
C H A P T E R 14

Interest Points

One strategy for registering an image to another is to find interest points and
register those. Interest points have the following important properties:

� It must be possible to find them reasonably reliably, even when image bright-
ness changes.

� It must be possible to localize the point (ie tell where the point is) by looking
at an image window around the point. For example, a corner can be localized;
but a point along a straight edge can’t, because sliding a window around the
point along the edge leads to a new window that looks like the original.

� The location of the point must be covariant under at least some natural image
transformations. This means that, if the image is transformed, the point will
be found in an appropriate spot in the transformed image. Equivalently, the
points “stick to” objects in the image – if the camera moves, the point stays
on the object where it was, and so moves in the image. So if, for example, if
I2 is obtained by rotating I1, then there should be an interest point at each
location in I2 obtained by rotating the position of an interest point in I1.

� It must be possible to compute a description of the image in the neighborhood
of the point, so the point can be matched. Ideally, corresponding points in
different images will have similar descriptions, and different points will have
different images. To compute this description, we need to be able to construct
a neighborhood of the interest point that is covariant. So, for example, if the
image is zoomed in, the neighborhood in the image gets bigger; and if it is
zoomed out, the neighborhood gets smaller. Using a fixed size neighborhood
when the image zooms won’t work, because the neighborhood in the zoomed
in image will contain patterns that aren’t in the neighborhood in the zoomed
out image.

These properties are summarized in Figure ??. The direct constructions for interest
points are worth reviewing, because they expose how these properties are achieved.
Learned constructions are now competitive with direct constructions, and I describe
one in section 32.2.

14.1 DIRECT INTEREST POINT DETECTORS

14.1.1 Finding Corners

Interest points are usually constructed at corners, because they can be localized
and are quite easy to find with a straightforward detector. At a corner, we expect
two important effects. First, there should be large gradients. Second, in a small
neighborhood, the gradient orientation should swing sharply. We can identify cor-
ners by looking at variations in orientation within a window. In particular, the

164



Section 14.1 Direct Interest Point Detectors 165

FIGURE 14.1: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (center). Top left, a detail from the
pencil points; top center, the response of the Harris corner detector, where more
positive values are lighter. The top right shows these overlaid on the original
image. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). Note that the detector is affected
by contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
bottom sequence shows corners for a detail of pencil ends. Notice that responses
are quite local, and there are a relatively small number of very strong corners. Steve
Gorton cO Dorling Kindersley, used with permission.

matrix

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I)
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I) (∂Gσ

∂y ∗ ∗I)(∂Gσ

∂y ∗ ∗I)

}

gives a good idea of the behavior of the orientation in a window. In a window of
constant gray level, both eigenvalues of this matrix are small because all the terms
are small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients run in other
directions. But in a corner window, both eigenvalues should be large.



166 Chapter 14 Interest Points

FIGURE 14.2: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. cO Dorling Kindersley, used with permission.

The Harris corner detector looks for local maxima of

det(H)− k(
trace(H)

2
)2

where k is some constant [?]; we used 0.5 for Figure 14.1. These local maxima are
then tested against a threshold. This tests whether the product of the eigenvalues
(which is det(H)) is larger than the square of the average (which is (trace(H)/2)2).
Large, locally maximal values of this test function imply the eigenvalues are both
big, which is what we want. Figure 14.1 illustrates corners found with the Harris
detector. This detector is unaffected by translation and rotation (Figure 14.2).

14.1.2 Building Neighborhoods

There are many ways of representing a neighborhood around an interesting cor-
ner. Methods vary depending on what might happen to the neighborhood. In
what follows, we will assume that neighborhoods are only translated, rotated, and
scaled (rather than, say, subjected to an affine or projective transformation), and
so without loss of generality we can assume that the patches are circular. We
must estimate the radius of this circle. There is technical machinery available for
the neighborhoods that result from more complex transformations, but it is more
intricate; see [].



