

Very simple control, with PID

D.A. Forsyth, UIUC

We assume that everything is linear

- This creates huge mathematical simplifications
- Linear system:
 - accepts a signal $x(t)$
 - produces a signal $y(t) = K x(t)$
 - AND
 - $K(x(t) + y(t)) = K x(t) + K y(t)$
 - $K(a x(t)) = a K x(t)$
 - (notice this means $K 0 = 0$)

K stands for a linear operator,
so that (for example) we could have

$$K x(t) = a x(t)$$

or

$$K x(t) = dx/dt$$

In fact, study only the response to a step

- You can approximate any function with a lot of steps
- Step is $u(t)$
 - this is 0 for $t <= 0$, 1 otherwise
 - so $u(t) - u(t+dt)$ is a bar
- Approximate $f(t)$ by

$$\sum_i f(i\Delta t)(u(i\Delta t) - u(i\Delta t + \Delta t))$$

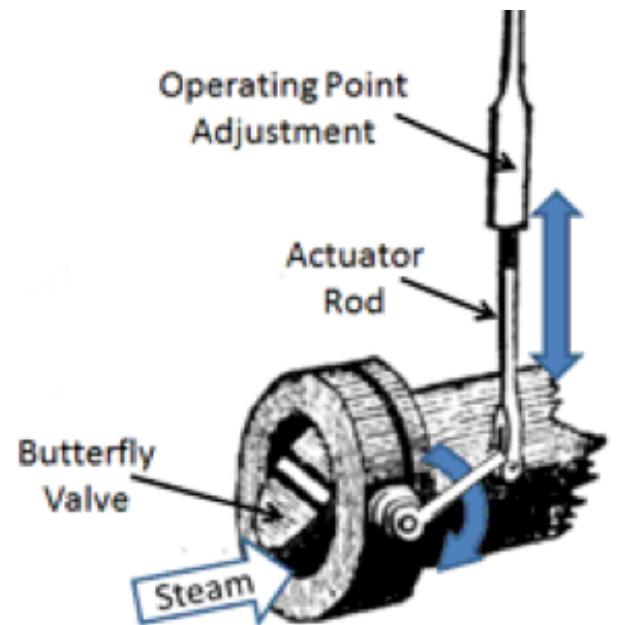
- ex: simplify this expression
- ex: we know $K u(t)$ - what is $K f(t)$?

Ideas: plant/process, control

- Plant/process is the thing we wish to control
 - assume: 1 input, 1 output, linear
 - for simple examples, I'll write out the form of the plant
 - but very often, it isn't known exactly
 - System Identification
- Control:
 - supply the plant with the input needed to produce the output you want
 - Q: why is this hard?
 - A1: Plant may not be exactly known
 - A2: Plant may have dynamics
 - A3: Desired output may change

The very simplest control

- Plant: $K x(t) = c x(t)$
 - here c is a known constant
- We'd like the output to be 1
 - feed plant with $1/c$
 - and go home early
- Example of open loop control
 - compute a fixed input and supply to plant
 - whatever the plant
- Advantages:
 - simple, sometimes works
- Disadvantages:
 - what if your model is wrong?



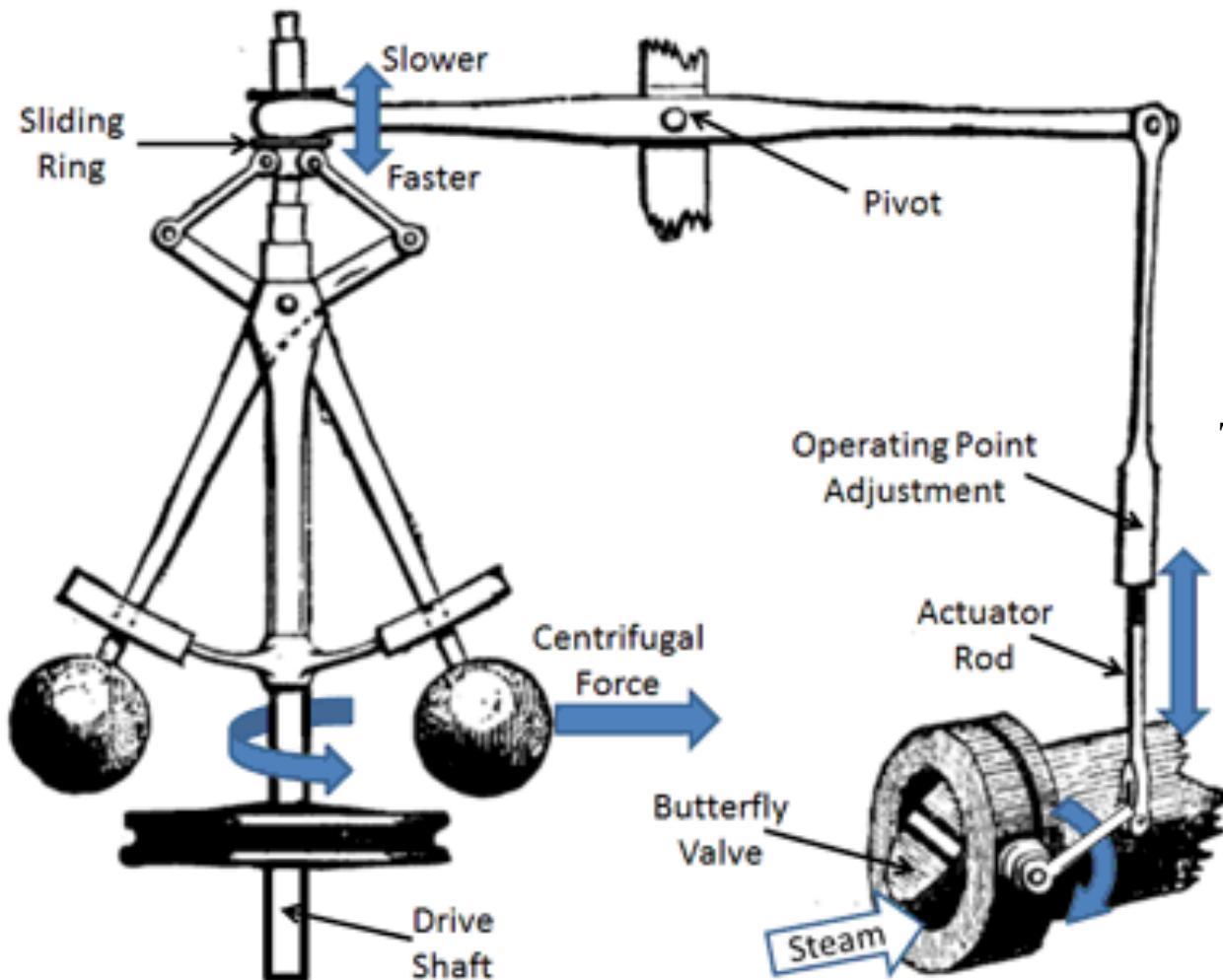
Throttle Control

Example: move car at constant velocity

- How?
 - supply accelerator input so that car moves at constant velocity
- Open loop:
 - Figure out how acceleration causes velocity
 - $a=dv/dt$ -(some frictional loss)
 - Supply acceleration
 - a burst of acceleration to get to speed
 - then constant acceleration to cope with loss
- Doesn't seem all that practical

History of feedback

Watt's Flyball Governor



Watt's flyball governor, C19

These were still in use in late C20!

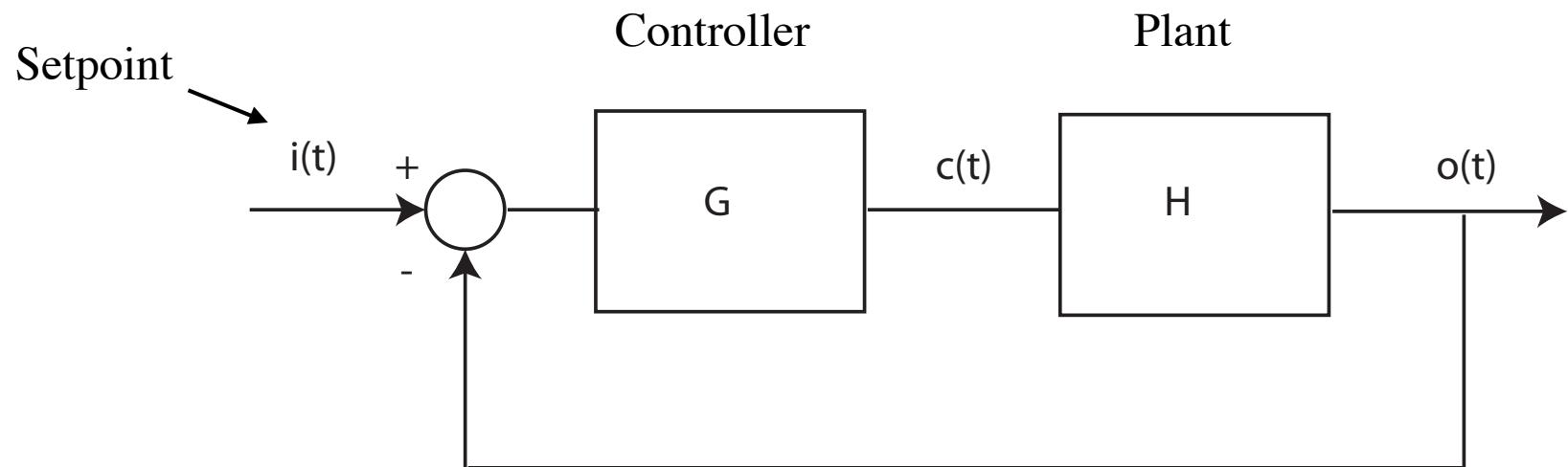
Throttle Control

Example: move car at constant velocity

- How?
 - supply accelerator input so that car moves at constant velocity
- Closed loop:
 - Supply acceleration, measure speed
 - adjust acceleration so that car keeps speed
 - Q: how?

Closed loop control

- Derive an input to the plant from
 - setpoint (where you want the output to be)
 - current plant output
- The form we will discuss is:



