harder imitation
learning

Recall: imitation learning

Observe states, expert actions (s, a)
Train classifier to predict a(s) using this data

Issues:

® moving off-policy slightly leads to states that you haven’t seen
® 50 a(s) becomes unreliable
® and so generates even more unfamiliar states -> catastrophe

Fixes
® multiple observations
® Dagger

Demonstration Augmentation: ALVINN 1989

Road follower

Road Intensity 45 Direction
Feedback Unit Output Units

e
A Q\' 29
'W’ Hidden
S Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

« Using graphics simulator for road images and corresponding steering angle
ground-truth

« Online adaptation to human driver steering angle control
« 3 layers, fully connected layers, very low resolution input from camera and lidar..

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:

Fra g‘igzi%u (’c)l oir:rﬁﬁ.and vehicle in a neural Network, Pomerleau 1989

Demonstration Augmentation: NVIDIA 2016

Rt:co@ed
@ Mfei?r:r‘vgle | Adjust for shift Desired steering command
and rotation
Network
: - . steering
[Center camera }—; R;:;dg:‘atsjg::‘ > CNN —vcommand (—)l
f
Back propagation | | Error - .
ey il el Additional, left and right
cameras with automatic
E grant-truth labels to
- recover from mistakes
J i

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...",

Fragki%&hleiENEeaming for Self-Driving Cars , Bojarski et al. 2016

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data Dﬂ* — {01,U1, ...,ON,UN}

| run mo(uelor) to get dataset D, =

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Execute current policy and Query Expert
oy i New Data

Steering g—
from expert oo @D \ ’ @
S
’ @
N\
Nz 4§
g "AW
- Aggregate
New ‘ A= Dataset [~ All previous data h
Policy ’ ‘
¢ =
-—JC
- J
Supervised Leamning

Fl’agkiadaki s NIA Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

There remain serious problems

® Expert’s intent

® Bias in on-policy data
® Dagger will collect too much lane following, not enough intersections

Crucial 1ssue: intent

Codevilla, 18

Why has imitation learning not scaled up to fully au-
tonomous urban driving? One limitation is in the assumption
that the optimal action can be inferred from the perceptual
input alone. This assumption often does not hold in practice:
for instance, when a car approaches an intersection, the
camera input is not sufficient to predict whether the car
should turn left, right, or go straight. Mathematically, the
mapping from the image to the control command 1s no longer
a function. Fitting a function approximator 1s thus bound to
run into difficulties. This had already been observed in the
work of Pomerleau: “Currently upon reaching a fork, the
network may output two widely discrepant travel directions,
one for each choice. The result is often an oscillation in
the dictated travel direction” [27]. Even if the network can
resolve the ambiguity in favor of some course of action, it
may not be the one desired by the passenger, who lacks a
communication channel for controlling the network itself.

Codevilla, 18

Incorporating intent

Traditional story: With intent: C;
Obtain: Obtain:
D = {(0;,a;)} D = {(0;,ci,a;)}
Compute: Compute:

é — argmlne Zl O,L, 9), CLi) é = argmine Z Z(F(Oi, Ci; 9)7 CL?L)

7
Controller is: Controller 1s:

F(o;0) F(o,c;0)

Intent via command input

é O
1)
Image)
i | "
-),
T\ M(m) || 2 |:||] o []
Measurements) = Action
m UL s — a
) A
Command cC |:|]
(or vector to goal) | UL | €le)

Codevilla, 18

Branched intent

4)
e (T ||
1
\ ~

Measurements) HH = ||
m ,M(m)

(b)

Codevilla, 18

J

e

Actlon

Command C

Training

Control
® steering and acceleration
® (likely a PID accepts this, turns into signals!)
3 Camera Trick
® But this isn’t good enough

Aggressive data augmentation on images
Noise injection during expert driving
® ecssentially,

® perturb vehicle response to expert
® let expert recover

Steering

~04 — Noise
—05 = Control
- Resultant
-0.6
00 05 10 15 20 25 3.0 (c)

Time

Fig. 4. Noise injection during data collection. We show a fragment from
an actual driving sequence from the training set. The plot on the left shows
steering control [rad] versus time [s]. In the plot, the red curve is an injected
triangular noise signal, the green curve is the driver’s steering signal, and
the blue curve is the steering signal provided to the car, which is the sum
of the driver’s control and the noise. Images on the right show the driver’s
view at three points in time (trajectories overlaid post-hoc for visualization).
Between times 0 and roughly 1.0, the noise produces a drift to the right,
as illustrated in image (a). This triggers a human reaction, from 1.0 to 2.5
seconds, illustrated in (b). Finally, the car recovers from the disturbance, as

shown in (c¢). Only the driver-provided signal (green curve on the left) is _
used for training. Codevilla, 18

