Very simple control,
with PID
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We assume that everything 1s linear

® This creates huge mathematical simplifications

® [inear system:
® accepts a signal x(t)
® produces a signal y(t)=K x(t)
e AND
* K&(®+y(®)= Kx(t)+Ky(t)
o K (ax(t))=aKx(t)

¢ (notice this means K 0 =0) K stands for a linear operator,

so that (for example) we could have
K x(t) = a x(t)
or
K x(t) = dx/dt



In fact, study only the response to a step

® You can approximate any function with a lot of steps
® Step is u(t)

® this is O for t<=0, 1 otherwise
® 5o u(t)-u(t+dt) is a bar

® Approximate f(t) by
> f(iAL)(u(iAt) — u(iAt + At))

)
® cx: simplify this expression
® cx: we know K u(t) - what is K f(t)?



Ideas: plant/process, control

® Plant/process is the thing we wish to control
® assume: | input, I output, linear
® for simple examples, I’ll write out the form of the plant
® but very often, it isn’t known exactly
® System Identification

® Control:
® supply the plant with the input needed to produce the output you want
® (Q: why is this hard?
® Al: Plant may not be exactly known
® A2: Plant may have dynamics
® AZ3: Desired output may change



The very simplest control

Plant: K x(t) =c x(t)

® here c is a known constant

We’d like the output to be 1

® feed plant with 1/c
® and go home early

Example of open loop control

® compute a fixed input and supply to plant
® whatever the plant

Advantages:

® simple, sometimes works

Disadvantages:
® what if your model is wrong?

Operating Point
Adjustment

Actuator

Throttle Control



Example: move car at constant velocity

e How?
® supply accelerator input so that car moves at constant velocity
® Open loop:
® Figure out how acceleration causes velocity
® a=dv/dt-(some frictional loss)
® Supply acceleration
® a burst of acceleration to get to speed
® then constant acceleration to cope with loss

® Doesn’t seem all that practical



History of feedback

Watt’s Flyball Governor
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Example: move car at constant velocity

® How?
® supply accelerator input so that car moves at constant velocity

® (Closed loop:

® Supply acceleration, measure speed

® adjust acceleration so that car keeps speed
® (Q:how?



Closed loop control

® Derive an input to the plant from

® sectpoint (where you want the output to be)
® current plant output

® The form we will discuss is:

, Controller
Setpoint

Plant




We have

c()=G (i(H-o(1))

o(t)=H c(t)
>0 which you should remember
o()+H G o(t)=H G i(t) /
Controller Plant
i)+ c(t) o(t)




Simple, worrying example

Controller Plant
H C(t) =a C(t) i) (v olt)

Y

G x(t) = b x(t) j? G H

o(t)+ab o(t)=ab 1(t)

Now imagine that i(t) 1s a step function
® for t>0 we have
® o(t)=ab/(1+ab)
® which isn’t what we wanted
® (remember, i(t) is the output value we want)
® steady state error is lim t->infinity (o(t)-i(t))



Fix with integral term

® Idea:

® if (i(t)-o(t)) 1s not zero, there should be some control input
® magnitude increases until it is zero




Fixing with integral term

o(t) + abo(t) + ac/o o(s)ds = abi(t) + ac/o x(s)ds

Differentiate

do(t)
dt

di(t)
dt

(1 + ab) - aco(t) = ab - aci(t)

BUT we’re interested in t>0, and i(t) is a step at O

do(t)

1 b
(1 + ab) o

- aco(t) = aci(t)



Fixing with integral term

(1

ab)

do(t)

dt

aco(t) = ac

Assume that do/dt -> 0 as t-> infinity

(we’ll see it does in a moment)

o(t) =1

For large t, which is what we wanted



Fixing with integral term

(1 + ab) do(t) o) = 1 0(0) = 0

ac dt




Example

® is it a good idea to get a faster response by making ¢
bigger?