We have

$$c(t) = G (i(t) - o(t))$$

$$o(t) = H c(t)$$

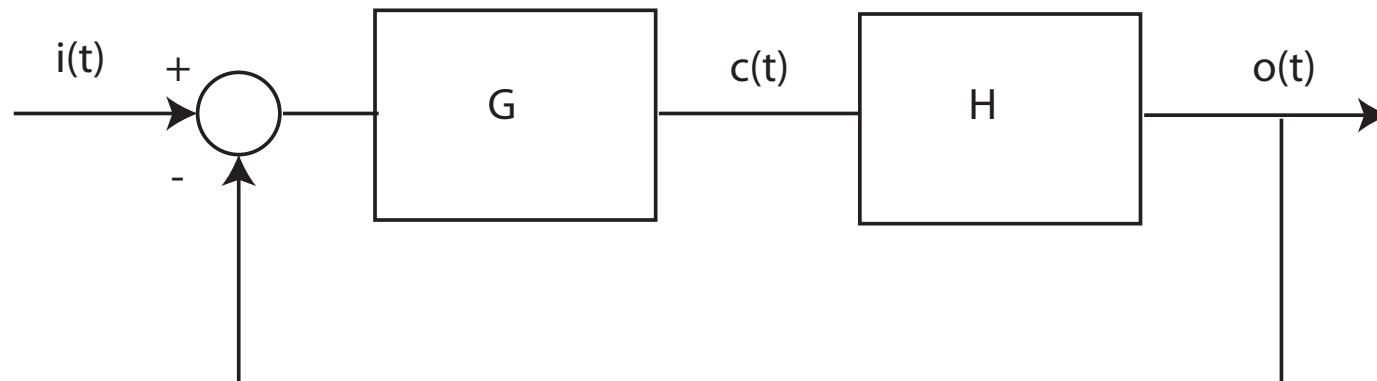
so

which you should remember

$$o(t) + H G o(t) = H G i(t)$$

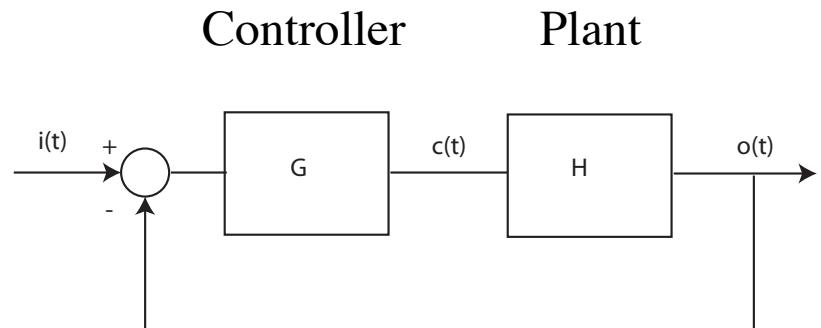
Controller

Plant



Simple, worrying example

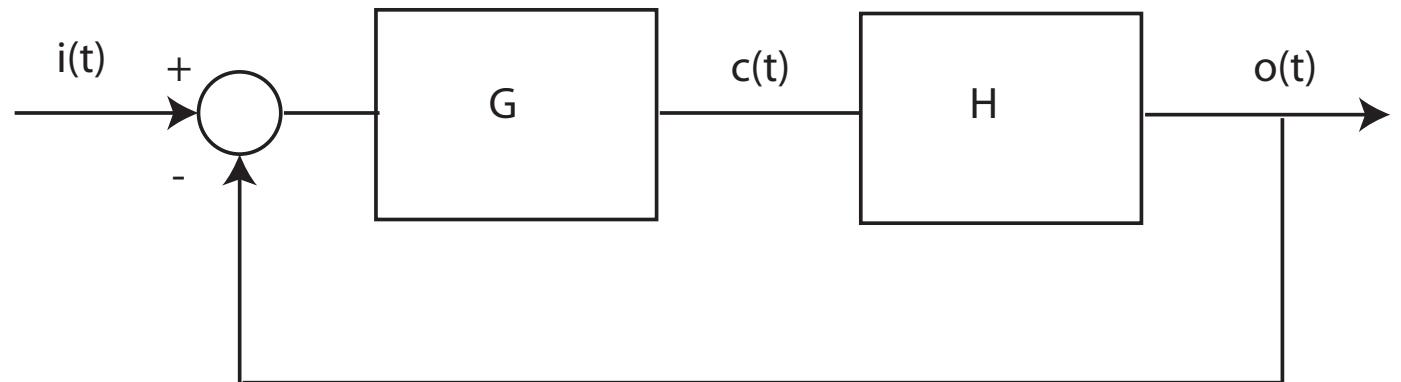
- $H c(t) = a c(t)$
- $G x(t) = b x(t)$
- $o(t) + ab o(t) = ab i(t)$
- Now imagine that $i(t)$ is a step function
 - for $t > 0$ we have
 - $o(t) = ab/(1+ab)$
 - which isn't what we wanted
 - (remember, $i(t)$ is the output value we want)
 - **steady state error** is $\lim_{t \rightarrow \infty} (o(t) - i(t))$



Fix with integral term

- Idea:
 - if $(i(t)-o(t))$ is not zero, there should be some control input
 - magnitude increases until it is zero
-

$$Gx(t) = bx(t) + c \int_0^t x(s)ds$$



Fixing with integral term

$$o(t) + abo(t) + ac \int_0^t o(s)ds = abi(t) + ac \int_0^t x(s)ds$$

Differentiate

$$(1 + ab) \frac{do(t)}{dt} + aco(t) = ab \frac{di(t)}{dt} + aci(t)$$

BUT we're interested in $t > 0$, and $i(t)$ is a step at 0

$$(1 + ab) \frac{do(t)}{dt} + aco(t) = aci(t)$$

Fixing with integral term

$$(1 + ab) \frac{do(t)}{dt} + aco(t) = ac$$

Assume that $do/dt \rightarrow 0$ as $t \rightarrow \infty$
(we'll see it does in a moment)

$$o(t) = 1$$

For large t , which is what we wanted

Fixing with integral term

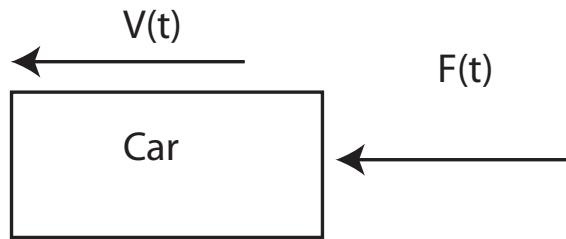
$$\frac{(1+ab)}{ac} \frac{do(t)}{dt} + o(t) = 1 \quad o(0) = 0$$

$$o(t) = \left(1 - e^{\frac{-ac}{1+ab}t}\right)$$

Example

- is it a good idea to get a faster response by making c bigger?

A more interesting plant



$$v(t) = v(0) + \int_0^t \frac{F(s)}{m} dt$$

- Apply a force to the car to control its velocity
 - eg braking

$$v(t) = \int_0^t \frac{F(s)}{m} dt$$

Proportional control

$$o(t) + H G o(t) = H G i(t)$$

$$Gx(t) = bx(t)$$

$$o(t) + H [bo(t)] = H [bi(t)]$$

$$o(t) + \frac{b}{m} \int_0^t o(s) ds = \frac{b}{m} \int_0^t i(s) ds$$

$$\frac{do}{dt} + \frac{b}{m} o(t) = \frac{b}{m}$$

Recall that $t > 0, i(t) = 1$

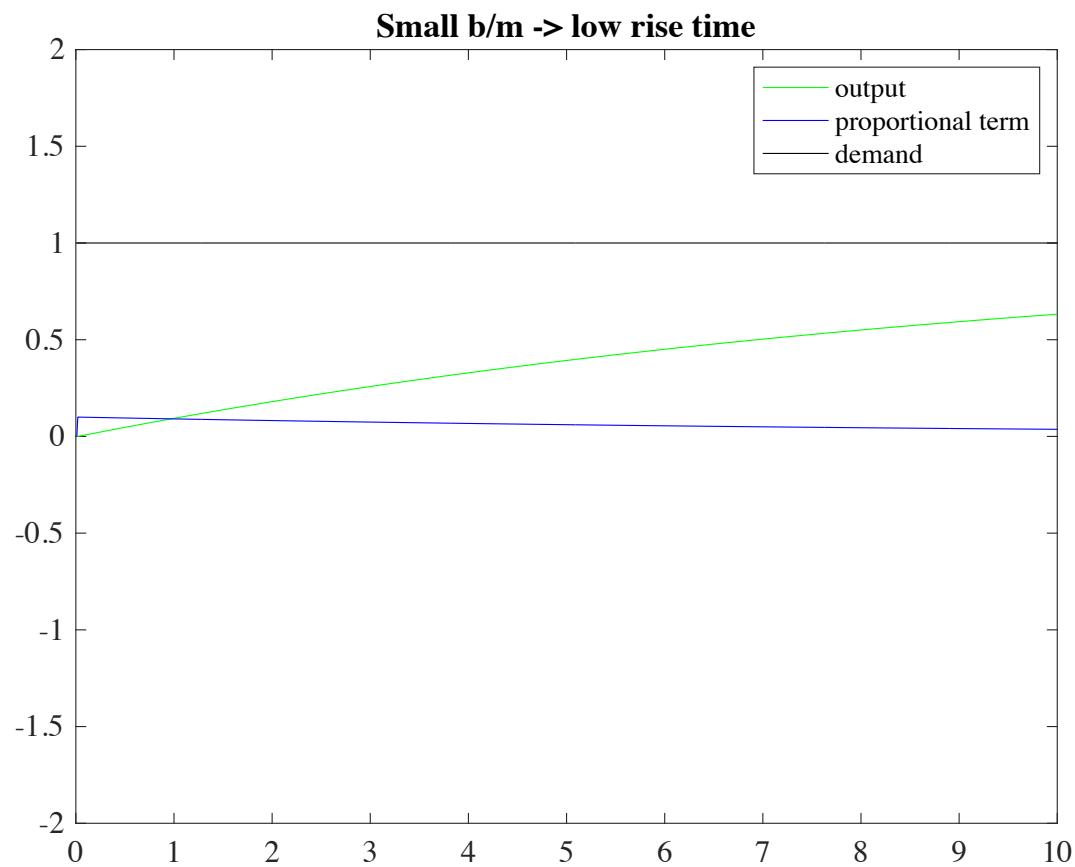
Notice

$$\frac{do}{dt} + \frac{b}{m}o(t) = \frac{b}{m}$$

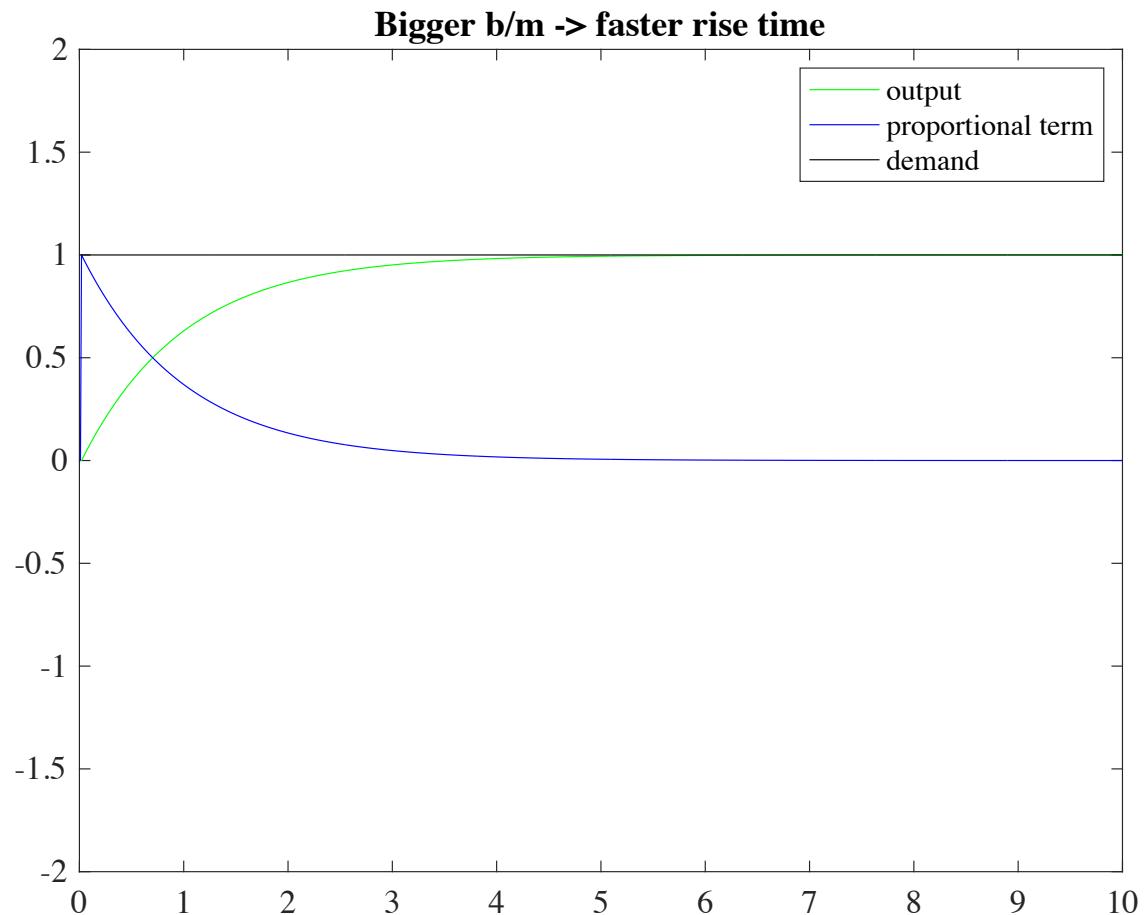
$$o(t) = (1 - e^{\frac{-bt}{m}})$$

- steady state error is now zero
- larger $b/m \rightarrow$ faster response
 - BUT larger forces applied to car
- (obvious) $b/m < 0 \rightarrow$ unstable behavior
- Example