CARLA

A. Simulated Environment

We use CARLA [10], an urban driving simulator, to cor-
roborate design decisions and evaluate the proposed approach
in a dynamic urban environment with traffic. CARLA 1is an
open-source simulator implemented using Unreal Engine 4.
[t contains two professionally designed towns with buildings,
vegetation, and traffic signs, as well as vehicular and pedes-
trian traffic. Figure 5 provides maps and sample views of
Town 1, used for training, and Town 2, used exclusively for
testing.

Codevilla, 18

Town 1 (training) Town 2 (testing)

Fig. 5. Simulated urban environments. Town 1 is used for training (left),
Town 2 is used exclusively for testing (right). Map on top, view from
onboard camera below. Note the difference in visual style.

Codevilla, 18

In order to collect training data, a human driver 1s pre-
sented with a first-person view of the environment (center
camera) at a resolution of 800 x 600 pixels. The driver
controls the simulated vehicle using a physical steering wheel
and pedals, and provides command input using buttons on
the steering wheel. The driver keeps the car at a speed
below 60 km/h and strives to avoid collisions with cars
and pedestrians, but ignores traffic lights and stop signs. We
record images from the three simulated cameras, along with
other measurements such as speed and the position of the car.
The images are cropped to remove part of the sky. CARLA
also provides extra information such as distance travelled,
collisions, and the occurrence of infractions such as drift
onto the opposite lane or the sidewalk. This information is
used 1n evaluating different controllers.

Codevilla, 18

In addition to the observations (images) and actions (con-
trol signals), we record commands provided by the driver. We
use a set of four commands: continue (follow the road),
left (turn left at the next intersection), straight (go
straight at the next intersection), and right (turn right at
the next intersection). In practice, we represent these as one-
hot vectors.

Codevilla, 18

CARLA results

Success rate Km per infraction
Model Town 1 Town 2 Town 1 Town 2
Non-conditional 20% 26% 5.76 0.89
Goal-conditional 24% 30% 1.87 1.22
Ours branched 88 % 64 % 2.34 1.18
Ours cmd. input 18% 52% 3.97 1.30
Ours no noise 56% 22% 1.31 0.54
Ours no aug. 80% 0% 4.03 0.36
Ours shallow net 46% 14% 0.96 0.42

Table 1. Results in the simulated urban environment. We compare the
presented method to baseline approaches and perform an ablation study.
We measure the percentage of successful episodes and the average distance
(in km) driven between infractions. Higher is better in both cases, but
we rank methods based on success. The proposed branched architecture
outperforms the baselines and the ablated versions.

Codevilla, 18

Not just simulation...

Nvidia TX2 3 Webcams

Speed Controller Steering Serve

Fig. 6. Physical system setup. Red/black indicate +/- power wires, green
indicates serial data connections, and blue indicates PWM control signals.

Codevilla, 18

Fig. 8. A map of the primary route used for testing the physical system.
Intersections traversed by the truck are numbered according to their order
along the route. Colors indicate commands provided to the vehicle when it
approaches the intersection: blue = left, green = straight, orange =
right.

Codevilla, 18

Model Missed turns Interventions Time

Ours branched 0% 0.67 2:19
Ours cmd. input 11.1% 2.33 4:13
Ours no noise 24.4% 8.67 4:39 Link to
Ours no aug. 73% 39 10:41

weather 1deas

Table 2. Results on the physical system. Lower is better. We compare the
branched model to the simpler command input architecture and to
ablated versions (without noise injection and without data augmentation).
Average performance across 3 runs is reported for all models except for

“Ours no aug.”, for which we only performed 1 run to avoid breaking the
truck.

Codevilla, 18

Straightforward DAGGER 1isn’t that good

Training Conditions

Expert

" -
-
-
- -
/”’ /// /”
- -
,f” /// - ___—-+
’r" /:;/ -
'\ -
- ,—"‘ ” /’
kT ol DAGGER
/”’f” //:’/ -
- - “‘-_-57‘ ———————————
- - — —_
- - ———— T - - - - - o
- -~ J— gt T, ————
22222~ e
e mm——— o
P i 2 R =
;’ - ’r—/—;;.
7 7y o
AR5/
AR
2.7,
7 07
T
v
e
P
7 o7
72 e
/. %7
%
o
X
7P
6'
’0
‘I
T T T T
Ilter 0 Iter 1 Iter 2 Ilter 3

