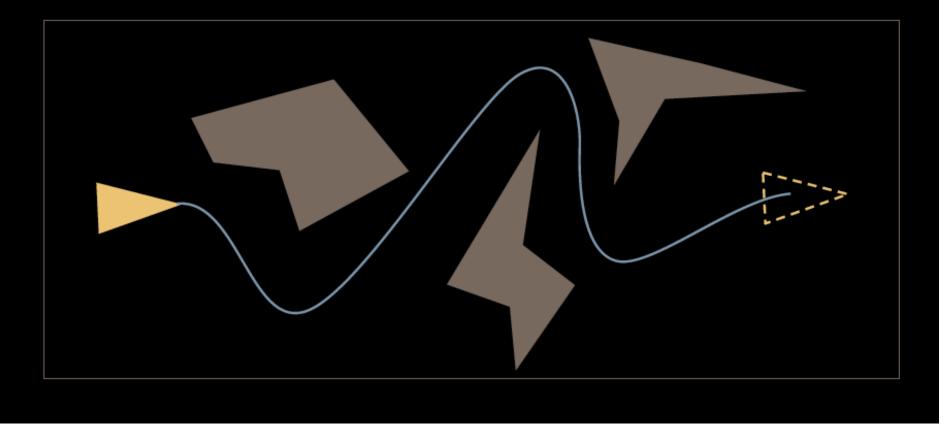
Motion Planning I

D.A. Forsyth (with a lot of H. Choset, and some J. Li)

What is motion planning?

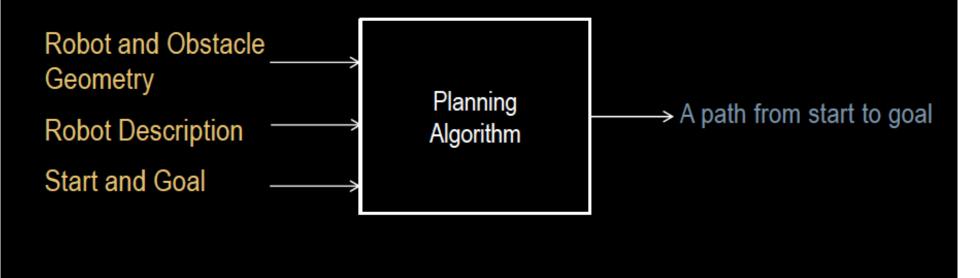
- The automatic generation of motion
 - Path + velocity and acceleration along the path



Basic Problem Statement

Motion planning in robotics

 Automatically compute a path for an object/robot that does not collide with obstacles.



Why is this not just optimization?

• Find minimum cost set of controls that

- take me from A to B
- do not involve
 - collision
 - unnecessary extreme control inputs
 - unnecessary extreme behaviors

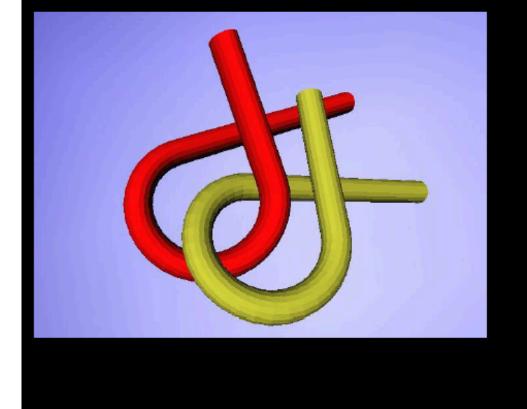
minimize
$$f(\mathbf{x})$$
 (1a)

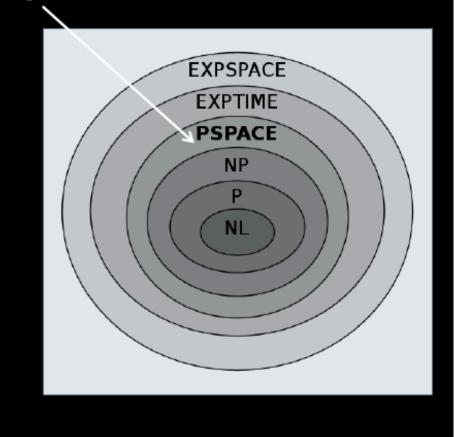
These will have to deal
with collisions, etc.
$$g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, n_{ineq}$$
 (1c)

 $h_i(\mathbf{x}) = 0, \quad i = 1, 2, \dots, n_{eq}$ (1d)

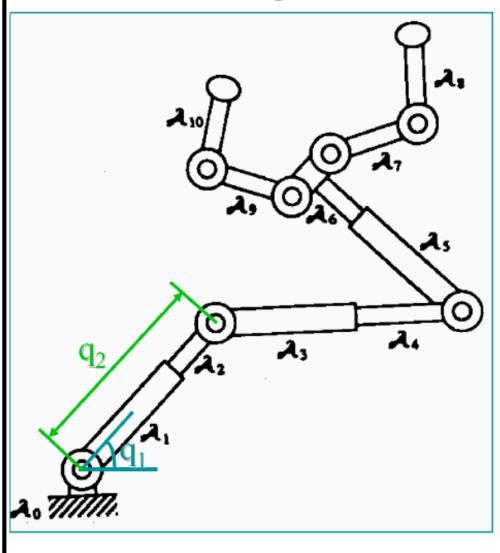
Is motion planning hard?