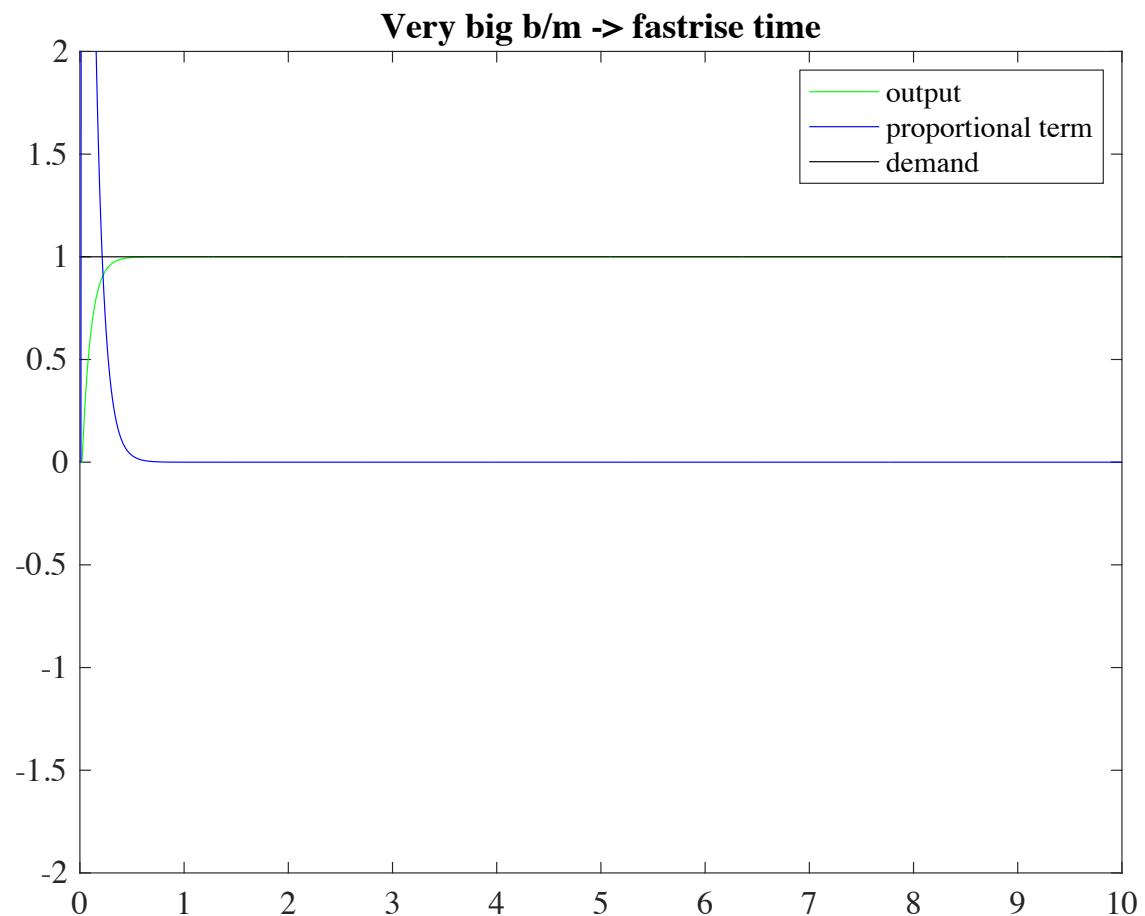
Examples



Examples



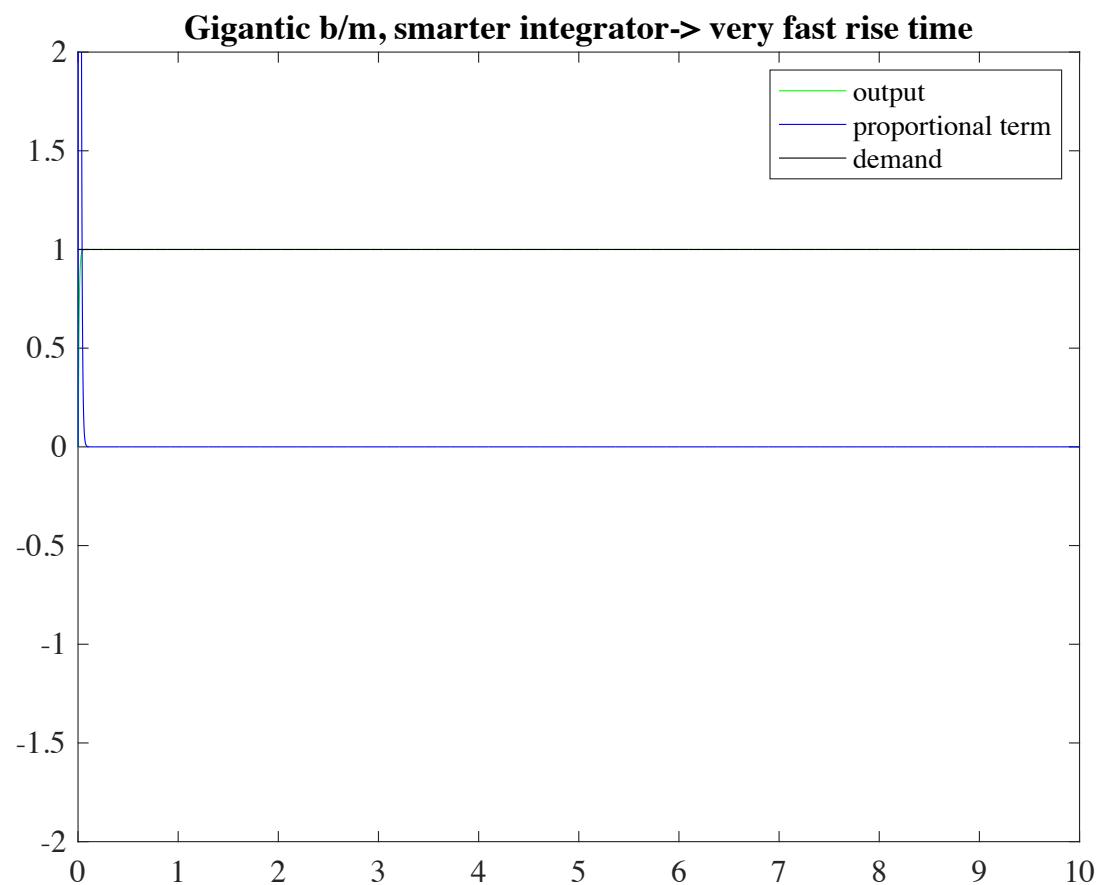
Examples



Examples



Examples



Proportional - Integral (PI) control

$$o(t) + H \int_0^t o(s) ds = H \int_0^t i(s) ds$$

$$Gx(t) = bx(t) + c \int_0^t x(s) ds$$

$$o(t) + H \left[bo(t) + c \int_0^t o(s) ds \right] = H \left[bi(t) + c \int_0^t i(s) ds \right]$$

$$o(t) + \frac{1}{m} \int_0^t \left[bo(u) + c \int_0^u o(s) ds \right] = \frac{1}{m} \int_0^t \left[bi(u) + c \int_0^u i(s) ds \right]$$

$$\frac{d^2 o}{dt^2} + \frac{b}{m} \frac{do}{dt} + \frac{c}{m} o(t) = \frac{c}{m} \quad (\text{recall } t>0, i(t)=1)$$

$$\frac{d^2o}{dt^2} + \frac{b}{m} \frac{do}{dt} + \frac{c}{m} o(t) = \frac{c}{m}$$

Assume derivatives $\rightarrow 0$ as $t \rightarrow \infty$ (we'll see they do)
 then $o(t) = 1$ for very large t , which is what we wanted

$$A_1 e^{zt} + A_2 t + A_3$$

$$A_1 e^{zt} \left(z^2 + \frac{b}{m} z + \frac{c}{m} \right) + A_2 t \frac{c}{m} + A_3 \frac{c}{m} = \frac{c}{m}$$

$$A_2 = 0$$

$$A_3 = 1$$

$$A_1 = -1 \quad (o(0)=0)$$

$$z^2 + \frac{b}{m} z + \frac{c}{m} = 0$$

$$z^2 + \frac{b}{m}z + \frac{c}{m} = 0$$

$$(1 - e^{zt})$$

Where

$$z = \frac{1}{2} \left[-\frac{b}{m} \pm \sqrt{\frac{b^2}{m^2} - 4\frac{c}{m}} \right]$$

Cases:

$b^2-4cm > 0$ (two real roots; sum of exponentials)

$b^2-4cm=0$ (two copies of the same root -
this is known as critical damping)

$b^2-4cm<0$ (sinusoid with exponential amplitude)

Stability:

$-b/m > 0$ - soln GROWS with time,
otherwise OK

Careful with b

- small c

$$c = \epsilon \frac{b^2}{m}$$

$$z = \frac{1}{2} \left[-\frac{b}{m} \pm \sqrt{\frac{b^2}{m^2} - 4 \frac{c}{m}} \right]$$

- gives roots that are like

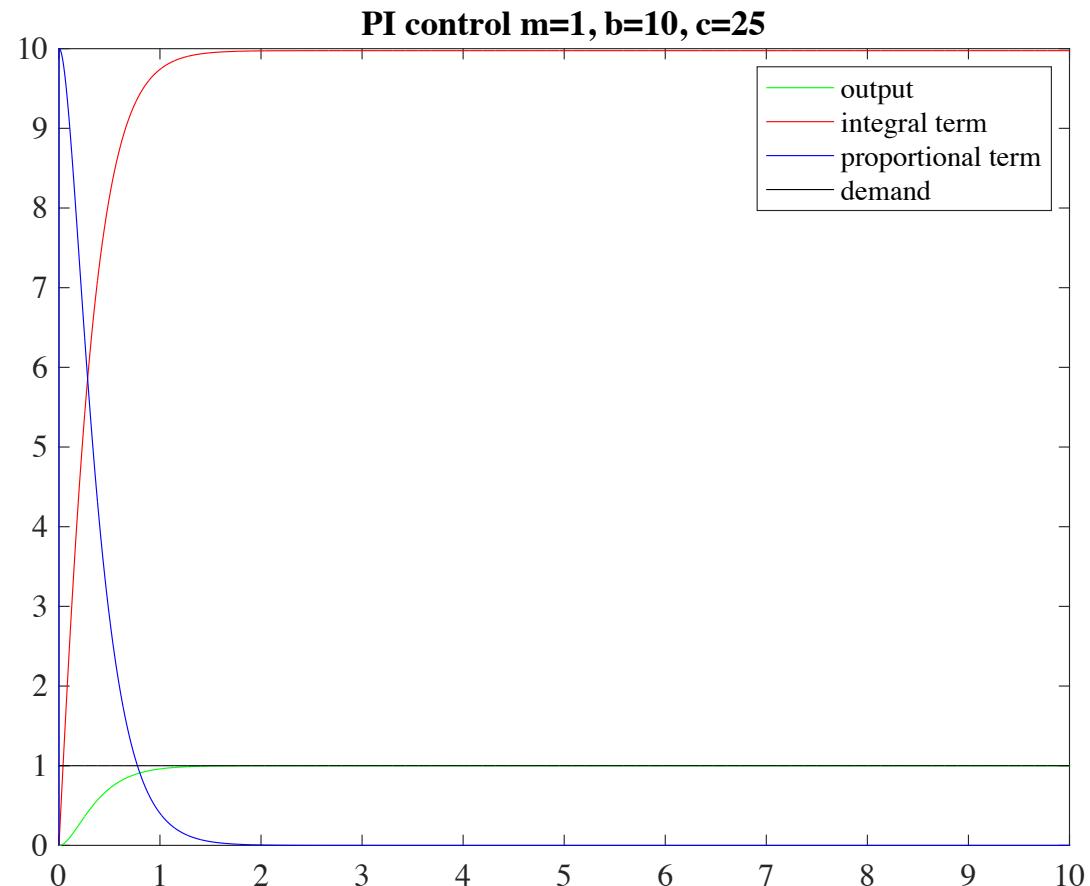
$$-\frac{b}{m} \left(1 - \frac{\epsilon}{4}\right)$$