A more 1nteresting plant

V(t) i Force\‘
Car < (t) (O) . /t F(S) dt
(V) =
0 m

® Apply a force to the car to control its velocity
® g braking

Input




o(t)+H G o(t)=H G i(t)

o(t) + H [bo(t)] =
do b

Proportional control

H [bi(t)]

i ] e

Recall that t>0, 1(t)=1

Gz(t)

bx(t)



Notice

steady state error 1s now zero

larger b/m -> faster response
® BUT larger forces applied to car

(obvious) b/m <0 -> unstable behavior
Example

=(1—em)
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Small b/m -> low rise time
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rise time

Bigger b/m -> faster
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Very big b/m -> fastrise tim
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Examples

Gigantic b/m -> integrator panics
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Proportional - Integral (PI) control
t

o()+H G o(t)=H G i(t) Gx(t) = bx(t) + C/o r(s)ds

o(t) + H {bo(t) +e /O to(s)ds} _H {bz’(t) iy /O ti(s)ds}

oft) + /O t {bo(u) +e /O u O(S)ds} - /O t [bi(u) +e /O ui(s)ds}

d?o b do C

(t) =
| - —o(l) = —
dt? mdt m m

(recall 0, 1(t)=1)



d?o bdoLc

(t) = —
| | O - —
dt? mdt m m

Assume derivatives ->0 as t-> infinity (we’ll see they do)
then o(t) = 1 for very large t, which is what we wanted

A1€Zt -+ Agt + Ag

b
Are”t | 22+ =24 +A2t£+A3£
m m m m
As =10
5 b
Ag =1 A <
m

A = -1 (0(0)=0)



(1 — GZt) Where

Cases:
bA2-4cm >0 (two real roots; sum of exponentials)

bA2-4cm=0 (two copies of the same root -
this 1s known as critical damping)

bA2-4cm<0 (sinusoid with exponential amplitude)

| —
S
S
(\W)

)

|
|
H
|
I

Stability:
-b/m >0 - soln GROWS with time,
otherwise OK




Careful with b

® smallc 1

® gjves roots that are like

b €
-2 (1=

m

Might be quite fast

rather a lot slower
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PI control m=1, b=10, ¢=25
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Examples

PI control m=1, b=10, c=1
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PI control m=1, b=10, c=300
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Examples

PI control m=1, b=10, ¢c=300 step waveform
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PI control m=1, b=1, ¢=300 step waveform
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More on quadratic equations!

Damping

l

22—|—2sz—|—@2:0 Z:—W(szi\/1—<2>

T

Natural frequency

Critical damping occurs when there is a double root
equivalently when zeta=1
zeta <1 underdamped (soln. wobbles)
zeta>1 overdamped (slow rise time)



More on quadratic equations!

Damping
2 2 — l__' _ 2
2%+ 20wz +w’ =0 z = C«J(C__Z\/l C)

T

Natural frequency

Our equation

b ; c 1 b
2 — - — —
TR 0 T

:
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PI control critical damping m=1, b=20, c=100
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A derivative term

® [ssue:

® may be hard to get fast rise time
® big m requires big b for critical damping
® this may be because we are feeding back the current error

® [dea:

® vpredict future error
® this is equivalent to feeding back some fraction of the derivative



The most important slide

® A very high fraction of all controllers in the real world are:

d
K/ du—l—K:c()—FKdd—f

® PID controller



A more 1nteresting plant

V(t) i Force\‘
Car < (t) (O) . /t F(S) dt
(V) =
0 m

® Apply a force to the car to control its velocity
® g braking

Input
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PID control critical damping m=1, kp=20, ki=100, kd=0
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integral term
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Proportional-Integral-Derivative (PID)
control

Thrash through math of PI slide, and end up with:

d?o K, do K; K;