Basic Motion Planning Problems



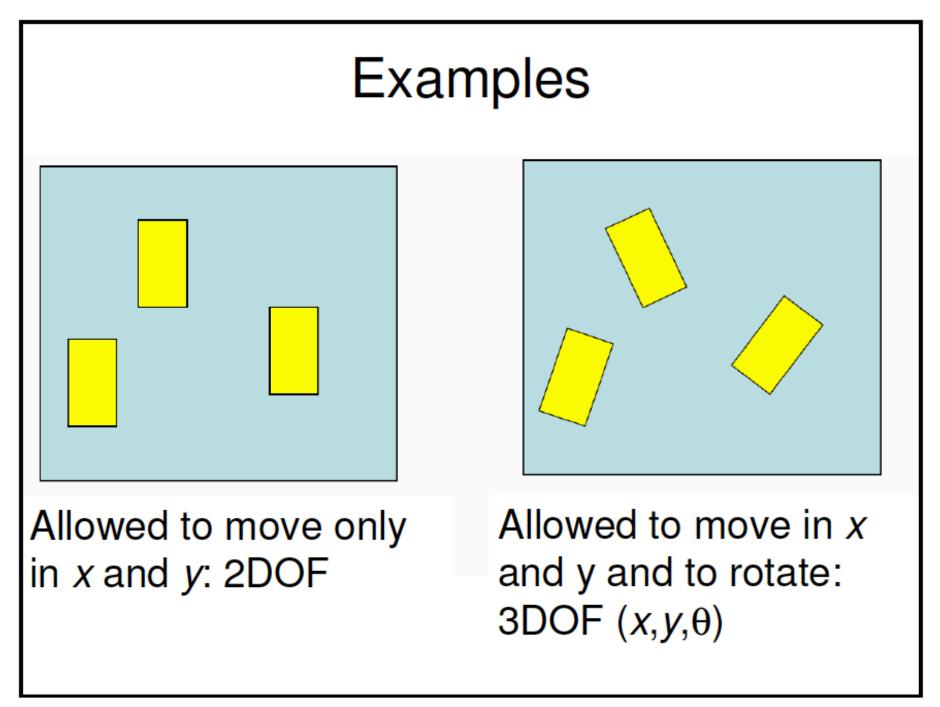


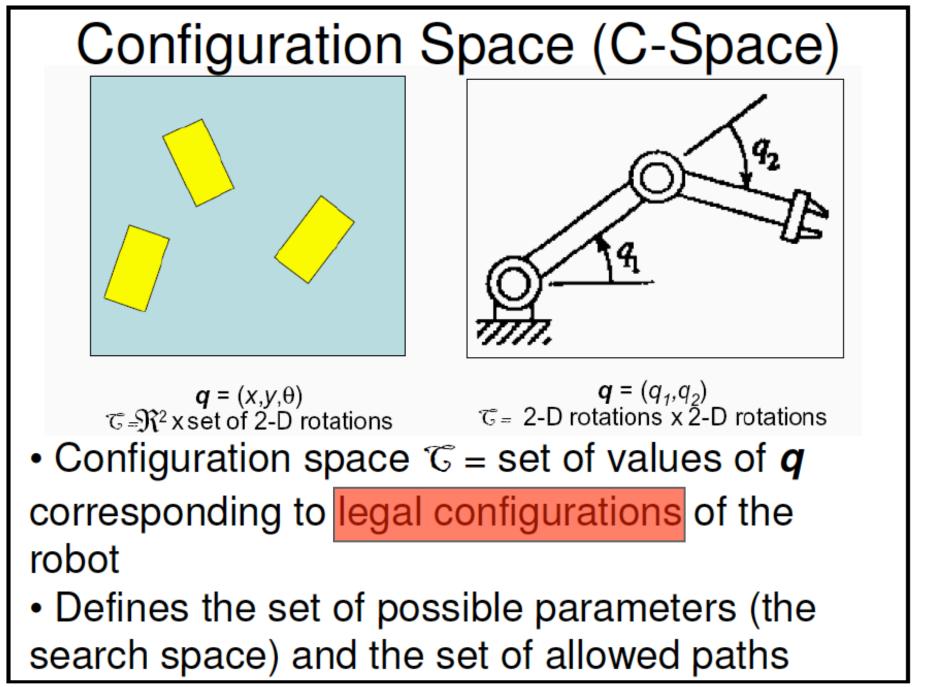
Degrees of Freedom



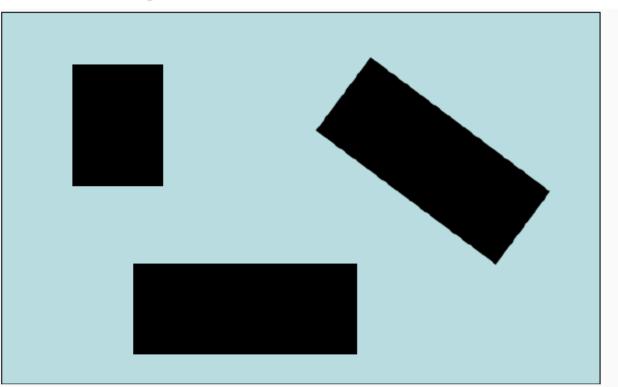
• The geometric configuration of a robot is defined by *p* degrees of freedom (DOF)

- Assuming *p* DOFs, the geometric configuration *A* of a robot is defined by *p* variables:
- $A(\boldsymbol{q})$ with $\boldsymbol{q} = (q_1, \dots, q_p)$
- Examples:
 - Prismatic (translational)
 DOF: q_i is the amount of
 translation in some direction
 - Rotational DOF: *q*_i is the amount of rotation about some axis