Might be quite fast

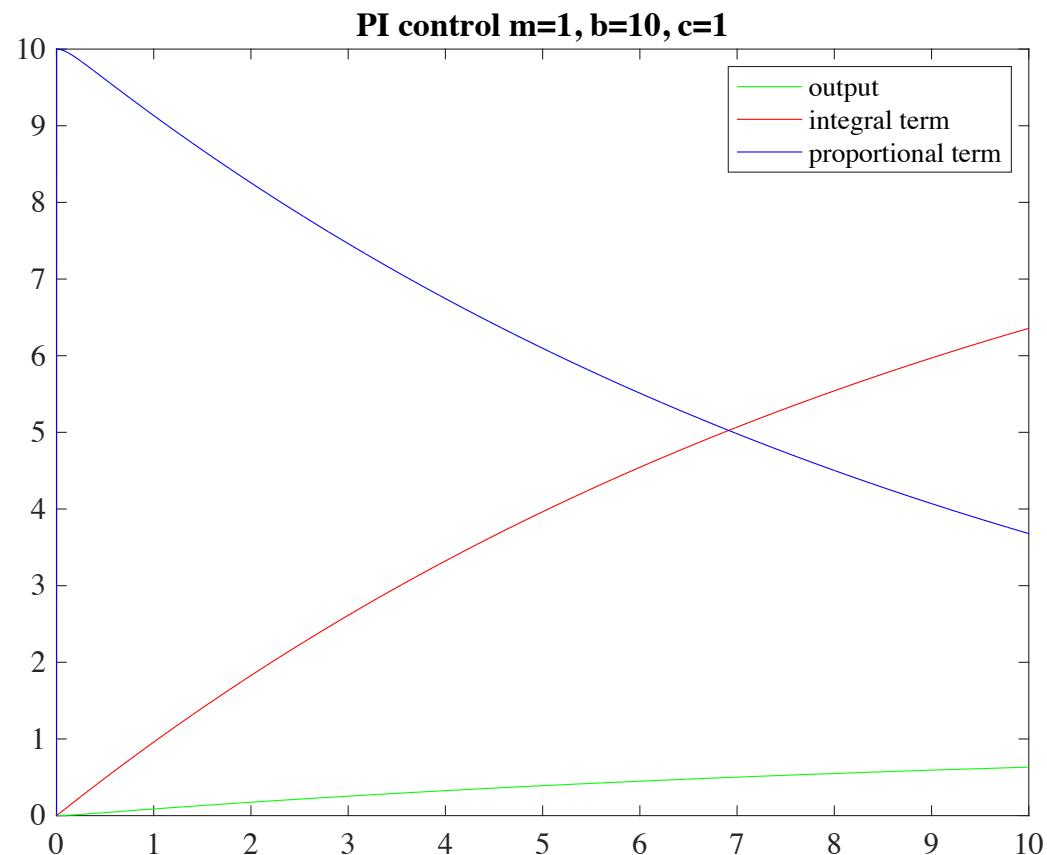
$$-\frac{b}{m} \frac{\epsilon}{4}$$

rather a lot slower

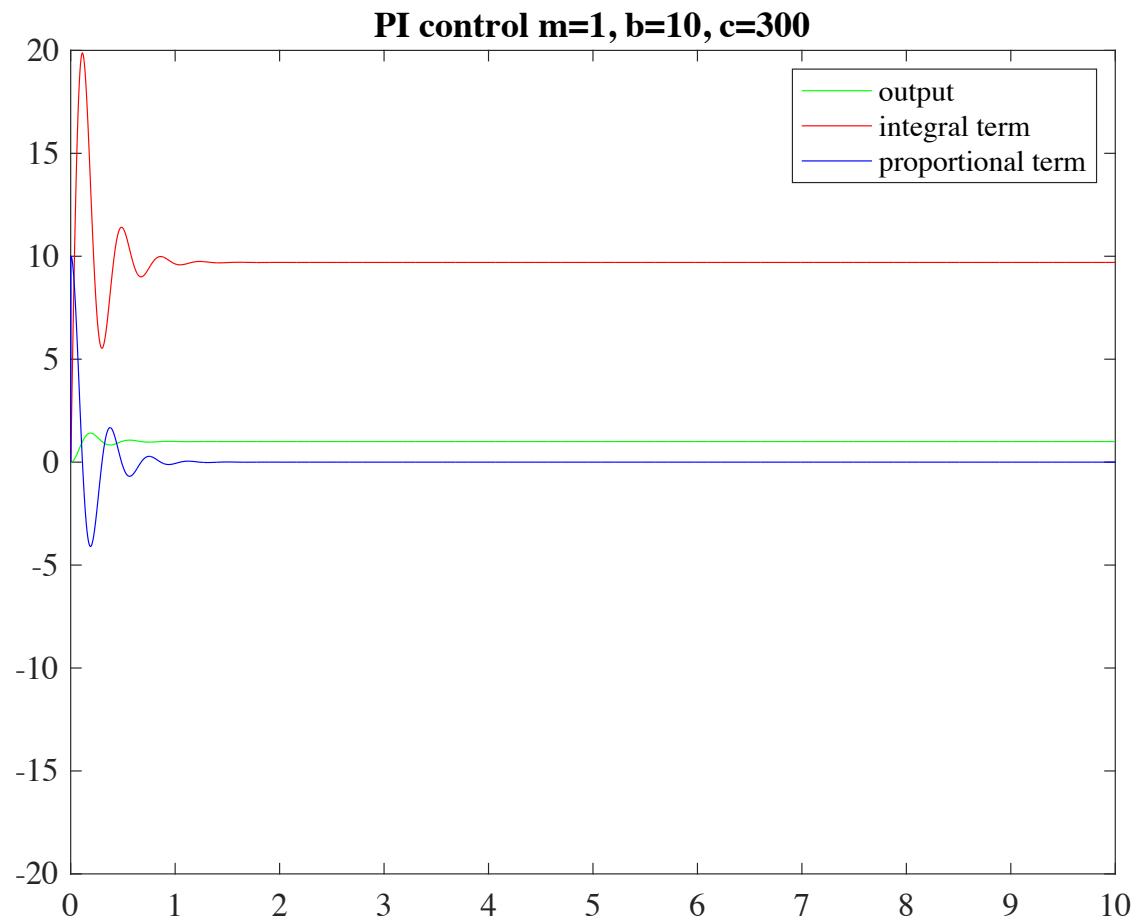
Examples



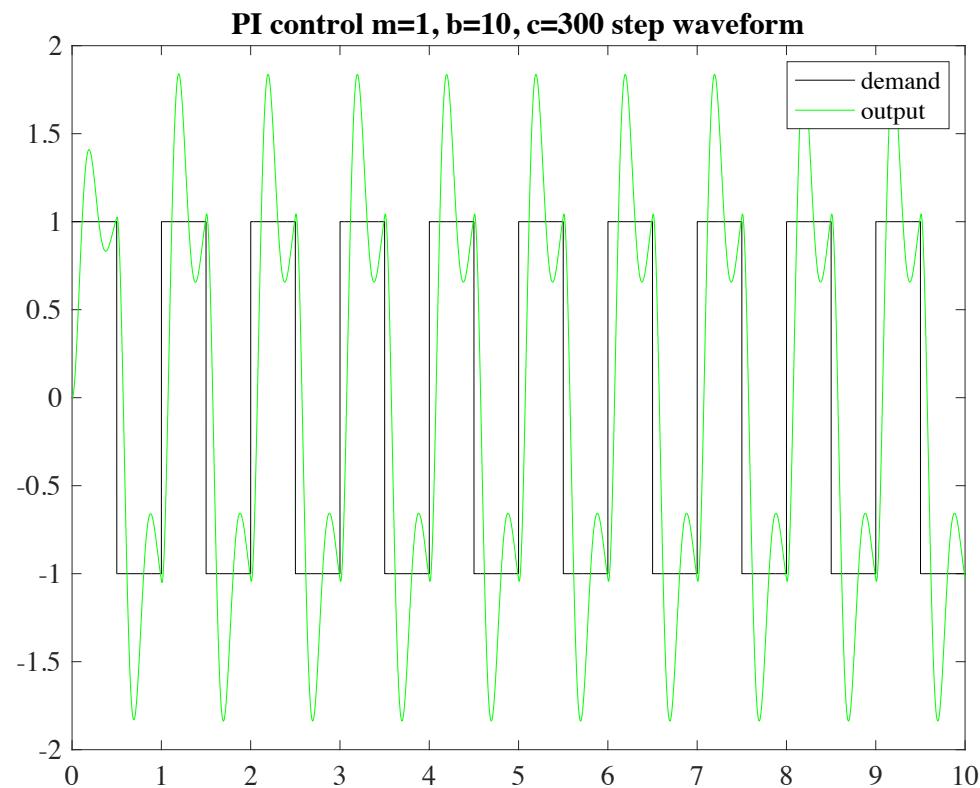
Examples



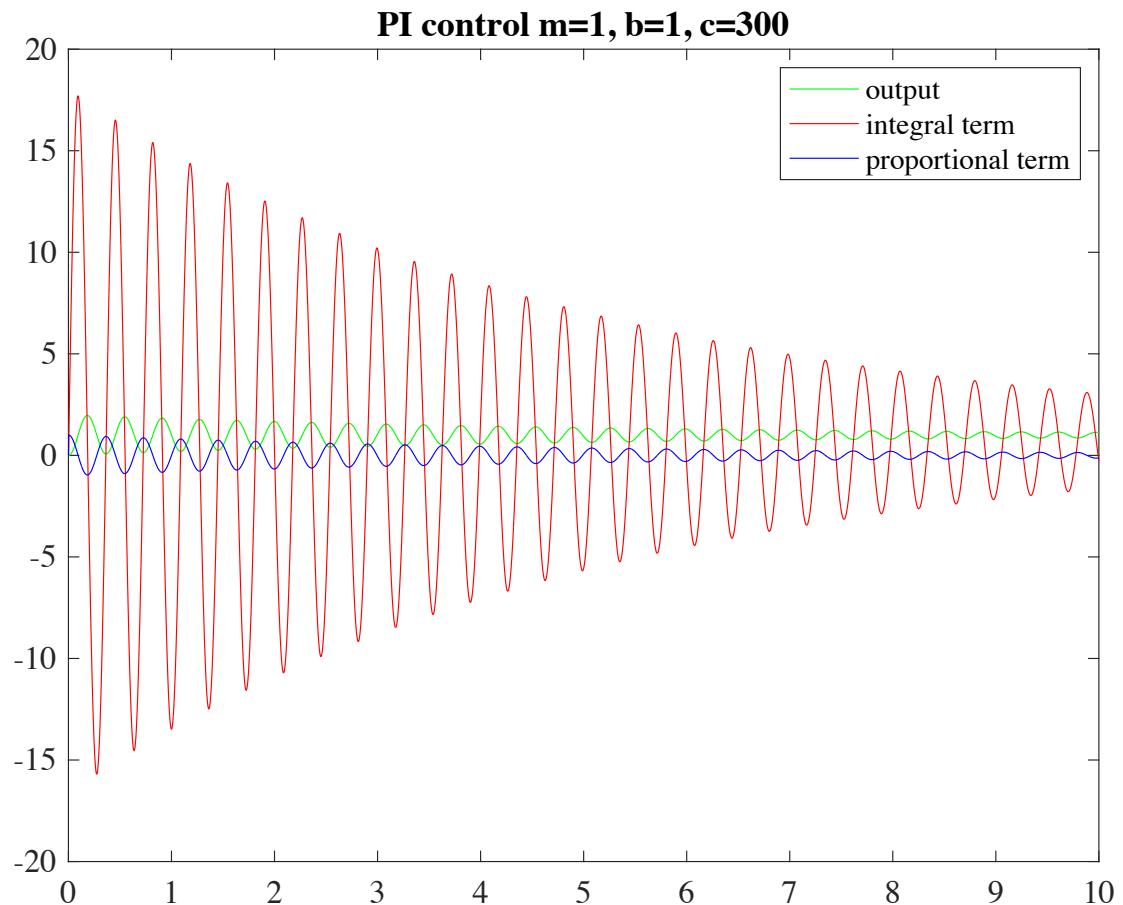
Examples



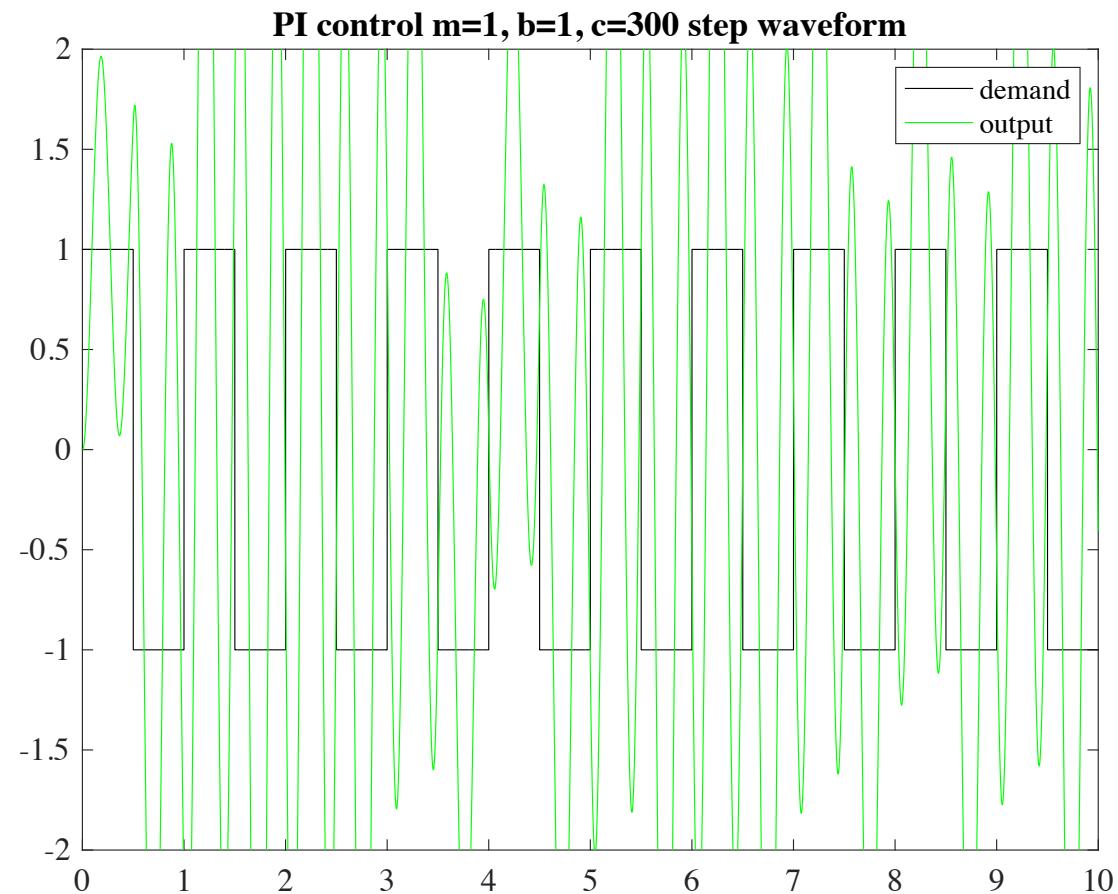
Examples



Examples



Examples



More on quadratic equations!

$$z^2 + 2\zeta\omega z + \omega^2 = 0$$

$$z = -\omega \left(\zeta \pm i\sqrt{1 - \zeta^2} \right)$$

↑
Natural frequency
↓
Damping

Critical damping occurs when there is a double root
equivalently when $\zeta=1$
 $\zeta < 1$ underdamped (soln. wobbles)
 $\zeta > 1$ overdamped (slow rise time)

More on quadratic equations!

$$z^2 + 2\zeta\omega z + \omega^2 = 0$$

$$z = -\omega \left(\zeta \pm i\sqrt{1 - \zeta^2} \right)$$

↑
Natural frequency
↓
Damping

Our equation

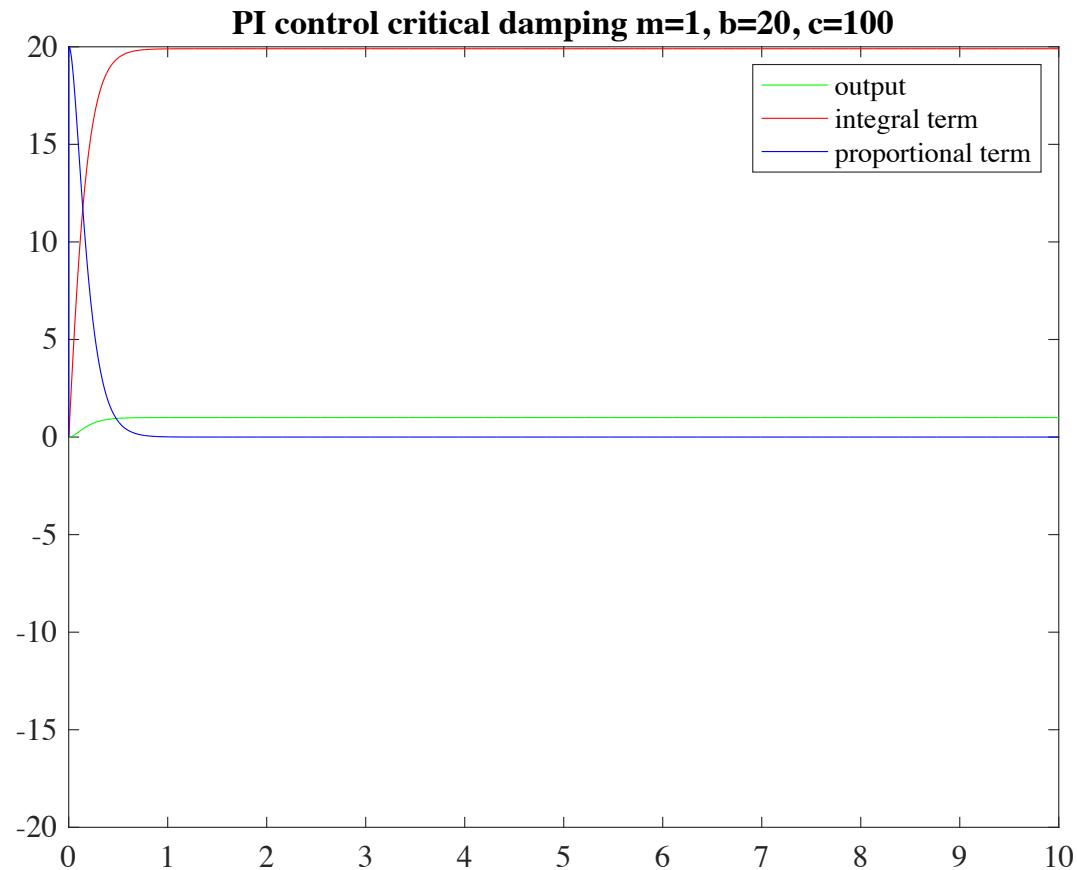
$$z^2 + \frac{b}{m}z + \frac{c}{m} = 0$$

$$\omega = \sqrt{\frac{c}{m}} \quad \zeta = \frac{1}{2} \frac{b}{\sqrt{cm}}$$

