Planning, dynamics and
motion graphs

D.A. Forsyth, UIUC

(X, v)

Keep out of here, to

\

800

700

@
3

g

Height above ground (feet)
Y] £
= =

h
=]

100

Helicopter height-velocity diagram

Height-velocity diagram for

Bell 204B Helicopter

10

8500 LB.GROSS WEIGHT
AND BELOW

20

OPERATION IN SHADED AREAS

MUST BE AVOIDED

30

Recommended take-off profile

40 50 60 70 80 90 100 110 120
Airspeed (knots)

(colloquially, dead man’s curve;
from wikipedia; there are all sorts
of operating limits to helicopters)

Key 1ssue

You have to think about control input as well

Compare:
® RRT in kinematic planning -
® check is there no obstacle
® RRT in dynamic planning
® what feasible control gets you from gnear to qrand?
® there might not be one
® it might be hard to find

Taking actions into account

qnear

=<

q' = f(q,u)---useaction u from g to arrive at ¢’

Notice this f isn’t the f in slide 6 —
it maps initial state to final state given control u

chose u, = argmin(d(q,,,,,4')) Is this the best?

c7rzand o

How it Works

e Build a rapidly-exploring random tree in state
space (X), starting at s+

e Stop when tree gets sufficiently close to s,

Start

Building an RRT

e To extend an RRT:
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

~

Building an RRT

e To extend an RRT (cont.)

— Apply control inputs u for
time 6, so robot reaches
C

— If no collisions occur in
getting from a to ¢, add ¢
to RRT and record u with
hew edge

Executing the Path

e Once the RRT reaches s,

— Backtrack along tree to identify edges that lead
from s+ t0 S 02

— Drive robot using control inputs stored along edges
in the tree

Problem of Simple RRT Planner

e Problem: ordinary RRT explores X uniformly
— slow convergence

e Solution: bias distribution towards the goal — once in a
while choose goal as new random configuration (5-10%)

e If goal is choose 100% time then it is randomized potential
planner

Bidirectional Planners

e Build two RRTs, from start and goal state

~ \\"‘Kn
N
\ i
A N S
S >
\; _ __‘___ a }C.-.
A)\,_- = }y |
) /

e Complication: need to connect two RRTs
— local planner will not work (dynamic constraints)
— bias the distribution, so that the trees meet

RRT's

Link

Issues/problems

Metric sensitivity

Nearest neighbour efficiency

Optimal sampling strategy

Balance between greedy search and exploration

Applications in mobile robotics, manipulation,
humanoids, biology, drug design, areo-space, animation

Extensions - real-time RRT'’s, anytime RRT’'s dynamic
domains RRT'sm deterministic RRTs, hybrid RRT's

Building an RRT

e To extend an RRT:
— Pick a random point a in X

— Find b, the node of the tree
closest to a

— Find control inputs u to steer
the robot from b to a

!
Strategies: HOW ()

Optimization
with simulator

Discretize

~

Boundary value problems

Point robot Obstacle
on a line
(J
L v
v U

® QOur simple system
® start at x=0, v=0

o obstacle starts at x=1 Control constraint: — 1 S U S]_
® plan to go to x=0.9, v=-2

Boundary value problems - 11

® QOur simple system
® start at x=0, v=0
® obstacle starts at x=1
® plan to go to x=0.9, v=-2

° L] 2
® Write this system d”x
® 5o general solution is: dtQ

U 2
CO‘I‘Clt—|—§t

x co + c1t + %tQ
— What does this look like in (X, v) space?
c1 + ut

Control constraint: — 1 < Uu <]_

Boundary value problems - 111

. : a
Imagine we’re at (1)

and want to go to (2)

What u do we use?

® and can we do it? T B Co Clt %t2
v c1 + ut

Notice we have four constraints, four unknowns
® didn’t specify arrival time!

Boundary value problems - IV

W it —1<w<l1
—1 otherwise

1 it w>1
(a—c) u{

Building an RRT

e To extend an RRT:
— Pick a random point a in X

- Find b, the node of the tree
closest to a

— Find control inputs u to steer W
the robot from b to a

® (Can now compute u, s
® that takes us from closest point to sample
® or nearby (recall constraints on u)
® does that path intersect physical obstacle?
® yes - either drop, or reduce s
® 1o - add sample, recording u, s as well

® We now can build a tree!

I’m here, and
decelerate

(X, v)

Distance travelled
until stationary
at acceleration = -1

Boundary value problems - V

This should strike you as being hard to generalize

® most odes don’t have easy closed form solutions
® why use constant acceleration?
® | got an easy answer

Strategies

® use a simulator

® scarch a discrete set of control inputs
Particularly important idea

® Do many path segments in advance; cache the results (motion primitives)
® Secarch that set for something that gets “close” to the endpoint

Q:

® what primitives? search how?

Motion Primitives

® Discretization
® build a set of motion primitives
® start state, control input -> path, end state
® procedures for composing them
® what primitives can be applied in what state?
® there is translation, rotation covariance

® Search this set of primitives
® various options

Searching the primitives - I

® Build an RRT whose edges are primitives

® Recall in RRT, we must build an edge from a state to a state
® Or partway

® Do this by finding a primitive that is “helpful”
® blank search
® some form of hashing * To extend an RRT:

- Pick a random point a in X
(13 29
¢ helpful - Find b, the node of the tree

® new state 1s “close to” desired state Closest to a
— Find control inputs u to steer W
the robot from b to a

Building an RRT

Searching the primitives - 11

® Some form of randomized search

® to assemble primitives into path from start to goal
® (more under motion graphs)

Joining up

® Generic 1ssue: how to adjust path?