Prakash, 20

DAGGER Issue

in the training conditions. This happens because as DAg-
ger continues to append on-policy data, the diversity of the
dataset does not grow fast enough compared to the growth
of the main mode of demonstrations, e.g., driving straight
in lane. Consequently, the performance decreases as more
data is collected since the driving policy 1s not able to learn
how to react in rare modes, e.g., close proximity to dynamic
agents. This result is in direct contrast to prior applications
of DAgger in robotics [5, | 8,42,46,55] and reflects the limi-
tation of DAgger in case of datasets having significant bias.
This observation 1s also consistent with [| 2] where the au-
thors show that additional data does not necessarily lead to
improvement in performance for urban autonomous driv-
ing. Further, we observe that the performance of DAgger in
the generalization conditions starts to drop after the second
iteration. This 1s expected since the aggregated on-policy
data 1s collected in the training conditions, thereby leading
to overfitting as the dataset size increases. Prakash, 20

Strategies

® Identify states where current policy 1s uncertain
® “Critical states”
® entropy of policy classifier
® one might use other measures

e Subsample the collection of new states to fixed size
® “replay buffer”

Prakash, 20

Algorithm 1 DAgger with Critical States and Replay Buffer
Collect Dg using expert policy 7*
o = argmin . L(7, 7%, Dy)
Initialize replay buffer D <+ Dy
Let m = |Dyg|
fori=1r0 N do
Generate on-policy trajectories using m;_1
Get dataset D; = {(s,7*(s))} of visited states by ;1
and actions given by expert
Get D} < {(s¢, m*(s.))} after sampling critical states
from D;
Combine datasets: D <— D U D
while |D| > m do
Sample (s, 7*(s)) randomly from D N Dy
DD — {(3’71'*(5))}
end
Train 7; = argmin . £(mw,7*, D) with policy initial-
1zed from 7;_1

end
return 7wy

Concentrate on states
where policy doesn’t
know what to do

Knock out states which
are “duplicated” or
“redundant”

Prakash, 20

Variants

DA-CS

® use critical states, but not replay buffer
DA-RB

® use both

DA-RB+

® use noise perturbations on expert as in Codevilla 18
DA-RB+(E)

® use ensemble of multiple DA-RB+ models (from training iterations)

Success Rate

Success Rate

8

g

8

g

&

Figure 2: Success rate of different methods across conditions. ‘+’ represents training with perturbed ex

Training Conditions

Expert

New Weather

701

DA-RB+(E)

’f"‘-_ A
e 60 A
Ve RS m————y
- g S PP |
- Ly - - Q J__;-'
a _aeiS - . g T -k
,’_f‘_'_‘_-— fots I = o s) k" L
e P it 0+ = e e
et i J—— " -
-’_:,f_ - S - -a et Y ﬁ R .-",i_-
s —— 2
S 5 U . B ~—
R waoq =TT ’.4'_1‘_::':‘:?'1’-‘;?-_"“."‘4\’~__ S 3
L P PA—— b e g —~Y
o o pmmp A= TR ———
s % =TS -~
s L -
//0' 30" - X P
/’O’ ’4;’ ’
&* o ‘,z
»* o2 " i
2’ P A ettt
-~ -
L) L) Ll L) L) L) T T
Iter 0 terl Iter 2 ter3 ter0 Iter 1 ter2 Iter 3
New Town New Town & Weather
401
______ -A
- - A A
Vi "
//’ 35- “’«‘—
I’ ‘4‘
-~ g e
2 I S it T L S
Pt . e ——— e " ;30 ”,l bl T i §
- - - - -
- -
e Y o L
- — (v ”r
A /,r } - o -
- - A S ‘.—-"" "_‘ 5 e Y __‘—»“_ g e
- P s - - —oe S e) o ,'/ A - ___ ‘_‘__‘
- '—_ amw—rTT A _,r_‘_-" _,’-'— 25" -~ . e T T A
el T Srn <7 T e r—
- P T - T - B s — T———a
-~ - e e e e
B ! s ol T .. A g e e T ~Z3ay
~ - - -~ - - ,‘ - -
-~ e - -~ T 20- - s I
- - - - . P
Lot =T - - g A ’,’/’,’;,”
P ~ e
e ———— - e’ ‘,”,-’
_____ & &

T T
Iter 2 tter 3

ter2 Iter 3

rt data.
Prakash, 20

Task CILRST DART DA-RB™ DA-RBT (E) | Expert
(Ours) (Ours)

Traim 45+£6 50+1 62+1 66 £ 5 71+4

NW 39+4 37+2 60+1 56 + 1 72+ 3

NT 231 262 34+2 36 +3 41 £+ 2

NTW 26+2 21+1 2541 35+2 43 + 2

Table 3: Success rate on dense setting of all conditions.
Mean and standard deviation over 3 evaluation runs. NW-

New Weather, NT-New Town, NTW-New Town & Weather,
DA-RB™(E) - ensemble of DA-RB™ over all iterations.