Critical damping:

$$b = 2\sqrt{cm}$$

Examples



A derivative term

- Issue:
 - may be hard to get fast rise time
 - big m requires big b for critical damping
 - this may be because we are feeding back the current error
- Idea:
 - predict future error
 - this is equivalent to feeding back some fraction of the derivative

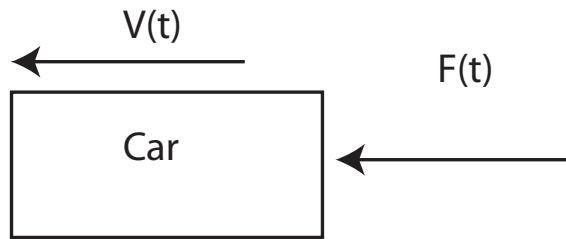
The most important slide

- A very high fraction of all controllers in the real world are:

$$Gx(t) = K_i \int_0^t x(u)du + K_p x(t) + K_d \frac{dx}{dt}$$

- PID controller

A more interesting plant

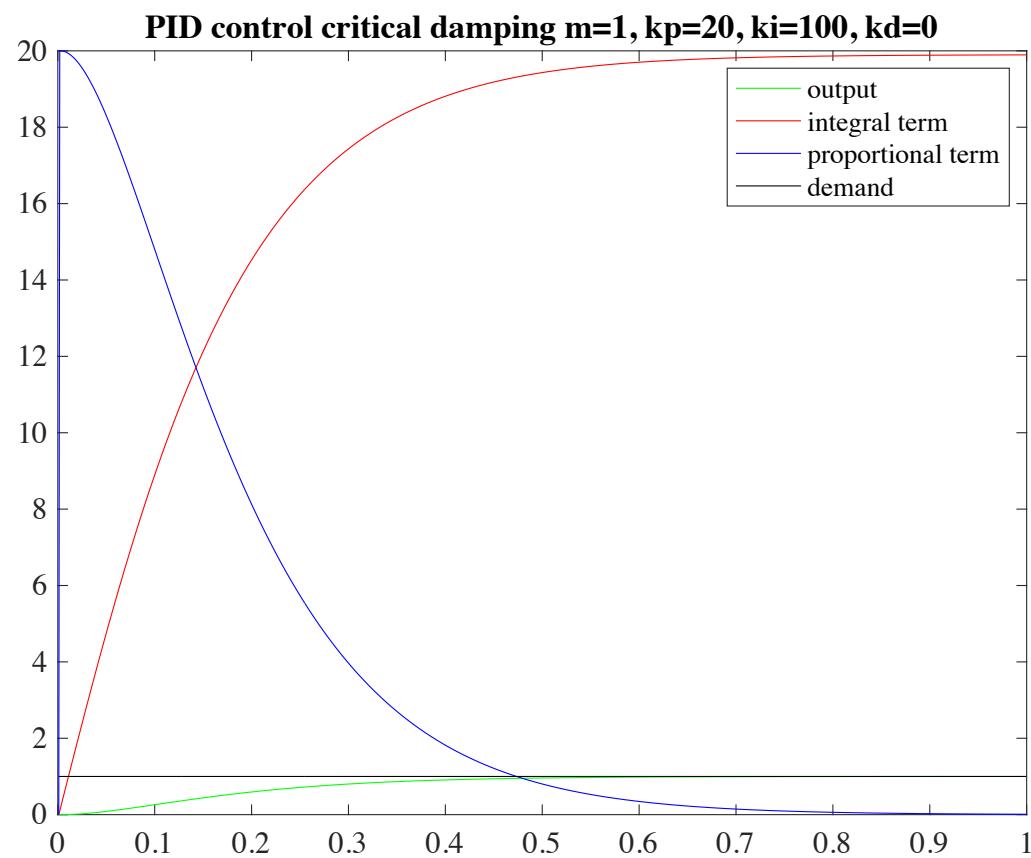


$$v(t) = v(0) + \int_0^t \frac{F(s)}{m} dt$$

- Apply a force to the car to control its velocity
 - eg braking

$$v(t) = \int_0^t \frac{F(s)}{m} dt$$

Example



Proportional-Integral-Derivative (PID) control

Thrash through math of PI slide, and end up with:

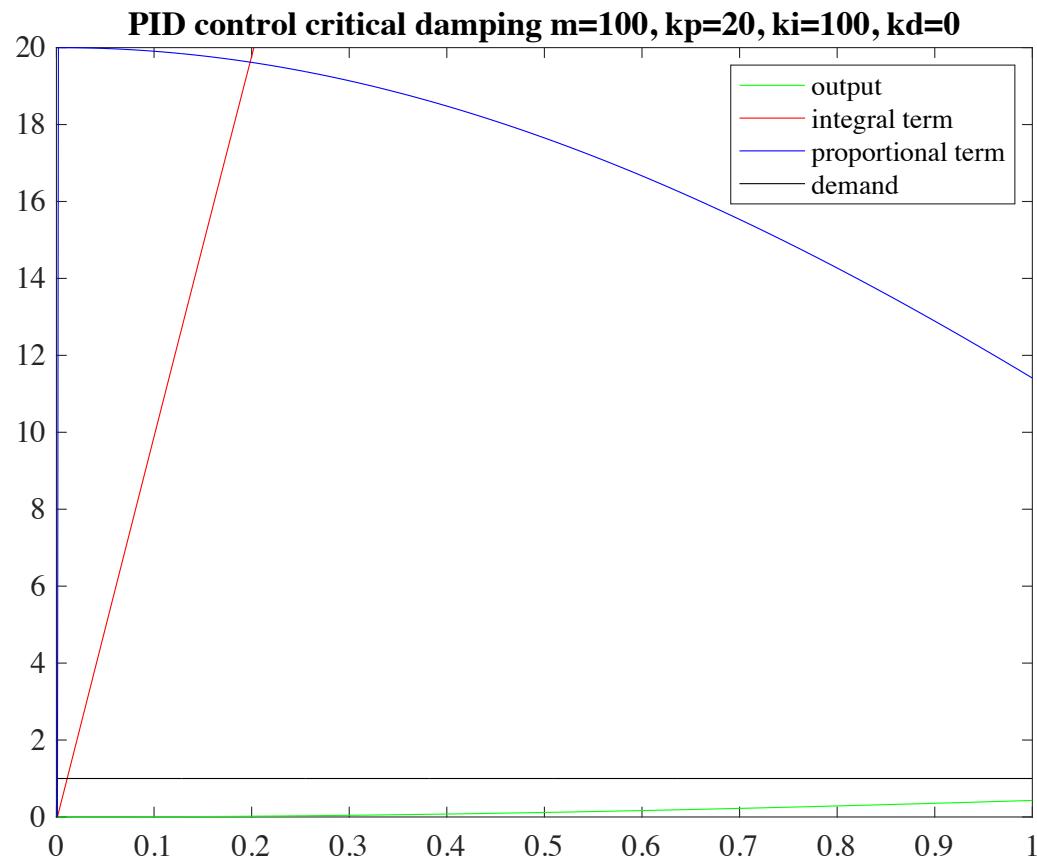
$$\frac{d^2 o}{dt^2} + \frac{K_p}{m + K_d} \frac{do}{dt} + \frac{K_i}{m + K_d} o = \frac{K_i}{m + K_d}$$

