Fog, Rain, LIDAR and
Radar

D.A. Forsyth,
UIUC



time t

Fog and Lidar: Lidar

distance d
\

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia



Raindrop backscatter

Raindrop

=

Source

Detector



Fog scattering

FOG

Source

Detector



What the sensor sees...
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(a)

Fig. 5: Static targets and adverse weather experiments at JARI’s weather chamber: (a) configuration of the different scenarios,
(b) and (c) measurement, (e) to (g) sample adverse weather scenes, (d) setting up ground truth.
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(a) VLS-128 (b) HDL-64S2 (c) HDL-32E
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Fig. 9: “Rain pillars” as detected by a LiDAR.
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(a) strongest returns (b) last returns

Figure 1: LiDAR returns caused by fog in the (top) scene.
(a) shows the strongest returns and (b) the /ast returns, color
coded by the LiDAR channel. The returns of the ground are
removed for better visibility of the points introduced by fog.
Best viewed in color (red = low, cyan = high, 3D bounding
box annotation in green, ego vehicle dimensions in gray).
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Figure 16: Performance comparison of different sensors in the pres-
ence of adverse conditions. The left plot shows the depth estimation
performance of Radar and LiDAR for an object directly in front of the
sensor in the presence of fog. The right figure shows the camera image
for the experiment.
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Multi sensor methods

Image-only Detection

Figure 1: Existing object detection methods, including effi-
cient Single-Shot detectors (SSD) [} 1], are trained on auto-
Lidar-only Detection motive datasets that are biased towards good weather con-
ditions. While these methods work well in good condi-
tions [ 19, 59], they fail in rare weather events (top). Lidar-
only detectors, such as the same SSD model trained on pro-
jected lidar depth, might be distorted due to severe backscat-
ter in fog or snow (center). These asymmetric distortions
are a challenge for fusion methods, that rely on redundant
information. The proposed method (bottom) learns to tackle
unseen (potentially asymmetric) distortions in multimodal
Proposed Fusion Architecture data without seeing training data of these rare scenarios.
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Multi sensor bad weather data
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Table 1: Comparison of the proposed multimodal adverse
weather dataset to existing automotive detection datasets.
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Gated Camera RGB Camera BEV Lidar Intensity Radar

Figure 3: Multimodal sensor response of RGB camera,
scanning lidar, gated camera, and radar in a fog chamber
with dense fog. Reference recordings under clear condi-
tions are shown in the first row, recordings in fog with visi-
bility of 23 m are shown in the second row.
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Fused Detections
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Figure 4: Overview of our architecture consisting of four single-shot detector branches with deep feature exchange and
adaptive fusion of lidar, RGB camera, gated camera, and radar. All sensory data is projected into the camera coordinate
system following Sec. 4.1. To steer fusion in-between sensors, the model relies on sensor entropy, which is provided to each
feature exchange block (red). The deep feature exchange blocks (white) interchange information (blue) with parallel feature

extraction blocks. The fused feature maps are analyzed by SSD blocks (orange).
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