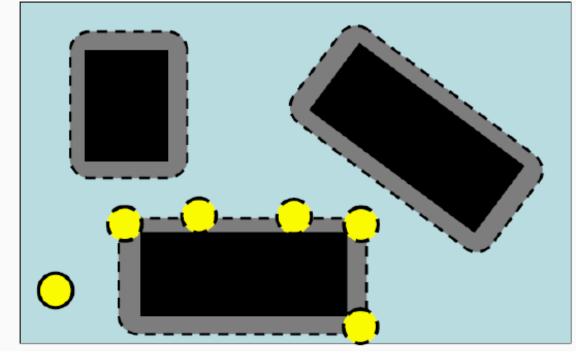


Free Space: Point Robot

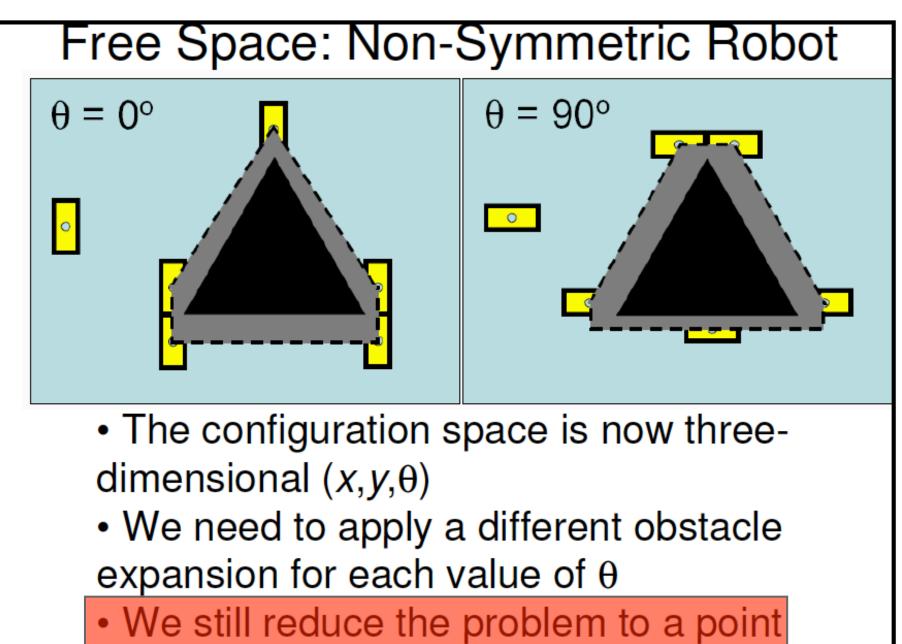


\$\mathcal{C}_{free}\$ = {Set of parameters \$\mathcal{q}\$ for which \$\$A(\mathcal{q}\$) does not intersect obstacles}\$
For a point robot in the 2-D plane: \$\mathcal{R}^2\$ minus the obstacle regions

Free Space: Symmetric Robot



We still have G = R² because orientation does not matter
Reduce the problem to a point robot by expanding the obstacles by the radius of the robot



robot by expanding the obstacles

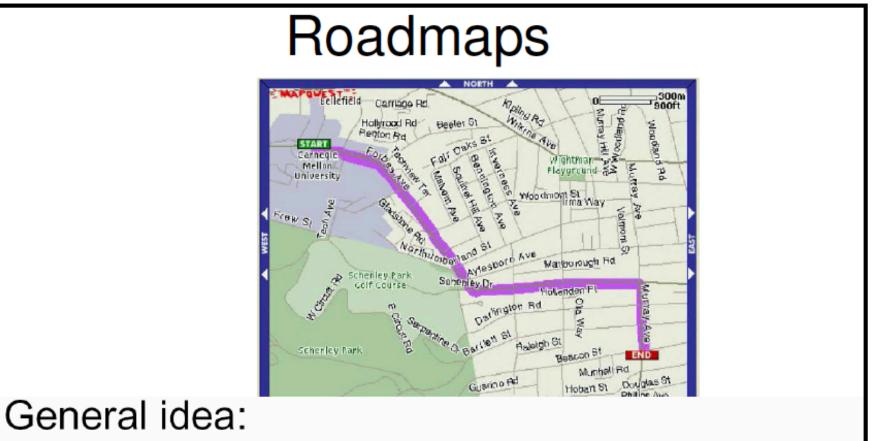
Any Formal Guarantees? Generic Piano Movers Problem

- Formal Result (but not terribly useful for practical algorithms):
 - *p*: Dimension of ℃
 - *m*: Number of polynomials describing $\mathcal{T}_{\text{free}}$
 - d: Max degree of the polynomials
- A path (if it exists) can be found in time exponential in p and polynomial in m and d

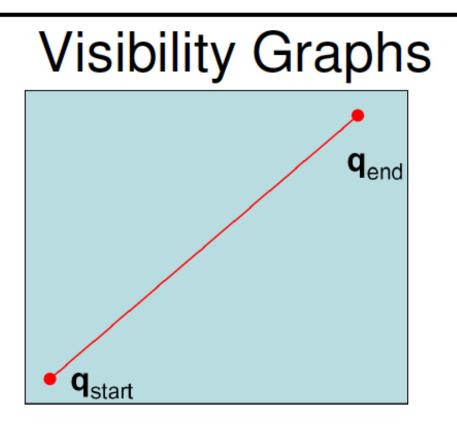
[From J. Canny. "The Complexity of Robot Motion Planning Plans". MIT Ph.D. Dissertation. 1987]

Observation

- Generally, searching a graph is pretty straightforward
 - Dijkstra, A*, etc know how to do this
- Strategy
 - get a graph we can search