Compare to:

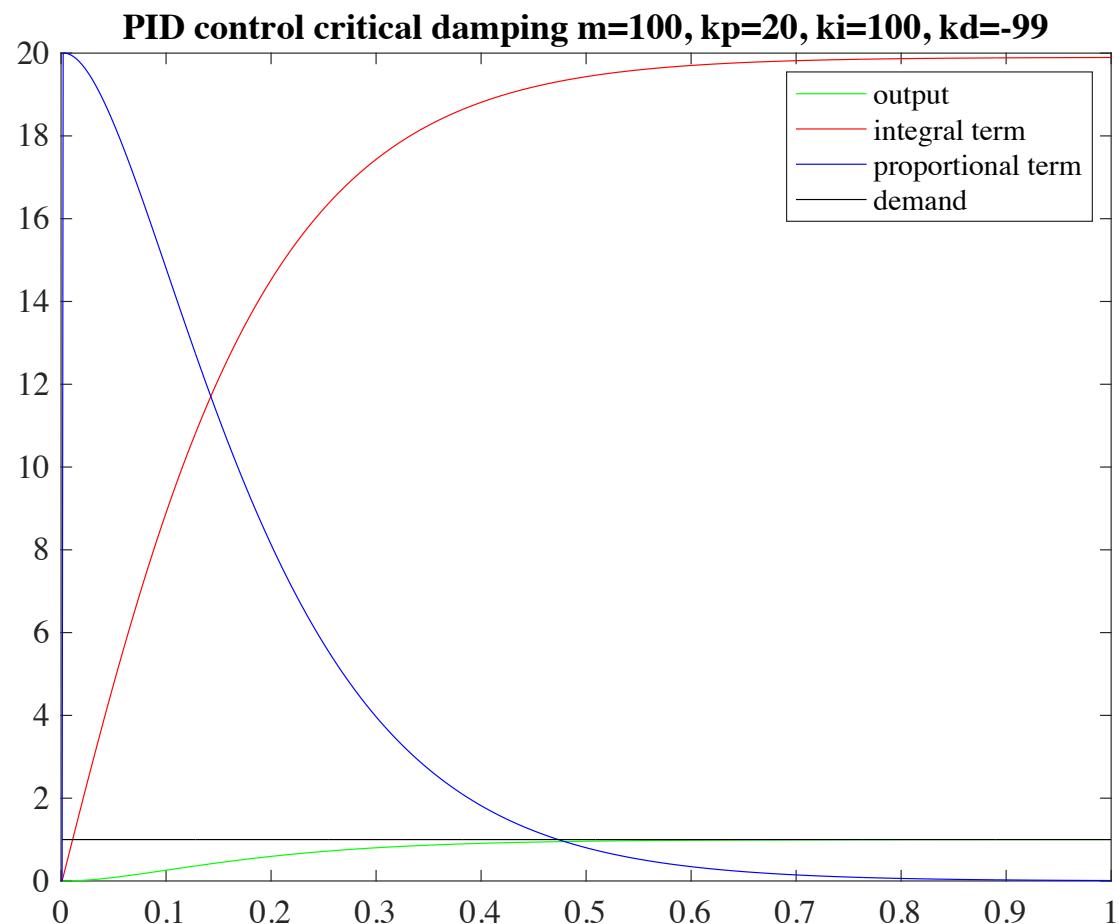
$$\frac{d^2 o}{dt^2} + \frac{b}{m} \frac{do}{dt} + \frac{c}{m} o(t) = \frac{c}{m}$$

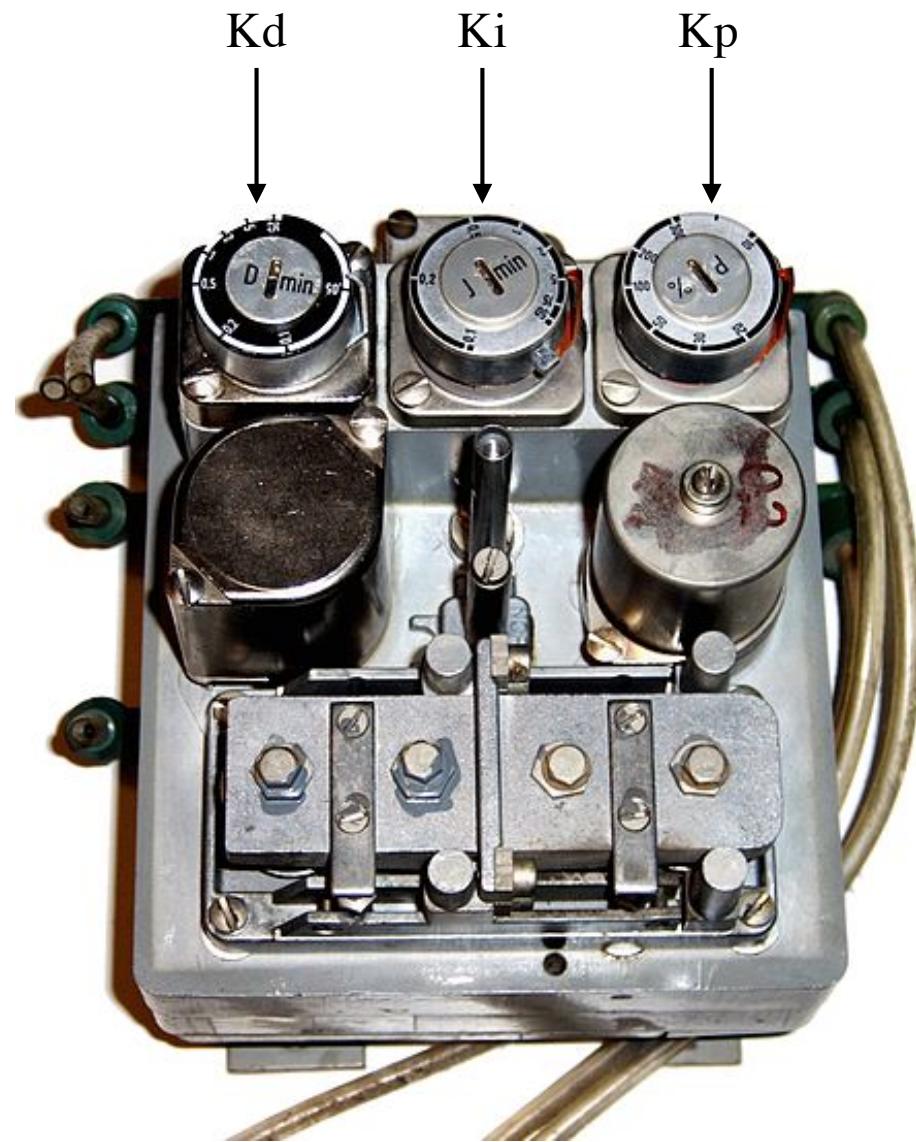
Kd makes the mass look smaller!

Examples



Examples



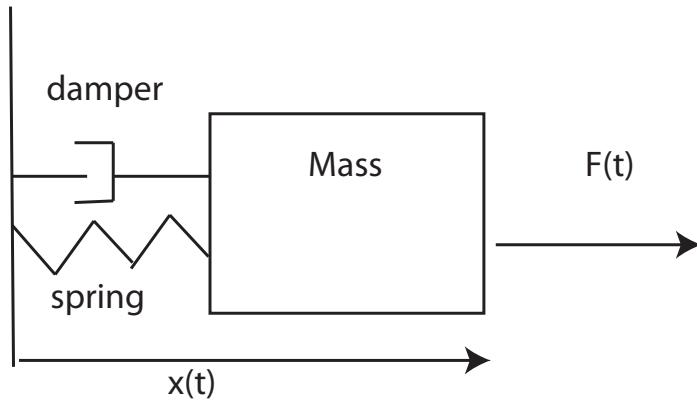


Kd

Ki

Kp

Yet more interesting plant



Apply a force to the mass,
want to control its position.

$$m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = F$$

Proportional-Integral-Derivative (PID) control

Thrash through math of past slides, and end up with:

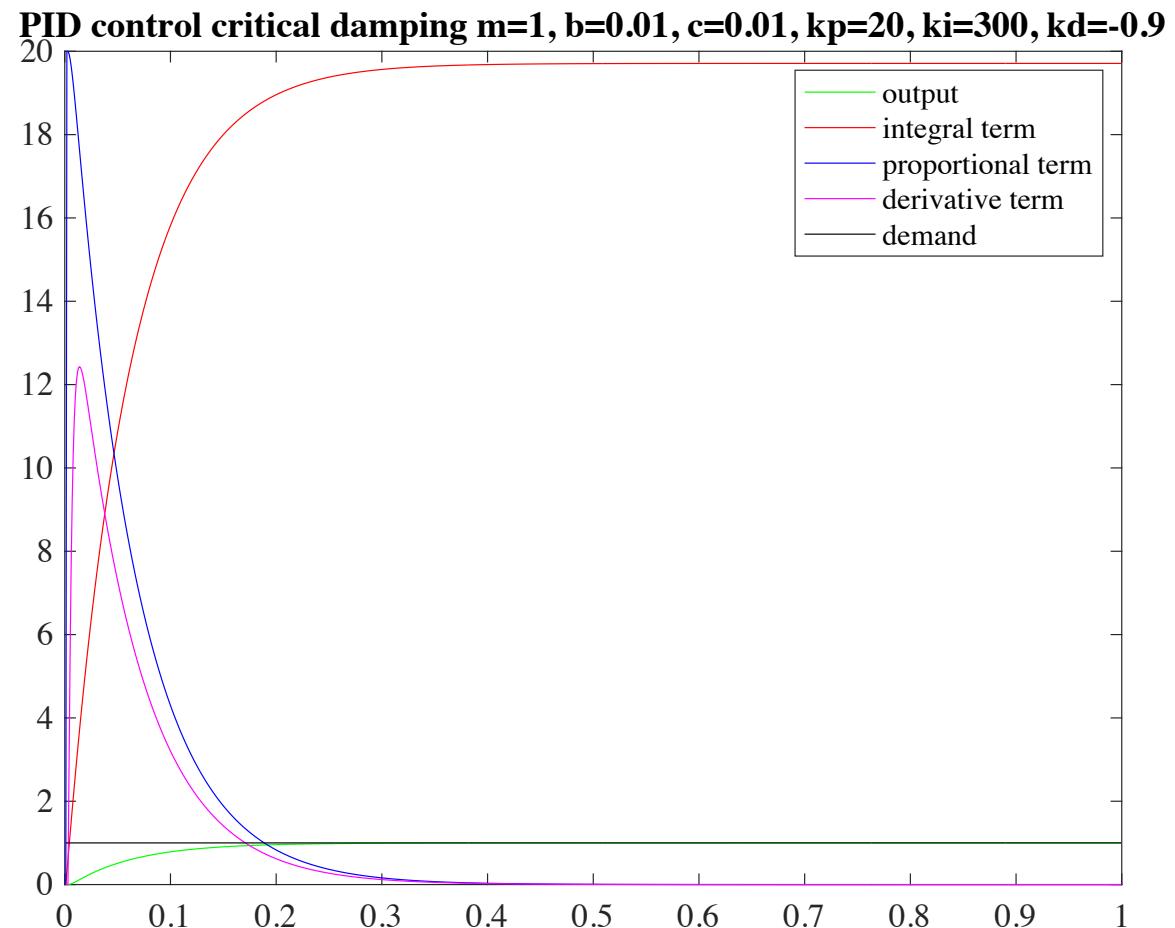
$$\frac{d^2o}{dt^2} + \frac{K_p + b}{m + K_d} \frac{dx}{dt} + \frac{K_i + k}{m + K_d} x = \frac{K_i + k}{m + K_d}$$

Compare to:

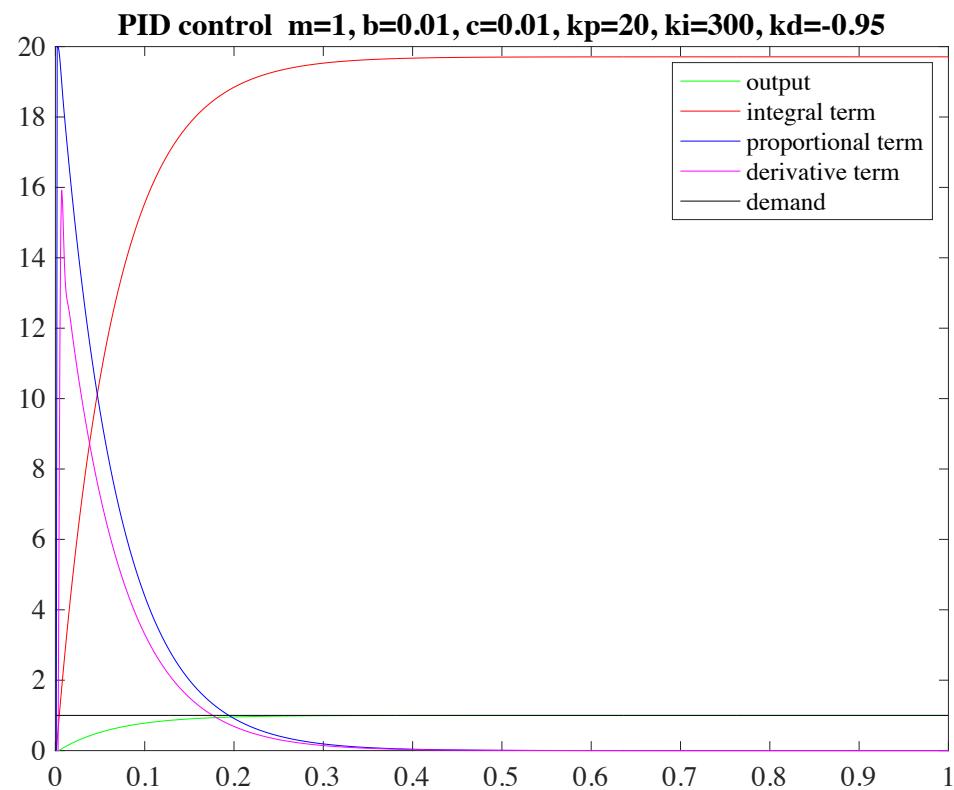
$$m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = F$$

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!

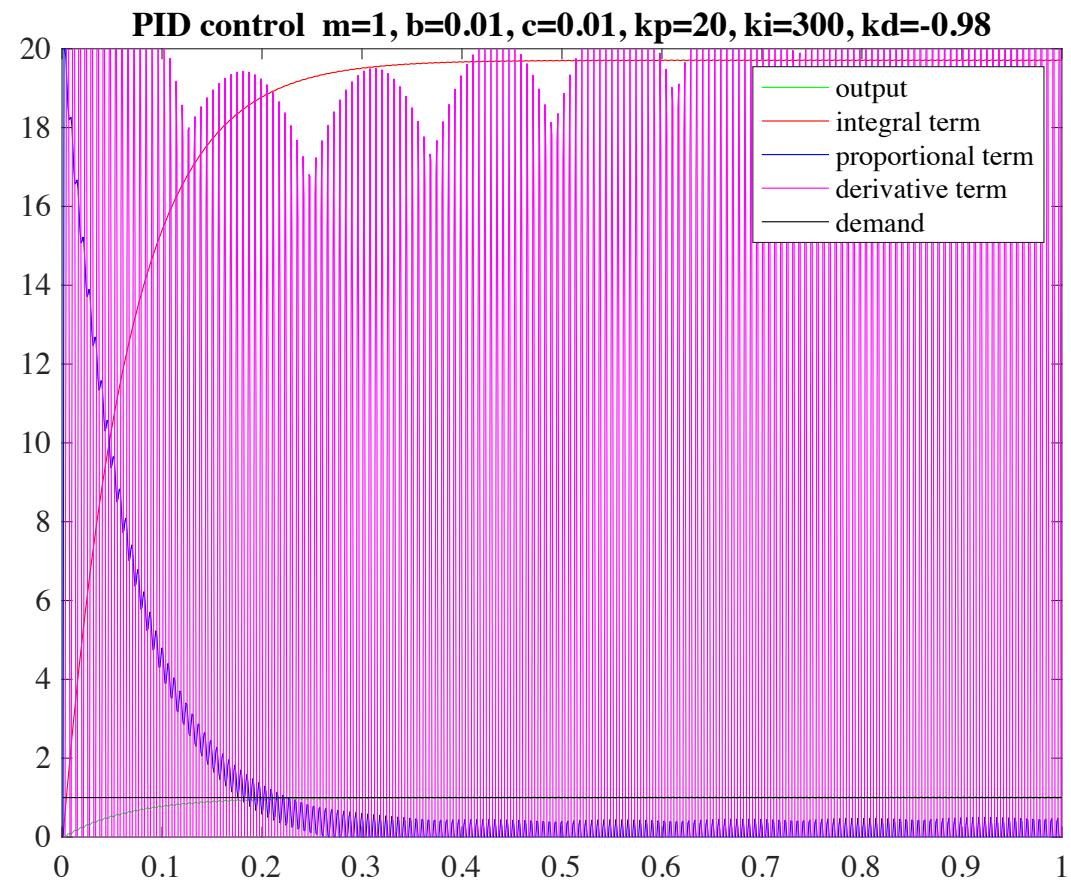
Examples



Examples



Examples



Proportional-Integral-Derivative (PID) control

Thrash through math of past slides, and end up with:

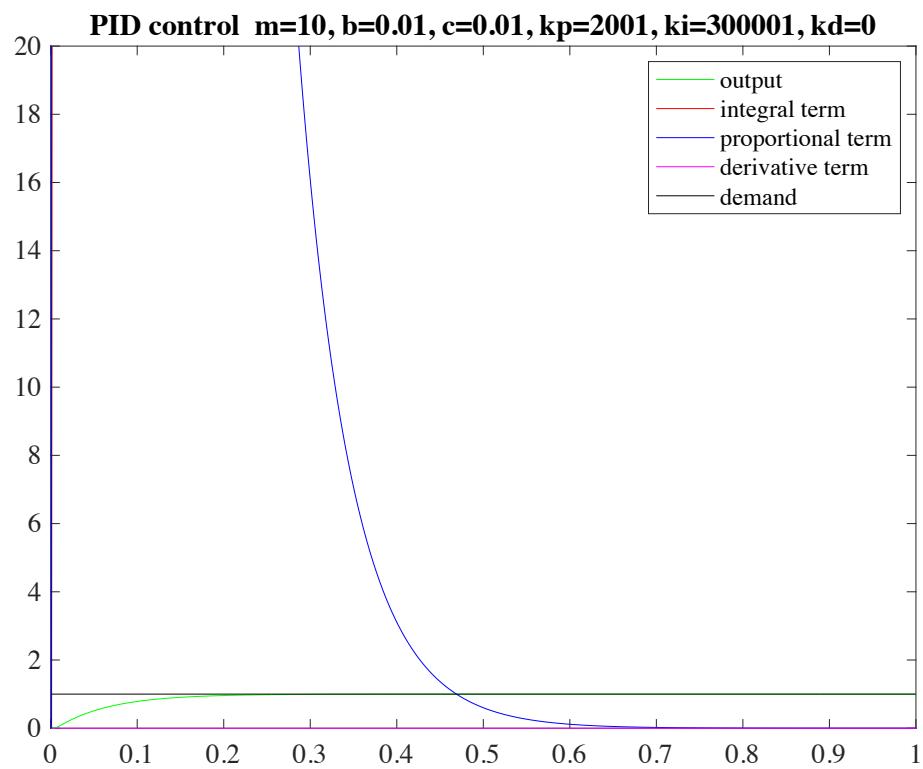
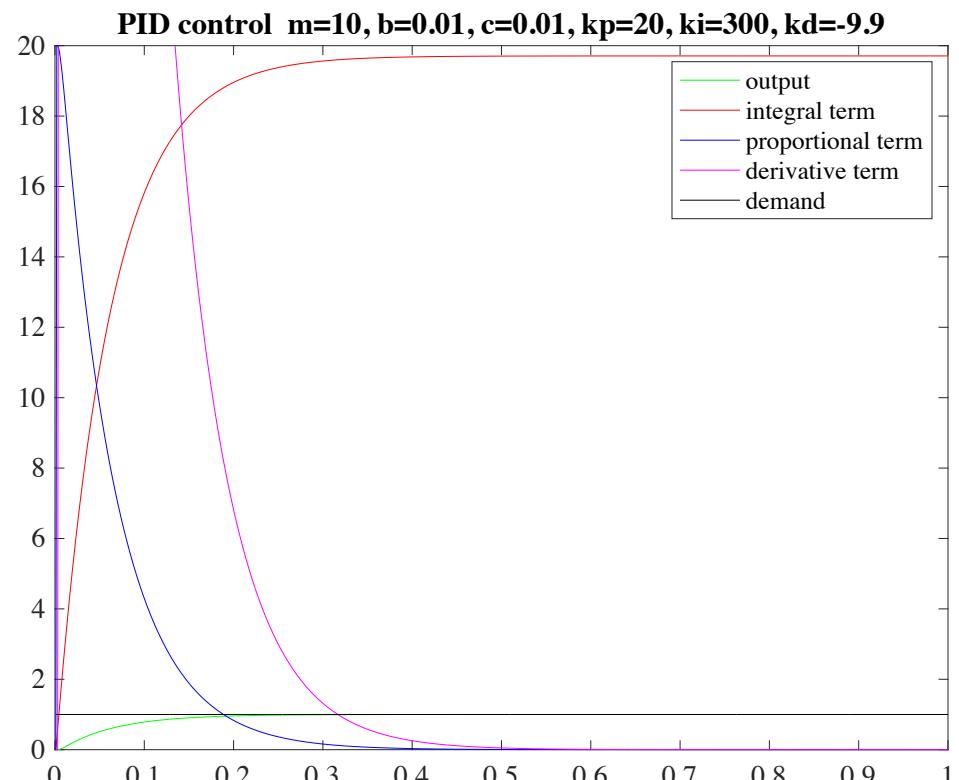
$$\frac{d^2o}{dt^2} + \frac{K_p + b}{m + K_d} \frac{dx}{dt} + \frac{K_i + k}{m + K_d} x = \frac{K_i + k}{m + K_d}$$

Compare to:

$$m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = F$$

Kd makes the mass look smaller! Kp changes the damping constant! Ki changes the spring constant!

Examples



Tuning

- Usually, you don't know the plant and can't do the math
- Powerful rule of thumb (manual tuning)

If the system must remain online, one tuning method is to first set K_i and K_d values to zero. Increase the K_p until the output of the loop oscillates, then the K_p should be set to approximately half of that value for a "quarter amplitude decay" type response. Then increase K_i until any offset is corrected in sufficient time for the process. However, too much K_i will cause instability. Finally, increase K_d , if required, until the loop is acceptably quick to reach its reference after a load disturbance. However, too much K_d will cause excessive response and overshoot. A fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however, some systems cannot accept overshoot, in which case an overdamped closed-loop system is required, which will require a K_p setting significantly less than half that of the K_p setting that was causing oscillation.