Section 14.1 Direct Interest Point Detectors 167

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 14.3: The scale of a neighborhood around a corner can be estimated by find-
ing a local extremum, in scale of the response at that point to a smoothed Laplacian
of Gaussian kernel. On the left, a detail of a piece of fencing. In the center, a
corner identified by an arrow (which points to the corner, given by a white spot
surrounded by a black ring). Overlaid on this image is a Laplacian of Gaussian
kernel, in the top right corner; dark values are negative, mid gray is zero, and
light values are positive. Notice that, using the reasoning of Section 9.3, this filter
will give a strong positive response for a dark blob on a light background, and a
strong negative response for a light blob on a dark background, so by searching for
the strongest response at this point as a function of scale, we are looking for the size
of the best-fitting blob. On the right, the response of a Laplacian of Gaussian at
the location of the corner, as a function of the smoothing parameter (which is plot-
ted in pixels). There is one extremal scale, at approximately 2 pixels. This means
that there is one scale at which the image neighborhood looks most like a blob (some
corners have more than one scale). cO Dorling Kindersley, used with permission.

To turn a corner into an image neighborhood, we must estimate the radius of
the circular patch (equivalently, its scale). The radius estimate should get larger
proportionally when the image gets bigger. For example, in a 2x scaled version
of the original image, our method should double its estimate of the patch radius.
This property helps choose a method. We could center a blob of fixed appearance
(say, dark on a light background) on the corner, and then choose the scale to be
the radius of the best fitting blob. An efficient way to do this is to use a Laplacian
of Gaussian filter.

The Laplacian of a function in 2D is defined as

(∇2f)(x, y) =
∂2f

∂x2
+
∂2f

∂y2
.

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator (if you’re not sure about this, you should check),
meaning that we could represent taking the Laplacian as convolving the image
with some kernel (which we write as K∇2). Because convolution is associative, we
have that

(K∇2 ∗ ∗(Gσ ∗ ∗I)) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇2Gσ) ∗ ∗I.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with



168 Chapter 14 Interest Points

the Laplacian of the kernel used for smoothing. Figure 14.3 shows the resulting
kernel for Gaussian smoothing; notice that this looks like a dark blob on a light
background.

Imagine applying a smoothed Laplacian operator to the image at the center
of the patch. Write I for the image, ∇2

σ for the smoothed Laplacian operator with
smoothing constant σ, ↑k I for the the image with size scaled by k, (xc, yc) for
the coordinates of the patch center, and (xkc, ykc) for the coordinates of the patch
center in the scaled image. Assume that upscaling is perfect, and there are no
effects resulting from the image grid. This is fair because effects will be small for
the scales of interest for us. Then, we have

(∇2
kσ ↑k I)(xc, yc) = (∇2

σI)(xkc, ykc)

(this is most easily demonstrated by reasoning about the image as a continuous
function, the operator as a convolution, and then using the change of variables
formula for integrals). Now choose a radius r for the circular patch centered at
(xc, yc), such that

r(xc, yc) =
argmax

σ
∇2

σI(xc, yc)

(Figure 14.3). If the image is scaled by k, then this value of r will be scaled by
k too, which is the property we wanted. This procedure looks for the scale of the
best approximating blob. Notice that a Gaussian pyramid could be helpful here; we
could apply the same smoothed Laplacian operator to different levels of a pyramid
to get estimates of the scale.

As we have seen, orientation histograms are a natural representation of im-
age patches. However, we cannot represent orientations in image coordinates (for
example, using the angle to the horizontal image axis), because the patch we are
matching to might have been rotated. We need a reference orientation so all angles
can be measured with respect to that reference. A natural reference orientation is
the most common orientation in the patch. We compute a histogram of the gradi-
ent orientations in this patch, and find the largest peak. This peak is the reference
orientation for the patch. If there are two or more peaks of the same magnitude,
we make multiple copies of the patch, one at each peak orientation.

14.1.3 Describing Neighborhoods with Orientations

We know the center, radius, and orientation of a set of an image patch, and must
now represent it. Orientations should provide a good representation. They are
unaffected by changes in image brightness, and different textures tend to have
different orientation fields. The pattern of orientations in different parts of the
patch is likely to be quite distinctive. Our representation should be robust to small
errors in the center, radius, or orientation of the patch, because we are unlikely to
estimate these exactly right.