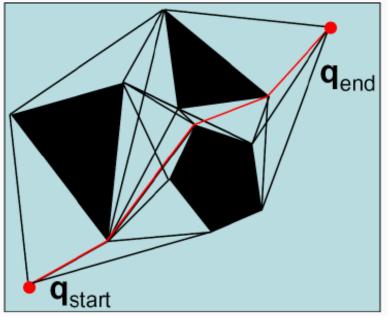


- Avoid searching the entire space
- Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles
- Find a path between *q*_{start} and *q*_{goal} by using the roadmap



In the absence of obstacles, the best path is the straight line between $\mathbf{q}_{\text{start}}$ and \mathbf{q}_{goal}

Visibility Graphs

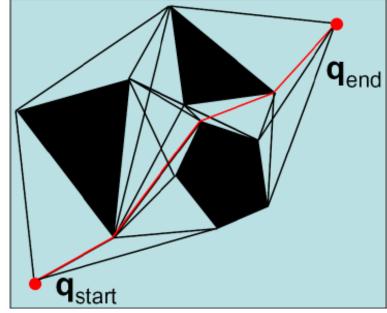


- Visibility graph G = set of unblocked lines between vertices of the obstacles + \mathbf{q}_{start} and \mathbf{q}_{goal}
- A node P is linked to a node P' if P' is visible from P
- Solution = Shortest path in the visibility graph

Issues

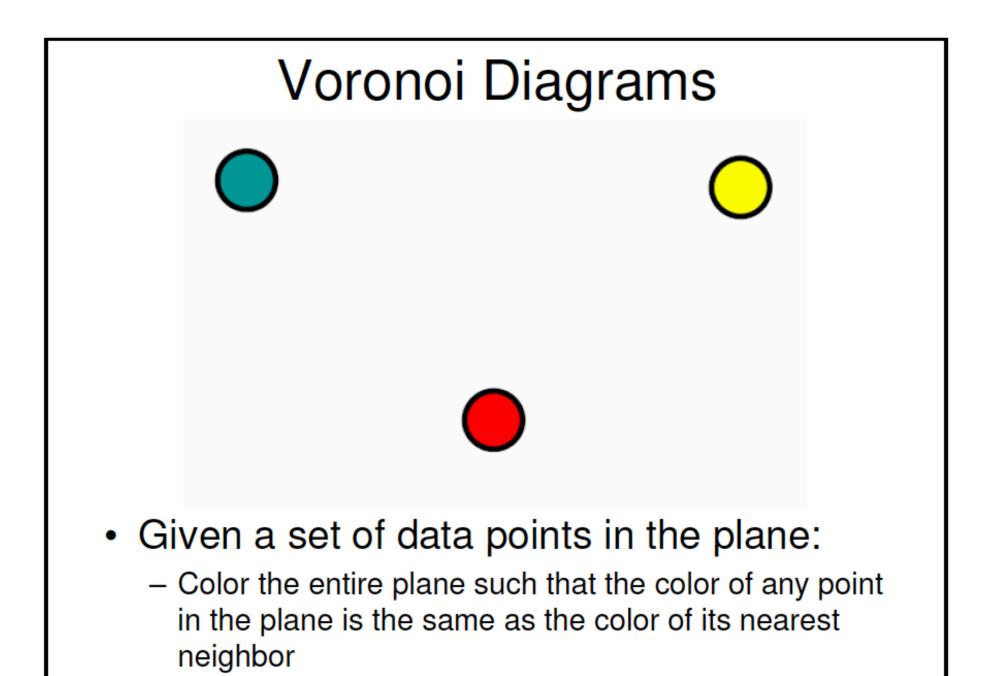
• Constructing

- Relatively straightforward with a sweep algorithm
 - Variant (visibility complex) root cause of early computer games
 - Wolfenstein 3D, Doom II, etc
- What if configuration space is not 2D
 - You can still construct, MUCH harder
- MANY locally optimal paths
 - topology of free space clearly involved

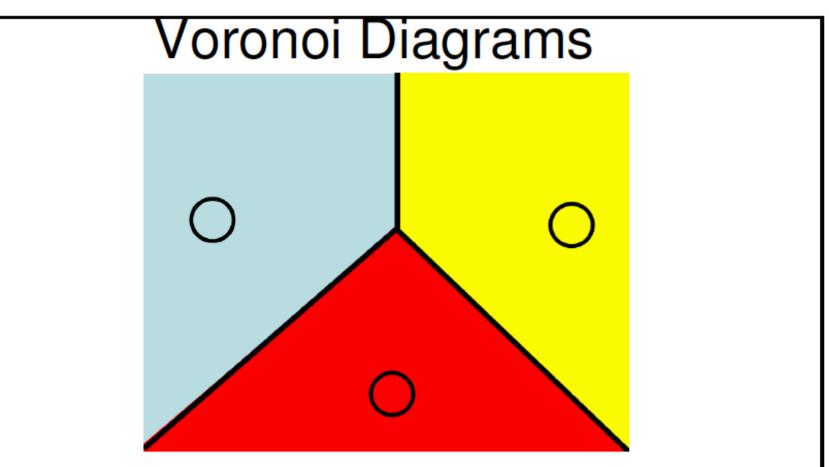


Visibility Graphs: Weaknesses

- Shortest path but:
 - Tries to stay as close as possible to obstacles
 - Any execution error will lead to a collision
 - Complicated in >> 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"