Notice the massive impact of weather

Prakash, 20

W CILRS+ = DA-RB+

N W &
o o o

Number of failed episodes
o

Pedestrians Vehicles Other Timed out

o

Failure Cases

Figure 3: Failure case analysis. We consider collision with
pedestrians, vehicles, other static objects and timed out sce-
narios on the dense setting of New Town & Weather.

Prakash, 20

Learning by watching

® (): why use only expert data for imitation learning?
® Other cars are also driven by experts - benefit from them

® Jssues:

® recover state representation for other cars
® recover control intentions for other cars

“

(a) Reference scene (b) LiDAR map (c) Ego-centric BEV (d) Estimated BEV

Figure 2: Bird’s-Eye-View (BEV) Representation With Visibility Map Overlay. We visualize (a) the reference top-
down view of a scene, (b) its corresponding LiDAR map with vehicle and pedestrian detections, (c) the ego-centric BEV
after integration with map information, including the ego-vehicle (magenta), surrounding vehicles (blue), pedestrians (purple
circles), traffic lights (yellow, red), and visibility map (green overlay), and (d) the estimated BEV from the perspective of the
observed vehicle. Dark yellow circles show future waypoints (Section 3.3) for the ego and observed vehicle.

® Key property of a good BEV
® you can figure out what the BEV from *another* vehicle looks like
® from that, can figure out what the LIDAR, image, etc looks like

® Intention

® represent as a sequence of waypoints
® which you can get for another car by just waiting to see what it does
® and tracking

Zhang 21

Occlusion creates issues. Observed vehicle
state misses the occluded vehicle, so waypoints
imputed by tracking are weird (you can’t tell
it’s braking because something is in front of it,

(a) Reference scene (b) Ego-centric BEV because you can’t tell there is something in
front of it). Waypoints could be fixed by
smoothing from original non LbW model

(waypoint refurbishment)
Q: does this create collision problems?
A: apparently not
Q: why?
A: < please supply >

(c) Estimated BEV (d) Refurbished waypoints

Figure 3: Refurbishing Difficult Samples. The example

estimated view for an observed vehicle, shown 1n (c), 1s

ambiguous due to occlusion. The proposed refurbishment

process (Section 3.3) can correct the waypoint targets (d) to

align with the estimated state and encourage proper agent

behavior, 1.e., to move forward and maintain a closer dis- Zhang 21
tance to the red light.

Big strength: Data efficiency

Table 1: Ablation Study. Comparison of driving success rate (%) for the proposed approach (LbW) with various visibility
fusion schemes. The baseline model (Ego) is trained by traditional behavior cloning. Mean and standard deviation are shown
over three runs using the original CARLA benchmark (OB) and the NoCrash benchmark (Regular: NC-R, Dense: NC-D).

One Hour 30 Minutes 10 Minutes
NC-R | NC-D OB NC-R | NC-D OB NC-R | NC-D OB
Ego (Baseline) 46+1 | 18+1 || 56 +1 26+2 | 12+1 || 68+1 24+1 | 00 64+1
LbW 64+1 | 24+1 || 7T4+1 524+0 | 24+0 | 68+1 34+1 | 61 82+4
LbW + Visibility (Early) 5241 [24+0 || T6 £ 1 54+1 | 18+1 || 72+3 28+1 | 61 64+ 1
LbW + Visibility (Late) 92+3 [24+0 || 92 +1 74+2 | 24+0 1 92+0 5241|202 || 68+1

Zhang 21

Waypoint refurbishment helps

Table 3: Refurbishment Analysis. Impact of waypoint re-
furbishment on driving success rate (%). Results are shown
using the late fusion visibility integration scheme.

Town 2 NC-R | NC-D OB
LbW + Visibility 64+0 | 324+3 || 86+ 1
LbW + Visibility (Refurbishment) 80+1 | 36 =0 || 96 £ 0
Town 3 NC-R | NC-D OB
LbW + Visibility 404+0 | 301 || 600
LbW + Visibility (Refurbishment) 6030 | 40+0 || 60 £ 0

Zhang 21