Tuning, II

Effects of *increasing* a parameter independently^{[22][23]}

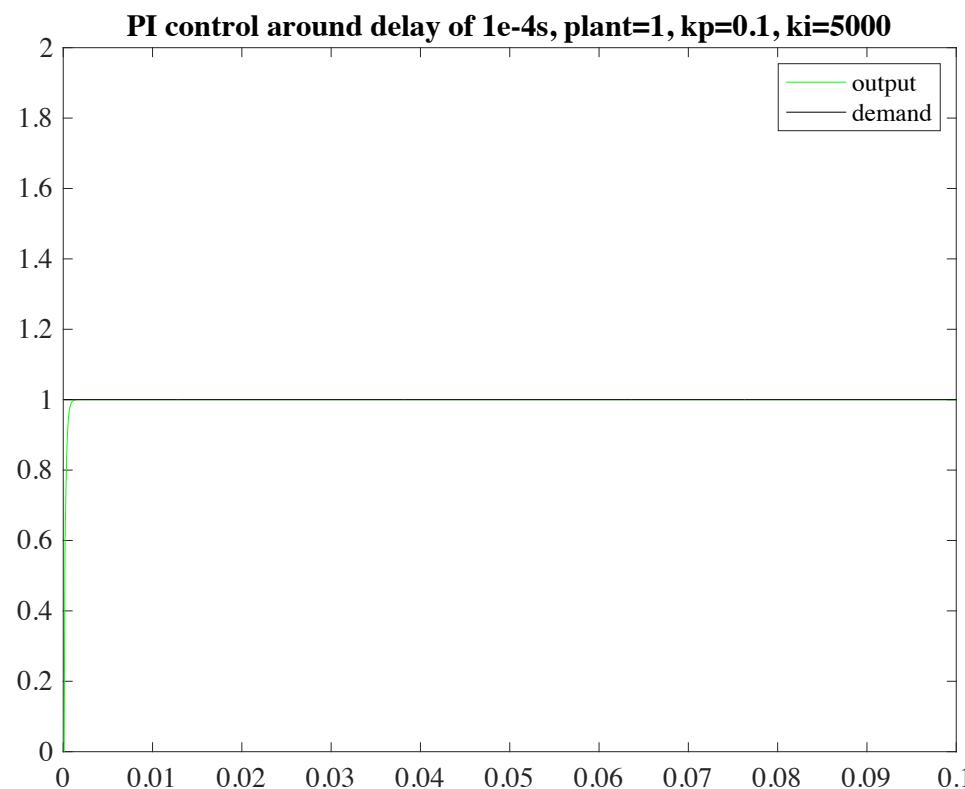
Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability
K_p	Decrease	Increase	Small change	Decrease	Degrade
K_i	Decrease	Increase	Increase	Eliminate	Degrade
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small

$K_d = 0$ for about 75% of deployed systems

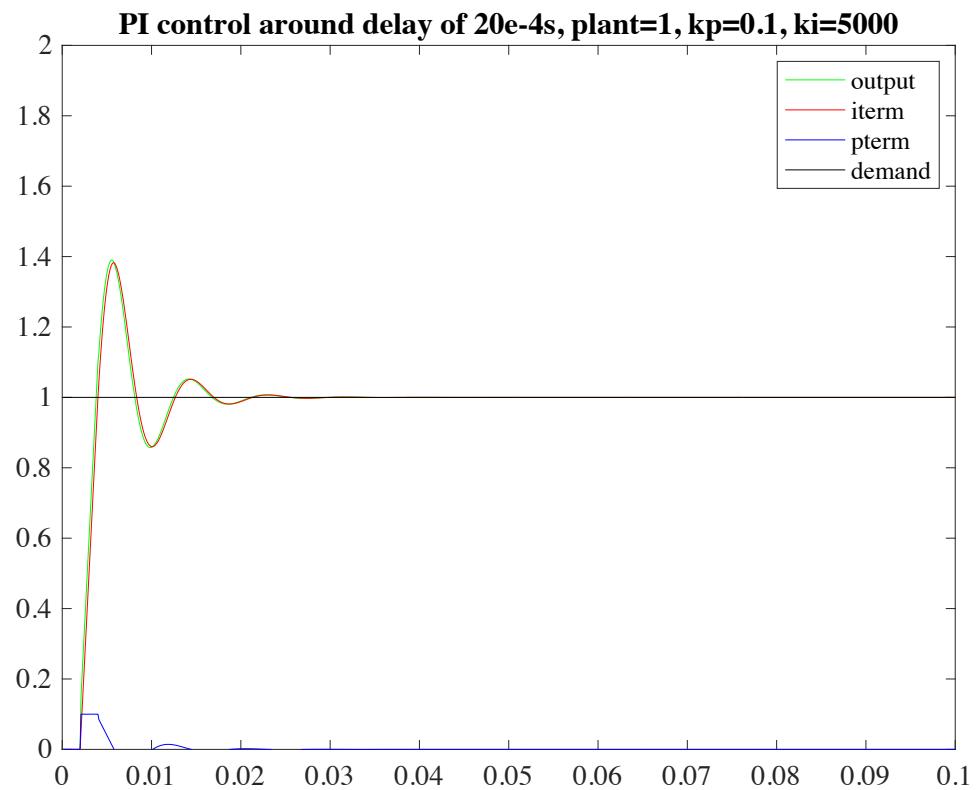
Stability and oscillation (rough)

- Linear systems can clearly oscillate
 - generally, too big a K_p or K_d can cause problems
- Nonlinearities can easily cause oscillations
- Delays cause oscillations

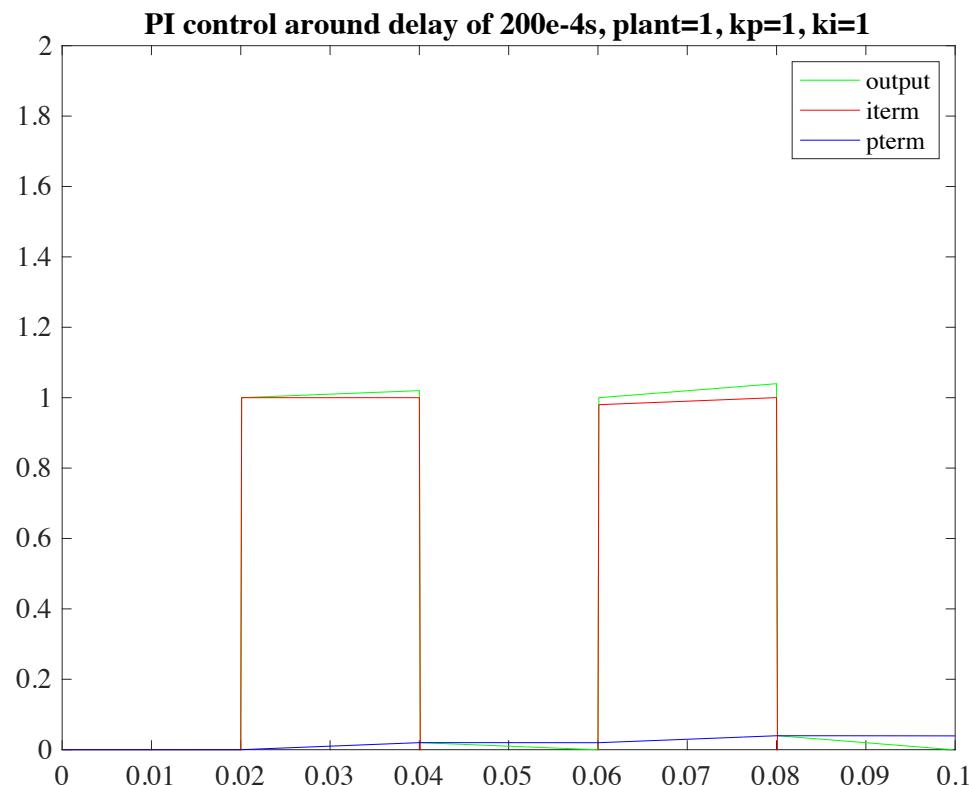
Examples



Examples



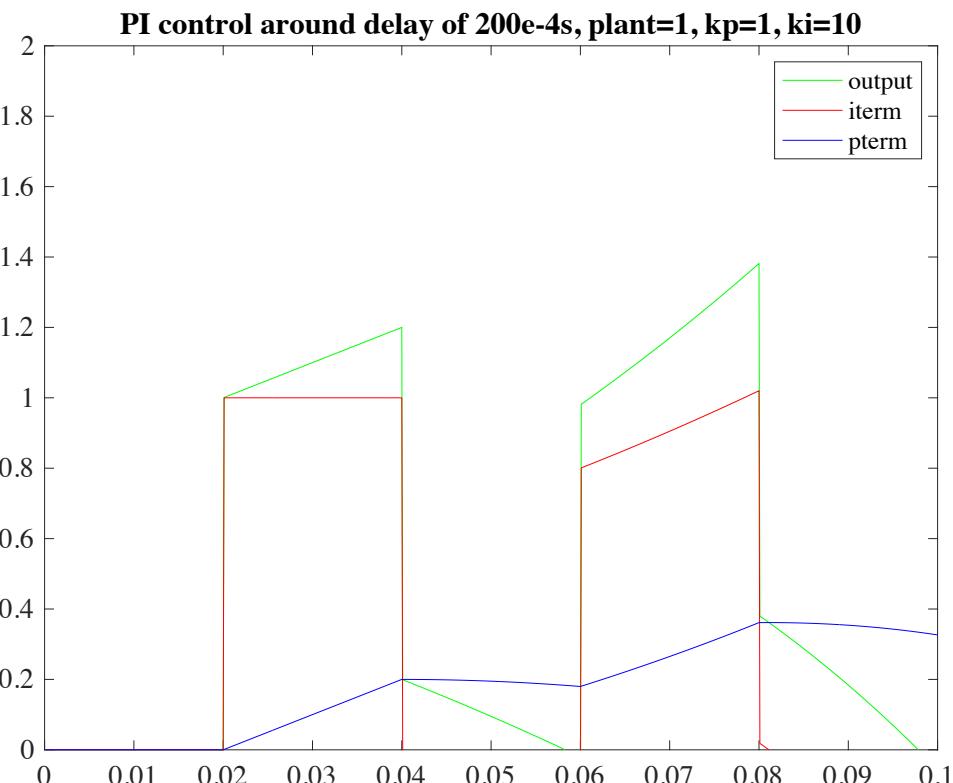
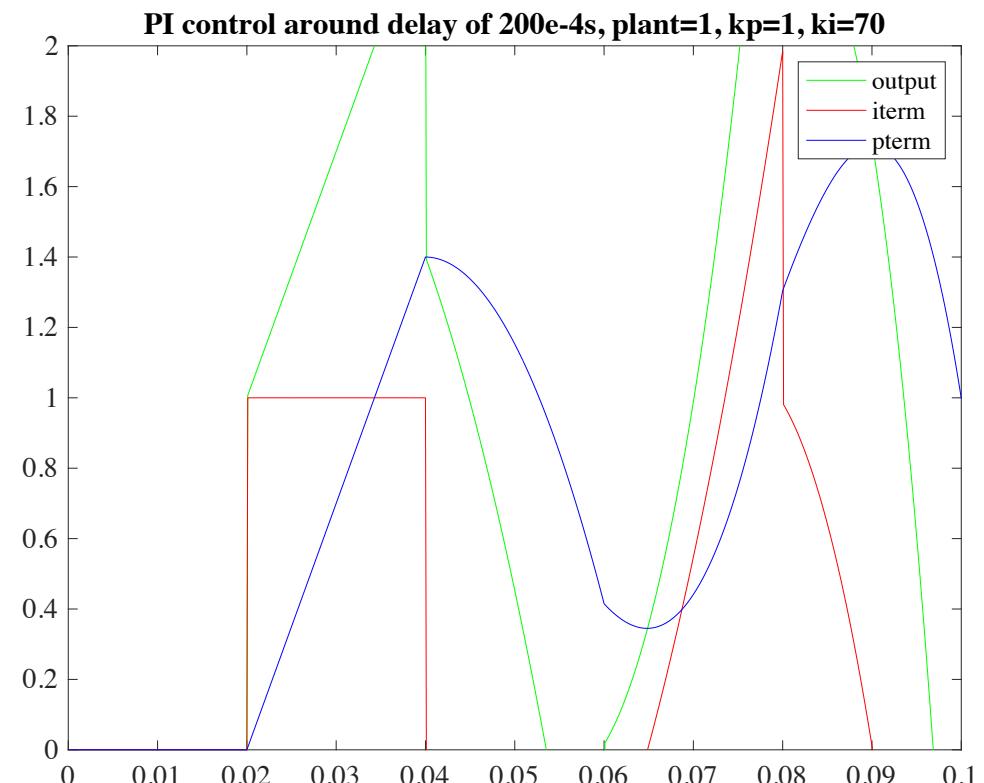
Examples



Demand is a step - this should look unpromising...
NOTICE Plant is 1 (really simple)

Unrecoverable

Pushing up Ki speculatively doesn't help



Ideas

- Plant/process
- control
- Open vs closed loop
- stability
- Linear vs non-linear
- Simplest linear feedback control
 - x constant
 - with derivative term
 - large gains can cause instability
 - steady state error is a problem
- Delay is a problem
- non-linearities can create excitement

Ideas

- PID control
 - standard procedure
 - (there are tons in the car software)
 - P controls; I reduces steady state error; D increases response speed
 - Straightforward tuning procedure
 - (see software example)