Choset slides



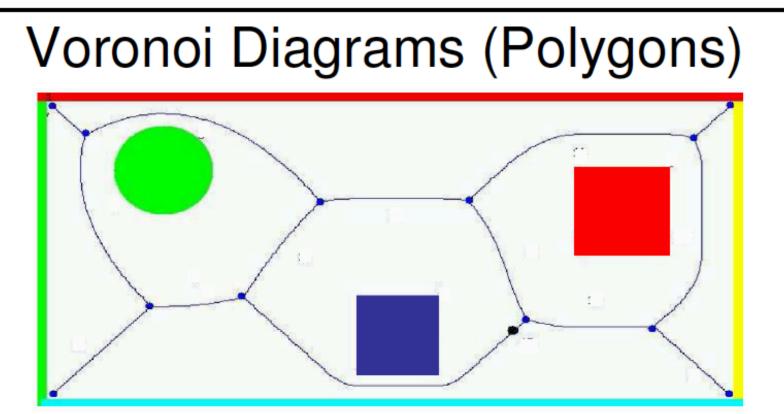
- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from > 2 data points

Choset slides

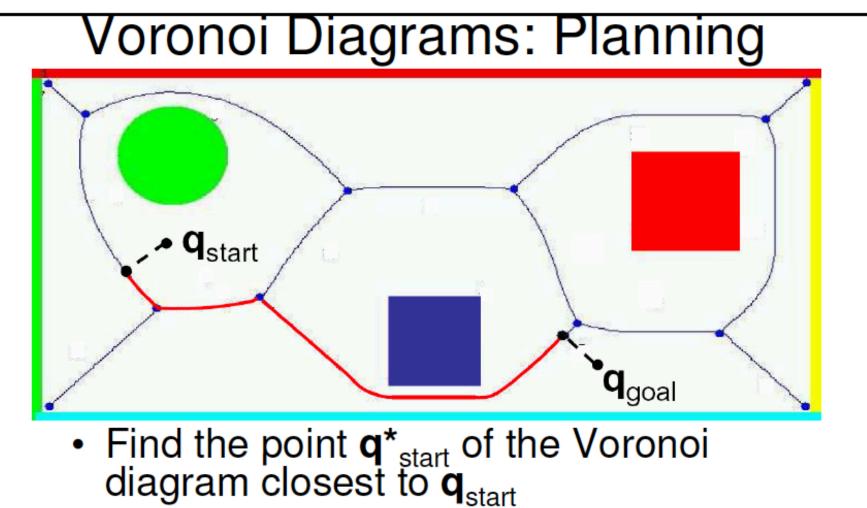


- Complexity (in the plane):
- O(N log N) time
- O(N) space

(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for an interactive demo)



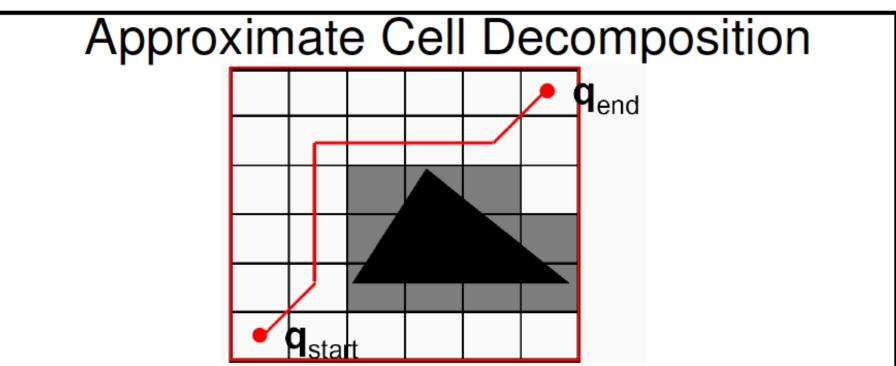
- Key property: The points on the edges of the Voronoi diagram are the *furthest* from the obstacles
- Idea: Construct a path between ${\bf q}_{\rm start}$ and ${\bf q}_{\rm goal}$ by following edges on the Voronoi diagram
- (Use the Voronoi diagram as a roadmap graph instead of the visibility graph)



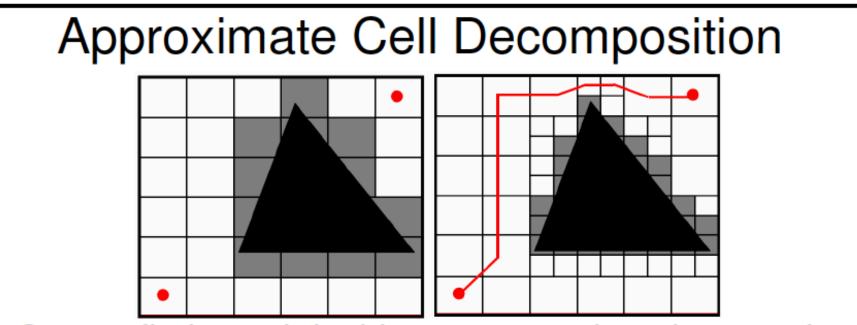
- Find the point **q**^{*}_{goal} of the Voronoi diagram closest to **q**_{goal}
- Compute shortest path from q*_{start} to q*_{goal} on the Voronoi diagram

Voronoi: Weaknesses

- Difficult to compute in higher dimensions or nonpolygonal worlds
- Approximate algorithms exist
- Use of Voronoi is not necessarily the best heuristic ("stay away from obstacles") Can lead to paths that are much too conservative
- Can be unstable → Small changes in obstacle configuration can lead to large changes in the diagram



