Point sets, Maps and Navigation - III

D.A. Forsyth
Localization

- We can now robustly register a point set to a point set
 - This is localization
 - Look at LIDAR
 - register to map
 - I know where I am

- Q:
 - how to make the map?
 - registration + bundle adjustment
 - how to incorporate movement estimates and model uncertainty?
 - next big topic
Bundle adjustment

- The problem:
 - Register B to A, C to B, D to C
 - -> then you know D->A, but it isn’t very good…

Q: Why not C->A?
Bundle adjustment

- Loop closure problems
 - Why is this happening?

\[\mathcal{T}_{D \rightarrow A} = \mathcal{T}_{B \rightarrow A} \circ \mathcal{T}_{C \rightarrow B} \circ \mathcal{T}_{D \rightarrow C} \]

But this isn’t the one that minimizes the D, A overlap errors!
Strategies

- (Pretty much always)
 - Fix one set of points
 - Register in sequence
 - usually defined by (say) time
 - Now fix the resulting estimates
 - these are a start point
Fixing the maps - I

\[\mathcal{T}_{D \to A} = \mathcal{T}_{B \to A} \circ \mathcal{T}_{C \to B} \circ \mathcal{T}_{D \to C} \]
Fixing the maps - II

- Simplest
 - Repeat:
 - Fix N-1, use ICP/IRLS to est. last
 - + Closed form solutions
 - - Convergence issues
 - - Inefficient

- Cleaner
 - One least squares optimization problem
 - in all maps
 - Newton’s method
 - + Efficient
 - - Local minima
 - - Can be very large optimization