Scene Representation |:
Lane boundaries

D.A. Forsyth



Huh?!?!

Not even in “Computer Vision for Autonomous Vehicles”
® (recent review by Janai et al - very good)

Lane boundaries are very important

® Jots of money in good lane boundary detection
® casy cases are firmly solved; hard cases remain hard

Interplay of detection, geometry
® variance and bias

Firmly scene understanding
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FIGURE 4A

Strategy: detect markers (reflective paint), join up
exercise in robust fitting of curves

US 9081385



Issues

You have to do it fast

You have to do it right
Paint detection problems
Geometric model problems

Curvy road No paint









[Labelled data methods

® Generally, rack up a labelled dataset and regress
® Datasets
® Oxford lane boundaries
® https://oxford-robotics-institute.github.io/road-boundaries-dataset/
® (CULane
® https://xingangpan.github.io/projects/CULane.html
® (alTech
® http://www.mohamedaly.info/datasets/caltech-lanes
e TUSimple
® https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/
lane_detection




[Labelled data methods

® |ssues:

interaction between lane and boundary?
rectify?

explicit sequence modeling for boundaries?
image vs video?

e 6 6 o



Simple marker method

® Place markers on lane boundaries
® organized into lanes (colors)

® Notice
® datasets contain lanes, not marker locations



Simple marker method
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Figure 1. Overview of the proposed method. A backbone generates feature maps from an input image. Subsequently, each anchor is projected
onto the feature maps. This projection is used to pool features that are concatenated with another set of features created in the attention
module. Finally, using this resulting feature set, two layers, one for classification and another for regression, make the final predictions.

Tabelini et al 21



Figure 2. LaneATT qualitative results on TuSimple (top row), CU-
Lane (middle row), and LLAMAS (bottom row). Blue lines are
ground-truth, while green and red lines are true-positives and false-
positives, respectively. See more samples in the videos'.

Tabelini et al 21



It’s fast
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Figure 3. Model latency vs. F1 of state-of-the-art methods on CULane and TuSimple.
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Figure 2. LaneATT qualitative results on TuSimple (top row), CU-
Lane (middle row), and LLAMAS (bottom row). Blue lines are
ground-truth, while green and red lines are true-positives and false-
positives, respectively. See more samples in the videos'.
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Tabelin1 21: Notice

® Jane boundaries have lanes between them
® this should help find
® what about less structured drivable regions?
® can this be learned with less data? or none?
® need data to learn keypoint finder as given
e BUT
® we know that there are lanes in pix
® we know what their geometry should be lik
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® appearance is coherent




Rectification

® Imagine a calibrated camera at a fixed height
® moving rigidly over a textured ground plane
® might not have image plane at right angles to ground plane
® could be roll, pitch, yaw
® [f we know roll, pitch, yaw, we can map image plane texture to ground

plane /
1z

horizon (v=0)

% \ (s’ ¢ -h)

(u, v)=(-s/t, -h/t)

Plane z=-h




Estimating roll, pitch, yaw

Height
® from car (calibrated and known)

Roll and pitch

® {rom horizon
® 1oll is why horizon isn’t parallel to image plane
® pitch is why it isn’t centerline

horizon (v=0)

Yaw? /
=

(u, v)=(-s/t, -h/t)

(s, t, -h)

Plane z=-h




Horizon estimation

e Khan et al - vanishing points from road lines + fudge




Horizon estimation

® Workman et al - mark up dataset, classify

Figure 5: Example results showing the estimated distribution over horizon lines. For each
image, the ground truth horizon line (dash green) and the predicted horizon line (magenta)
are shown. A false-color overlay (red = more likely, transparent = less likely) shows the
estimated distribution over the point on the horizon line closest to the image center.



Horizons

® Horizon estimation gets

complicated in tilted planes

® vyou might get distracted by distant
horizon (picture)
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complicated in tilted planes

® Horizon estimation gets
® |ocal cues are a problem



Seo 14: Simple detection

® Strategy:
® rectify, threshold to get rough road (?!?), estimate boundary points
® f{it curve to boundary points using unscented kalman filter
® and so repeatedly update while moving



Fig. 2: (a) A part of an input image (i.e., the yellow rectangle area) is transformed into a bird-eye view image (or an
inverse perspective image) (b) to remove perspective effects and to facilitate image processing. (¢) Our algorithm analyzes
the image region at the front of our vehicle and detects drivable-region by applying intensity-thresholding.



Clothoid

x=(1/6) c_1 yA3+ (1/3) c_0 yA2+ b y+ x0

T A
curvature rate curvature

heading angle (of road?)

offset of boundary from centerline of car

Filter state:

X = [Ioffset-. .31 C09C1]T

Fig. 4: The road-shape model and the measurement model.



Fig. 5: An example sequence of drivable-regions’ boundary detection and tracking.



Fig. 6: Example outputs of boundary detection and tracking.



Seo 14: Notice

® The detection process 1s minimal
® ecssentially, a form of clustering
® (Q: is this a route to unsupervised lane detection?
® boundary has rigid form
® interior has coherent appearance
® interior different from exterior



Khan et al 20

® Strategy
® detect keypoints in image
® rectify
® using estimated horizon from vanishing points
® impose structural model on keypoints in rectified image
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Figure 2. (a) The figure shows the architecture of the lane bound-
ary marker network. (b) The sampled keypoints from the ground

truth lane line are shown here. Khan et al, 20
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Key point: it’s easier to
impose a geometric model on
keypoints in rectified frame.