L —

2 m+K,dt  m+ K, m+ K,

1

Compare to: d?o | b do | C (t) _ C
iz mdt  m o T m

Kd makes the mass look smaller!
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PID control critical damping m=100, kp=20, ki=100, kd=0
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PID control critical damping m=100, kp=20, ki=100, kd=-99
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Kd Ki Kp







damper

Yet more interesting plant

—
—

\YAYA

spring

Mass

X(t)

d?x

bdx

Apply a force to the mass,
want to control its position.

kx = F

dt?

dt



Proportional-Integral-Derivative (PID)
control

Thrash through math of past slides, and end up with:

d20. K,+bdr K;+k K, +k

dtQj m + K4 dt r"fﬂ—l—f(dx m + Ky

Compare to: d2 T dr
Fb— + kx =F
Tz T

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!



Examples

%D control critical damping m=1, b=0.01, ¢=0.01, kp=20, ki=300, kd=-0.9

output
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PID control m=1, b=0.01, c=0.01, kp=20, ki=300, kd=-0.95
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Examples

PID control m=1, b=0.01, c=0.01, kp=20, ki=300, kd=-0.98
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Proportional-Integral-Derivative (PID)
control

Thrash through math of past slides, and end up with:

d20. K,+bdr K;+k K, +k

dtQj m + K4 dt r"fﬂ—l—f(dx m + Ky

Compare to: d2 T dr
Fb— + kx =F
Tz T

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!
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PID control m=10, b=0.01, c=0.01, kp=2001, ki=300001, kd=0
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Tuning

e Usually, you don’t know the plant and can’t do the math
® Powerful rule of thumb (manual tuning)

If the system must remain online, one tuning method is to first set K; and K values to zero. Increase
the K, until the output of the loop oscillates, then the K, should be set to approximately half of that
value for a "quarter amplitude decay" type response. Then increase K; until any offset is corrected in
sufficient time for the process. However, too much K; will cause instability. Finally, increase Ky, if
required, until the loop is acceptably quick to reach its reference after a load disturbance. However,
too much K; will cause excessive response and overshoot. A fast PID loop tuning usually overshoots
slightly to reach the setpoint more quickly; however, some systems cannot accept overshoot, in which
case an overdamped closed-loop system is required, which will require a K, setting significantly less

than half that of the K, setting that was causing oscillation.



Tuning, 11

Effects of increasing a parameter independently@@l
Parameter Rise time Overshoot | Settling time | Steady-state error Stability
K, Decrease Increase Small change Decrease Degrade
K; Decrease Increase Increase Eliminate Degrade
K, Minor change | Decrease Decrease No effect in theory | Improve if K; small

Kd = 0 for about 75% of deployed systems



Stability and oscillation (rough)

® [inear systems can clearly oscillate
® ¢enerally, too big a Kp or Kd can cause problems

® Nonlinearities can easily cause oscillations

® Delays cause oscillations



1.8

1.6

14

1.2

0.8

0.6

04

0.2

Examples

PI control around delay of 1e-4s, plant=1, kp=0.1, ki=5000
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PI control around delay of 20e-4s, plant=1, kp=0.1, ki=5000
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Examples

1.8 F

14r

1.2 -

08 r

0.6 -

04r

02r

PI control around delay of 200e-4s, plant=1, kp=1, ki=1

output
iterm
pterm
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Demand is a step - this should look unpromising...
NOTICE Plant is 1 (really simple)
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Pushing up Ki speculatively doesn’t help

Unrecoverable

PI control around delay of 200e-4s, plant=1, kp=1, ki=10
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Ideas

Plant/process
control

Open vs closed loop
stability

Linear vs non-linear

Simplest linear feedback control

® X constant

® with derivative term

® Jarge gains can cause instability
® steady state error is a problem

Delay is a problem
non-linearities can create excitement



Ideas

® PID control

® standard procedure

® (there are tons in the car software)
® P controls; I reduces steady state error; D increases response speed
® Straightforward tuning procedure

® (see software example)