We must build features that can make it obvious what orientations are present,
and roughly where they are, but are robust to some rearrangement. One approach
is to represent the neighborhood with a histogram of the elements that appear
there. This will tell us what is present, but it confuses too many patterns with
one another. For example, all neighborhoods with vertical stripes will get mixed



Section 14.1 Direct Interest Point Detectors 169

N
o

rm
alize, th

resh
o

ld
, 

th
en

 ren
o

rm
alize

Neighborhood Grid

Subgrid

Subgrid

element

Gradient

estimate

Grid element 

histograms

FIGURE 14.4: To construct a SIFT descriptor for a neighborhood, we place a grid
over the rectified neighborhood. Each grid is divided into a subgrid, and a gradient
estimate is computed at the center of each subgrid element. This gradient estimate
is a weighted average of nearby gradients, with weights chosen so that gradients
outside the subgrid cell contribute. The gradient estimates in each subgrid element
are accumulated into an orientation histogram. Each gradient votes for its orien-
tation, with a vote weighted by its magnitude and by its distance to the center of
the neighborhood. The resulting orientation histograms are stacked to give a single
feature vector. This is normalized to have unit norm; then terms in the normalized
feature vector are thresholded, and the vector is normalized again.
TODO: Source, Credit, Permission: SIFTPIC

up, however wide the stripe. The natural approach is to take histograms locally,
within subpatches of the neighborhood. This leads to a very important feature
construction.

A SIFT descriptor (for Scale Invariant Feature Transform) is constructed
out of image gradients, and uses both magnitude and orientation. The descriptor is
normalized to suppress the effects of change in illumination intensity. The descriptor
is a set of histograms of image gradients that are then normalized. These histograms
expose general spatial trends in the image gradients in the patch but suppress detail.
For example, if we estimate the center, scale, or orientation of the patch slightly
wrong, then the rectified patch will shift slightly. As a result, simply recording the
gradient at each point yields a representation that changes between instances of
the patch. A histogram of gradients will be robust to these changes. Rather than
histogramming the gradient at a set of sample points, we histogram local averages
of image gradients; this helps avoid noise.

There is now extensive experimental evidence that image patches that match one
another will have similar SIFT feature representations, and patches that do not will tend
not to.



170 Chapter 14 Interest Points

FIGURE 14.5: SuperPoint uses an encoder with two heads (left), one of which pre-
dicts the locations of interest points and the other of which predicts a descriptor.
The location finder assumes that there is at most one interest point per 8x8 image
tile, and predicts which (if any) location is that point. A basic location finder is
trained using a cross-entropy loss with a dataset of rendered images where interest
point locations are known (right).
TODO: Source, Credit, Permission

14.2 SUPERPOINT: A LEARNED INTEREST POINT DETECTOR

It turns out the list of properties of interest points is crisp enough that one can
learn an interest point finder, and learned interest point finders now are dominant.
SuperPoint uses a network architecture that is adapted to fast computation of points
and descriptors, with a mixture of learned and non-learned components. This is
trained in a series of steps. The first builds an elementary interest point finder.
The second uses a clever trick with image transformations to significantly improve
the interest point finder. The third refines point positions and descriptors with a
matching loss.

14.2.1 Network Architecture

First, pass the image through an encoder, which encodes the image with series
of convolutional layers, non-linear layers, and three 2 × 2 downsampling layers, so
that it takes an H ×W image and produces an H/8 ×W/8 × 256 feature block.
This block goes to two heads. One finds interest points, the other describes them.
The interest point finder is trained discriminatively, by dividing the image into a
grid of H/8 ×W/8 tiles (each tile is 8 × 8 pixels). Now assume there is at most
one interest point in any tile. A 65 dimensional one-hot vector encodes where the
interest point is if there is one (there are 64 locations for the point, and the last
component is one if there isn’t a point). The interest point finder maps the original
block to an H/8×W/8× 65 block, which is passed through a softmax. Reshaping
this with a fixed reshaping procedure gives the predicted location of the interest
point. The interest point describer maps the original block to an H/8×W/8× 256
block. This is upsampled using a bicubic interpolation procedure (Section 32.2),
and the predicted vector at each location is normalized to a unit vector.