Bidirectional Planners How it Works

e Build two RRTs, from start and goal state e Build a rapidly—exploring random tree in state
space (X), starting at s+

e Stop when tree gets|sufficiently close to s,

\ e M
A | | /i v
A p LN \{\.
b3 T)),/l-) (
A) . \ \Goal
) = >
Start ;
- X W

e Complication:|need to connect two RRTs , AN
- local planner will not work (dynamic constraints) e N

- bias the distribution, so that the trees meet

Dynamics make planning harder

® Dynamics introduce differential constraints

x':f($,u)
N

Derivative of state State Control input -
there might be
constraints on this,

too

Quite possibly nasty

Boundary value problems - I

State

i = (&)

Derivative of state T T Control input -
there might be
. . constraints on this,
Quite possibly nasty £00
z(0) = a Start

Notice over here we’ve assumed an

S
~—

e
~—

|

Constraints on controls
Constraints on state

g Goal arrival time at goal

Boundary value problems - 11

Generally, find u such that: We already have u such that:
T = f(x,u) = f(x,u)
z(0) =a z(0) =a
z(1) =g z(1) =b
Constraints on controls Constraints on controls

Constraints on state Constraints on state

BVP’s - 111

n;slin Cost(du)

such that

T = f(x;u+ du)
r(0) =a
r(l;u+d0u) =g
Constraints on state

Constraints on controls

BVP’s - IV

min Cost(du)

ou e Simplify by

® making \delta u finite dimensional
® assuming a solution exists

such that ® and is a “reasonable” function of
. \delta u
r = f($7 U+ (SU) ® not trivial!
r(0) =a

r(l;u+d0u) =g

: ® becomes:
Constraints on state

® {-d constrained optimization problem
Constraints on controls

BVP’s - IV

Search for
these l
e Simplity by
® making \delta u finite dimensional 5“ — Z Uy gb@ (t)
® assuming a solution exists 7 T Choose these
® and is a “reasonable” function of
\delta u

® ot trivial! 33(1, CL) = G(CL)

® becomes:
® f{-d constrained optimization problem

BVP’s -V

min a a

subject to
G(a) =g
Constraints on state

Constraints on controls

® (Could use a numerical method

® For example
® Augmented Lagrangian method
® (: gradient of G wrt a?
® possibly numerical

® With a reasonable hope of
success

Motion capture

Pushing People Around

Okan Arikan *
David A. Forsyth **
James F. O'Brien *

* University of California, Berkeley
** University of lllinois, Urbana-Champaign

Arikan ea 06

However, modifying motion 1s dangerous

The motion graph

® (Old idea in human animation
® FEssentially, build a roadmap of what people can do by
® joining up animation sequences
® Control by
® scarching these sequences

Motion graph

Motion graph: by analogy with

® text synthesis, texture synthesis, video textures

Motion Graph:

Take measured frames of motion as nodes Nodes = Frames

® from motion capture, given us by our friends

Edges = Transition

Edge from frame to any that could succeed it A path = A motion

® decide by dynamical similarity criterion
® sece also (Kovar et al 02; Lee et al 02)

A path 1s a motion

Search with constraints
® like root position+orientation, etc.

® [n various ways

®].ocal (Kovaretal 02)
® [.ceetal 02; Ikemoto, Arikan+Forsyth 05

SN e

Inserting edges

® (iven a reasonable matching function, we can insert edges

Matching frames

® (: when can I cut from one sequence to another?
® without problems?

® A: when the next frames are “like one another”
® configuration is similar
® up to rotation and translation of the torso
® rotate and translate f_i to f_j’s frame
® check joints
® velocity is the same
® in torso frame
® rotate and translate f_i to f_j’s frame
® check joint velocities

® Generally, you expect a lot of matches

Why a motion graph?

® No reliable method for generating novel motions

® at the time (current learned methods quite good)
® some special cases work OK

® Keys for special cases

data driven methods work well for temporal composition
Some motions can be blended successfully

Contacts create special problems

There are complex, cross-body correlations

e FEasy to build complex movements by search

Car motion graph

® Analogy with car

® drive around “at random”
® record position, velocity, controls

® we now have a set of sequences of observed configurations
® and the controls required

® build motion graph out of sequences
® NOTE: should have a very large number of edges

® basically, check that velocities are similar

® search this for a path
® controls? read off from frames in path
® problems? replan by searching again

Motion Sequences

Corresponding Motion

>

Time

Figure 1: We wish to synthesize human motions by splicing to-
gether pieces of existing motion capture data. This can be done by
representing the collection of motion sequences by a directed graph
(top). Each sequence becomes a node; there is an edge between
nodes for every frame in one sequence that can be spliced to a frame
in another sequence or itself. A valid path in this graph represents a
collection of splices between sequences, as the middle shows. We
now synthesize constrained motion sequences by searching appro-
priate paths in this graph using a randomized search method.

Fr ame; Frame. J

Walking , frame 1

\\‘\'\ \

Clustering

_>
AR TN

Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there 1s one edge between two nodes
1n our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, 1t will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The 7, j’th
entry in this matrix represents the weight for a cut from the i’th
frame 1n the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph i1s composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

Running, frame |

o

. Start with a set of n valid random “seed” paths in the graph G’
. Score each path and score all possible mutations

. Where possible mutations are:

(a) Delete some portion of the path and replace it with O or
1 hops.

(b) Delete some edges of the path and replace them with
their children

. Accept the mutations that are better than the original paths
. Include a few new valid random “seed” paths

. Repeat until no better path can be generated through muta-

tions

Figure 3: The two mutations are: deleting some portion of the path
(top-left, crossed out in red) and replacing that part with another set
of edges (top-right), and deleting some edges in the path (bottom-
left) and replacing deleted edges with their children in our hierarchy
(bottom-right)

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion 1s required to pass through the arrow (body con-
straint) 1n the middle on the way from the right arrow to the left.