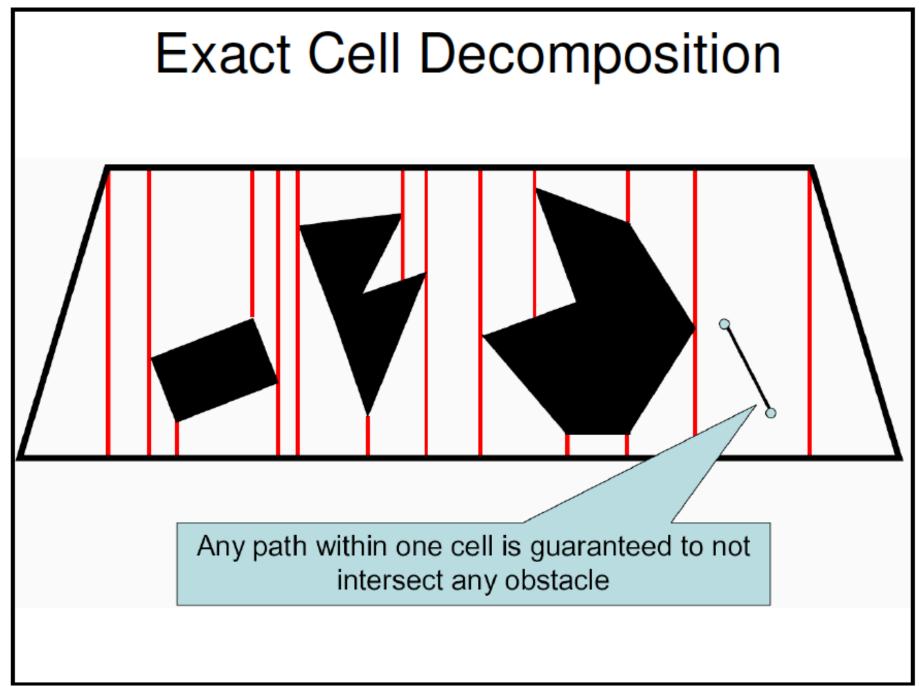
- Define a discrete grid in C-Space
- Mark any cell of the grid that intersects C_{obs} as blocked
- Find path through remaining cells by using (for example) A* (e.g., use Euclidean distance as heuristic)
- Cannot be *complete* as described so far. Why?

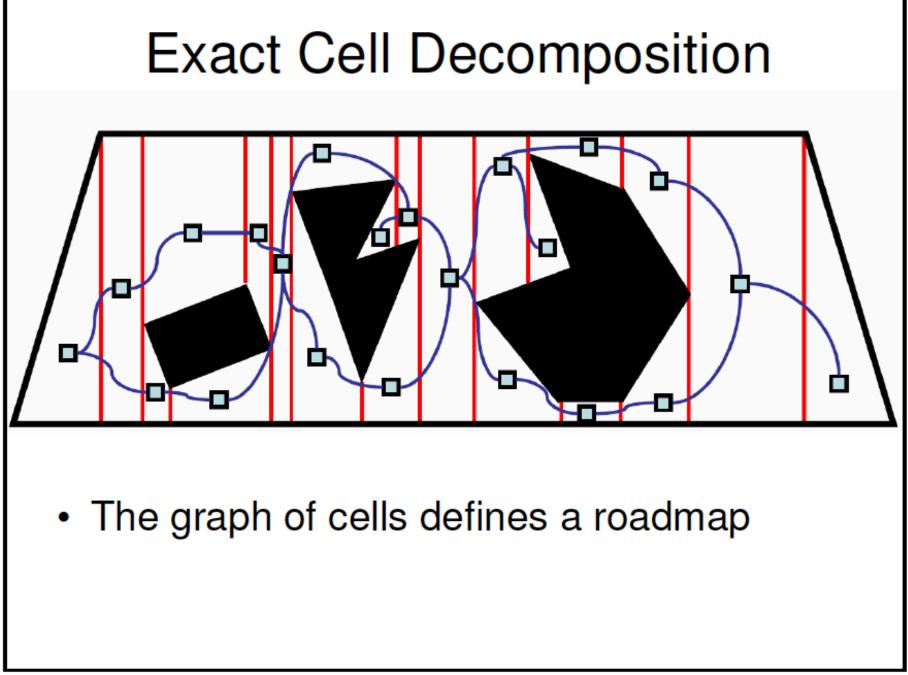


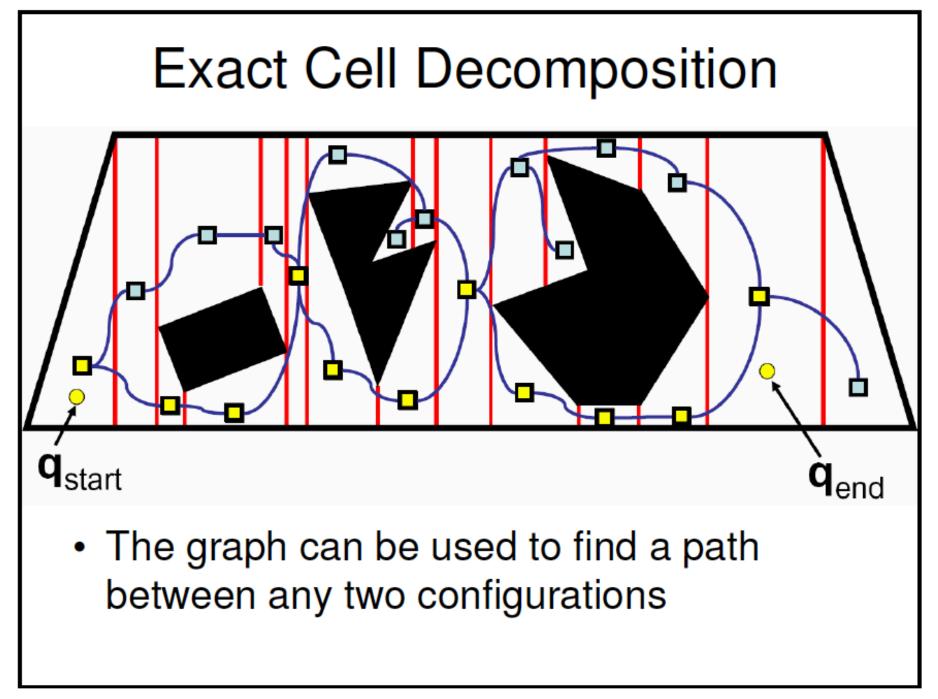
- Cannot find a path in this case even though one exists
- Solution:
- Distinguish between
 - Cells that are entirely contained in $\mathcal{T}_{obs}(FULL)$ and
 - Cells that partially intersect Cobs (MIXED)
- Try to find a path using the current set of cells
- If no path found:
 - Subdivide the MIXED cells and try again with the new set of cells