Figure 5. Detecting missing lane boundries. (a) Rectified view.
Lane boundaries are predicted in red using ¢, from section 3.3.2.
(b) Filtered lane boundaries after weighted averaging (c) Recov-
ered perspective view with all the four lane boundaries. Khan et al, 20



Geometric model

® | ane markers lie on

® a quadratic curve OR a straight line (in rectified frame)
® fitted using a version of RANSAC
® lane boundaries are parallel
® lines - easy
® curves - look at tangents
® (Q: why not use a (latent) center curve?

® Search:

® There are four boundaries (three lanes)
® or three
® Ortwo



Night ~ Crowded
Figure 1. Sample results of our algorithm on examples from four
different classes of CULane dataset [33] are shown here. Cyan
lines are the detected lane boundaries, green region represents the
ego lane and magenta line displays the estimated horizon. In the
No Line class, there is actually no line markings on the road but
the ground truth carries the lines shown.

Khan et al, 20



Khan 20: Notice

® Current SOA on many datasets
® for list of datasets, see Khan 20 - v. good on this
o Q:
® what about less structured drivable regions?
® can this be learned with less data? or none?
® need data to learn keypoint finder
® can rectification estimate be improved
® better horizon finders out there - see Jacobs papers on website
o Q:

® could Tabelini be improved by a horizon estimate?




Road and boundary interact
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Fig. 1. Reciprocal constraints with geometric relation. Left: With an image input,
traditional methods generate a binary segmentation mask for lane areas (green) or
lane boundaries (red), which are severely affected by outlier situations. Right: Our
approach introduces a geometric constraint into a multi-task network, which is capable
to restore the missing lane area and lane boundaries (blue) mutually.

Zhang et al
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Fig. 2. The proposed multi-task framework. Input images are fed into a shared encoder,
which extracts the critical features for lane segmentation and lane boundary detection.
Two inter-link encoders connected to each decoder provide complementary information
for tasks. The overall performance is enhanced by introducing a structure loss, assuming
that the lane boundary is predicted as the outer contour of the lane area while the lane
area is predicted as the area integration result within the lane boundaries.

Zhang et al



Use IoU loss on predicted road From predicted boundaries, compute
area - this strongly penalizes errors predicted road area, then compare
at the boundaries to true road area

.l
i+ Area-aware Loss

Fig. 5. Boundary-aware loss and area-aware loss. Left: An illustration of our boundary-
aware loss. The blue area indicates boundary inconsistency. Right: An illustration of
our area-aware loss. Different intensities in prediction areas indicate different prediction
confidence. The difference between restored area and ground truth indicates the area
aware loss.



(a) Ours

(d) Our Lane Boundary Detection

Fig. 7. Lane area segmentation and lane boundary detection results on KITTI dataset.
Green corresponds to true positives, blue to false positives and red to false negatives.



Zhang 18: Notice

No explicit geometric model of
® boundary
® drivable region

Implicit models from
® Jabelled data
® nteraction

No motion cues or filtering

® weird

® can we use biased geometric models to
® improve performance

® avoid problems with dataset frequencies
® deal with missing, dirty, etc. paint



Zou 19: sequence models
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Fig. 2: Architecture of the proposed network.

Training - piles of marked up data



Fig. 7: Results obtained by UNet-ConvLSTM on challenging scenes in (a) Testset #1 and (b) Testset #2 without post-processing.
Lanes suffered from complications of occlusion, shadow, dirty, blur, curve, tunnel and poor illuminance are captured in rural,
urban and highway scenes by automobile data recorder at different heights, inside or outside the front windshield.



TABLE IV: TuSimple lane marking challenge leader board on test set as of March 14, 2018 [52].

[ Rank | Method | Name on board | Using extradata | Accuracy(%) [ FP | FN |
1 Unpublished leonardoli - 96.9 0.0442 | 0.0197
2 Pan et al. [50] XingangPan True 96.5 0.0617 | 0.0180
3 Unpublished astarry - 96.5 0.0851 | 0.0269
4 Ghafoorian et al. [52] [ TomTom EL-GAN False 96.4 0.0412 | 0.0336
5 Neven et al. [43] DavyNeven Flase 96.2 0.2358 | 0.0362
6 Unpublished li - 96.1 0.2033 | 0.0387

Pan et al. [50] N/A False 96.6 0.0609 | 0.0176
Pan et al. [50] N/A True 96.6 0.0597 | 0.0178
SegNet_ConvLSTM N/A False 97.1 0.0437 | 0.0181
SegNet_ConvLSTM N/A True 97.2 0.0424 | 0.0184
UNet_ConvLSTM N/A False 97.2 0.0428 | 0.0185
UNet_ConvLSTM N/A True 97.3 0.0416 | 0.0186




Schulter et al 18

More detailed representations




More detailed representations

|
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Figure 7: Qualitative results comparing H-BEV+DA and H-BEV+DA+GM ih consecutive frames of two example sequences
of the KITTI validation set. In each column, we have visualized the perspective RGB image, prediction from H-BEV+DA and
that of H-BEV+DA+GM from left to right. Each row shows a sequence of three frames. We can observe more consistent
predictions, e.g., width of side-road and delimiter width, with the help of the temporal CRFE.

[ater!

Wang 19



Lane Following

® FEither
® Detect then
® use a PID controller on steering angle
® aim at the centerline
® use a learned controller applied to detected lanes
® Use a learned controller applied to images

® Next up:

® Simple learned controllers!



Issues

You have to do it fast

You have to do it right
Paint detection problems
Geometric model problems

Curvy road No paint






Off policy images

RUSDTP.RU

Only one, sorry, they’re hard to get...