TODO: Brief description of bicubic interpolation somewhere



Section 14.2 SuperPoint: A Learned Interest Point Detector 171

FIGURE 14.6: The basic location finder of Figure 8 can be significantly improved by
exploiting the constraint that interest point predictions should be covariant. The
response of the finder to a transformed image, which is a heatmap, should be a
transformed version of the response to the original image. Equivalently, apply the
finder to a transformed image, and the inverse of the transformation to the resulting
heatmap – that heatmap should be the same as the one the detector produces from
the original image. This means that a composite finder can be built out of the the
basic location finder by predicting heatmaps from images transformed with random
(but carefully chosen) homographies, transforming the heatmaps back to the original
image frame, then averaging them. Training this composite finder improves the
original basic finder, without requiring real data.
TODO: Source, Credit, Permission

14.2.2 Finding Interest Points

Generating a large number of relatively simple images with known interest point
locations is easy. Use a simple computer graphics program to render collections of
polygons; each vertex is an interest point. If any image has more than one interest
points in one tile, discard all but one at random. We now have a labelled dataset of
images (the labels are interest point locations), and a basic detector can be trained
with this.

An interest point detector should be covariant under homographies – the
interest points for a transformed image should be obtained by transforming the
interest points of the original image. This likely won’t be a property of the basic
interest point detector, but it can be self-supervised very strongly using this idea.
Write f(I, θ) for the output of the interest point detector with parameters θ applied
to the image I (this is a heat map – at every pixel location, there is a value giving
the probability of an interest point at that location), and H(I) for the result of
applying a homography to I. The output of the detector can be thought of as an
image, so a homography can be applied to it. Covariance means that the heat map
H−1(f(H(I), θ)) should be the same as f(I, θ), at least for reasonable choices of
H. For each of the training images above, choose a collection of N homographies
at random (taking care with cropping, etc. – details in []), and train the detector
which produces the heat map

1

N

∑
i

H−1
i (f(H(I), θ)).



172 Chapter 14 Interest Points

Training like this has quite strong effects on θ because the detector receives gradient
if (say) an interest point is detected in the wrong place in a (say) rotated version
of the original image. It is also an extremely efficient use of data.

14.2.3 Refining Detection and Learning to Describe

The refined detector can now be trained to improve interest point detections and to
produce descriptions. Take a synthetic image with interest points known and apply
a homography. The interest points in the result should be close to those predicted by
applying the homography to the interest points in the original image. This property
can be imposed with a cross-entropy loss between Hf(I, θ) and f(H(I), θ).

Corresponding points in I and H(I) should have similar descriptors and pairs
of points that don’t correspond should have different descriptors. It is easier to
impose this on tiles than points. For every pair of tiles, where one comes from
I and the other from H(I), say the pair corresponds if there is some interest
point in the first that maps to a point in the second. Otherwise, the pair does
not correspond. Recall that the descriptors are computed on a coarse grid where
each location corresponds to a tile (and are then upsampled). Write d(t) for the
descriptor of a tile, and so on. The matching loss is a hinge loss that ensures that, if
tiles t and t′ correspond, then dT (t)d(t′) is positive and greater than some margin,
and if they do not, it is negative and less than some margin.

Resources: Interest Points A pretrained version of Su-
perPoint can be found at https: // github. com/ magicleap/

SuperPointPretrainedNetwork . There are implementations
for TensorFlow () and PyTorch (). HPatches is an evaluation
dataset (at https: // github. com/ hpatches/ hpatches-dataset )
which comes with evaluation protocols and benchmarks (at https:

// github. com/ hpatches/ hpatches-benchmark ). OpenCV provides an
implementation of the Harris corner detector, and procedures to compute
SIFT descriptors.



Section 14.2 SuperPoint: A Learned Interest Point Detector 173

FIGURE 14.7: SuperPoint produces many good interest point locations together with
descriptors that are distinctive. Left shows SuperPoint detections and matches for
four image pairs, and right for a SIFT based matcher. The images are trans-
formed with a known homography (red dots are detected interest points; blue dots
are detected interest points that are outside the field of view of the corresponding
image, and so could not have a match; green lines indicate matches). Generally,
SuperPoint produces large numbers of interest points that match well. The original
SuperPoint is trained with relatively small image rotations, because big rotations
are less common in practice, and so handles large image rotations poorly compared
to a SIFT based matcher (fourth row).
TODO: Source, Credit, Permission


