar as well
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Fig. 1: Amodal layout estimation is the task of estimating a semantic occupancy map in bird’s eye view, given a monocular image or
video. The term amodal implies that we estimate occupancy and semantic labels even for parts of the world that are occluded in image
space. In this work, we introduce AufoLay, a new dataset and benchmark for this task. AuroLay provides annotations in 3D, in bird’s eye
view, and in image space. A sample annotated sequence (from the KITTI dataset [1]) is shown below. We provide high quality labels for
sidewalks, vehicles, crosswalks, and lanes. We evaluate several approaches on sequences from the KITTI [1] and Argoverse [2] datasets.

Mani et al, 21
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Fig. 2: Dataset: (Left to right) Sample images from the KITTI split of AutoLay. Corresponding annotated lidar pointclouds. Amodal scene
layout in bird’s eye view. (Last column) Distribution of semantic classes (bar plot), and scene types (pie chart).

Aani et al, 21
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Fig. 3: Weak Supervision setup: We show our automated (noisy) label generation scheme herein. Points from the lidar frame are projected
down to semantically segmented images (a), to obtain sparse static layouts (b). These sparse layouts are stacked across an image sequence
to generate dense static layouts (c). In the next step (d), road and lane boundaries are extracted and combined to obtain lane layouts (e).
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Fig. 4: Static layout estimation: VideoLayout predicts fine-grained attributes of the road scene including lanes, side roads and ego-lane. Each individual
color represents a single lane. Ego-lane is shown in blue and side-roads are shown in light orange. VideoLayout produces decent static layout estimates
for both Autolay and Argoverse datasets. Its able to hallucinate occluded regions in the scene very reliably specially for Argoverse dataset.



RGB VideoLayout GroundTruth

Fig. 5: Dynamic Layout Estimation:. VideoLayout provides crisp
and accurate vehicle occupancies. The grey boxes indicate vehi-
cle occupancies. Observe the ability of VideoLayout to precisely
localize vehicles that are distant and partially occluded.



RGB VideoLayout GroundTruth

Fig. 6: Failure Cases of VideoLayout. (Top row) Failure to predict ego-
lane. (Middle row) Failure in heavy traffic scenarios. (Bottom row) Failure
in predicting lane width.



Direct prediction of BEVs

® rather than predict bits and pieces, then project



Zhang, 22
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Figure 1. The traditional paradigm (a) follows the sequential de-
sign, where the perception, prediction, and planningé&control are
conducted one by one. Note that the perception includes the de-
tection for dynamic objects and the map construction for static
environments. Since the sequential paradigm inevitably suffers
from repeated feature extraction and severe error propagation, we
propose BEVerse (b) for joint perception and prediction. With
shared feature extraction and parallel multi-task inference, BE-
Verse achieves a better trade-off between performance and effi-
ciency.
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Figure 2. The framework of BEVerse. With consecutive frames from surrounding cameras as input, BEVerse first constructs the BEV
feature representation for each timestamp. The process includes the image-view feature extraction and the view transformation. Then, the
BEYV features from past frames are aligned to remove ego-motions and processed by the temporal model. Finally, the well-established BEV
feature with both spatial and temporal information is sent to multiple task decoders for joint reasoning of perception and prediction.

Zhang, 22
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Figure 4. The qualitative results for 3D object detection, semantic map construction, and instance motion prediction. For the visualization of
semantic maps, we represent lane dividers, pedestrian crossings, and lane boundaries with red, green, and blue colors. For the visualization
of motions, the future trajectories of road agents are shown with transparent paths. Best viewed in color.

Zhang, 22