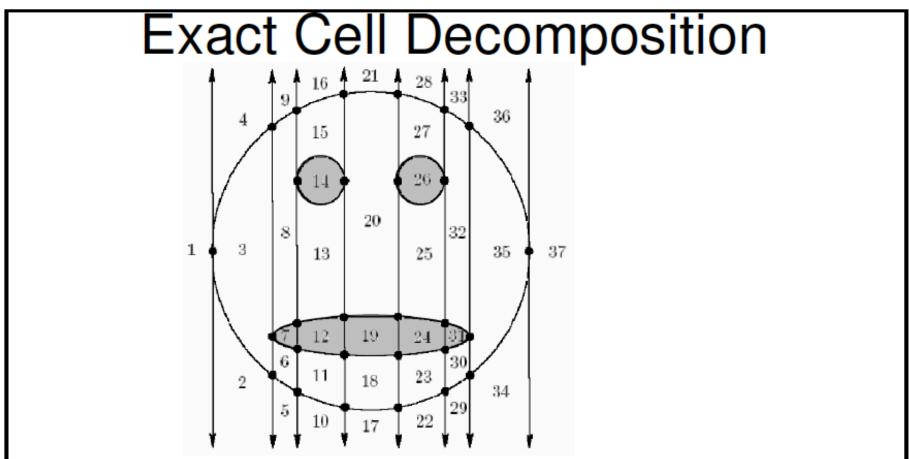
Approximate Cell Decomposition: Limitations

- Good:
 - Limited assumptions on obstacle configuration
 - Approach used in practice
 - Find obvious solutions quickly
- Bad:
 - No clear notion of optimality ("best" path)
 - Trade-off completeness/computation
 - Still difficult to use in high dimensions

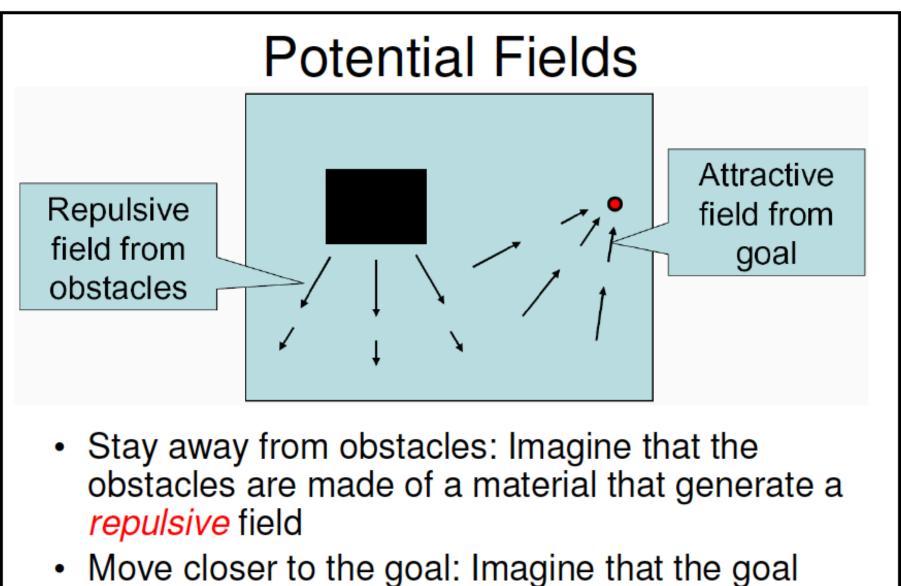




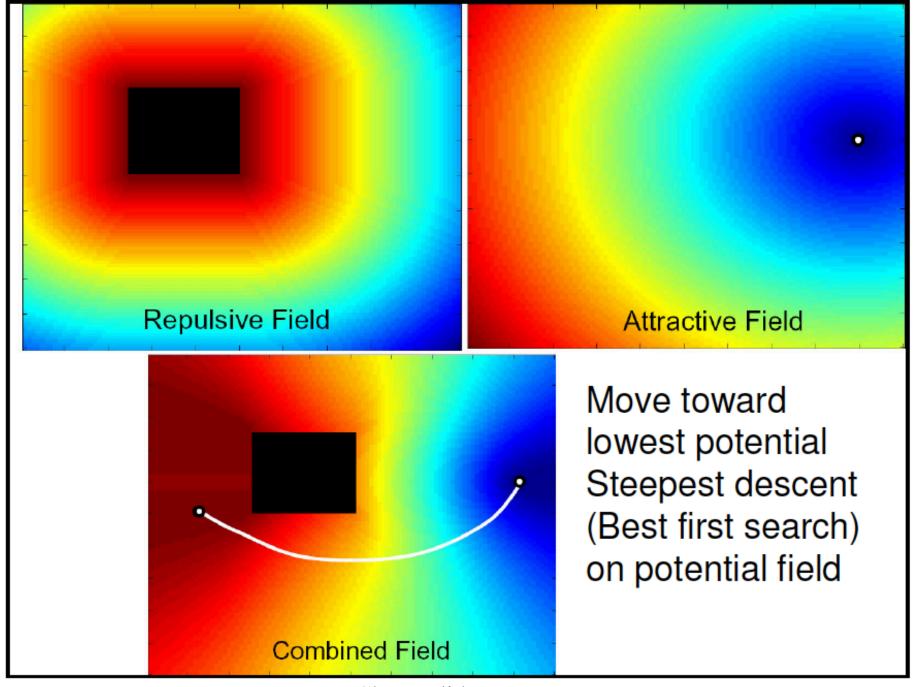




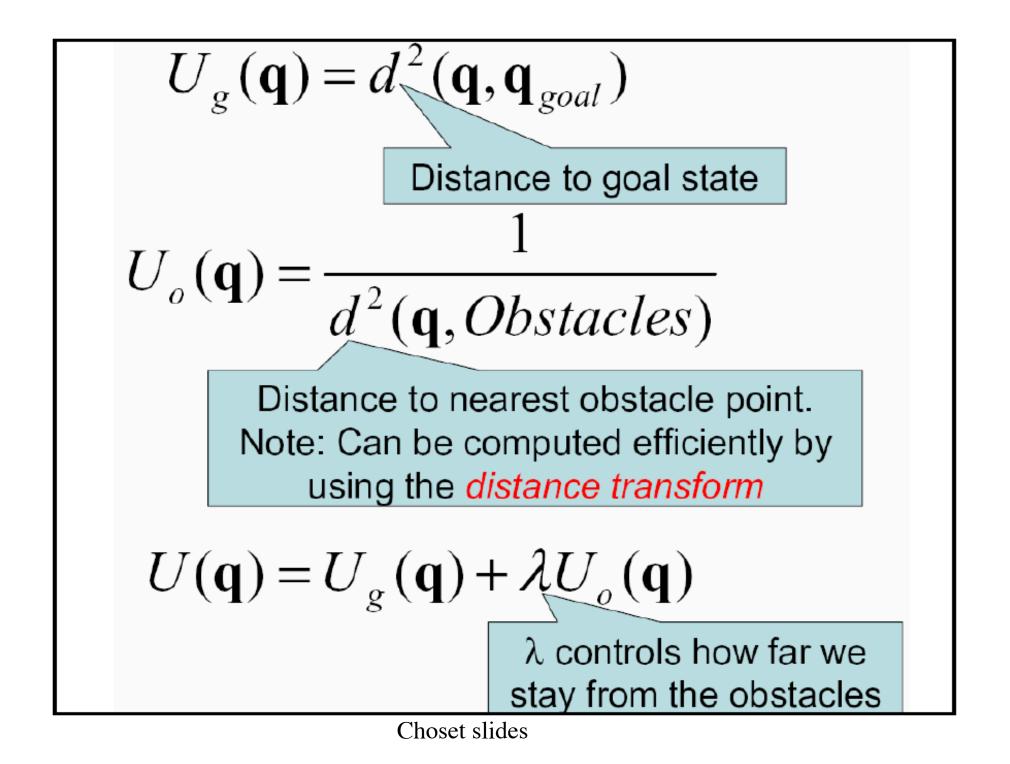
- A version of exact cell decomposition can be extended to higher dimensions and non-polygonal boundaries ("cylindrical cell decomposition")
- Provides exact solution → completeness
- Expensive and difficult to implement in higher dimensions

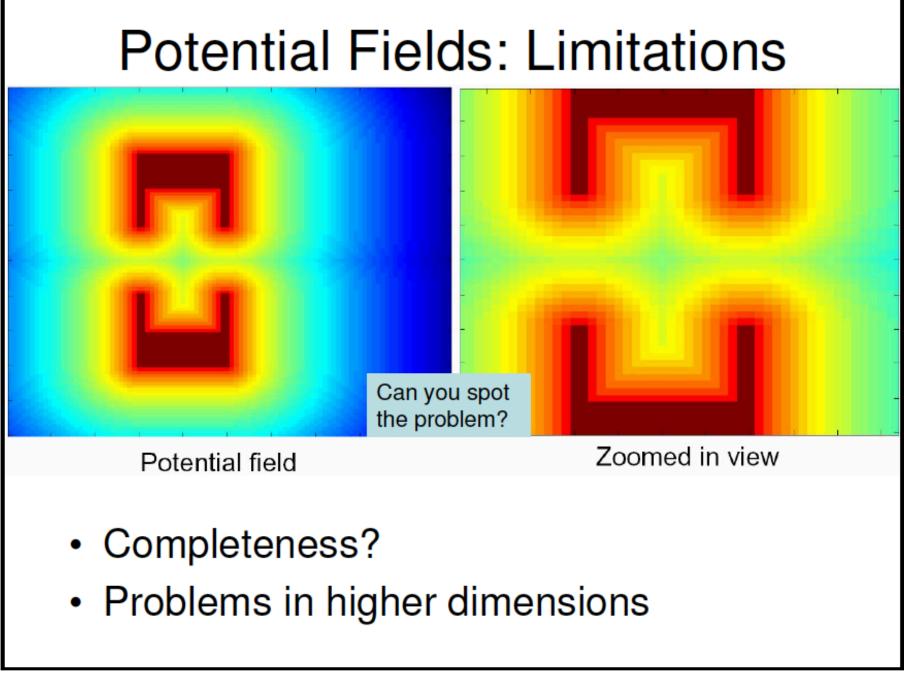


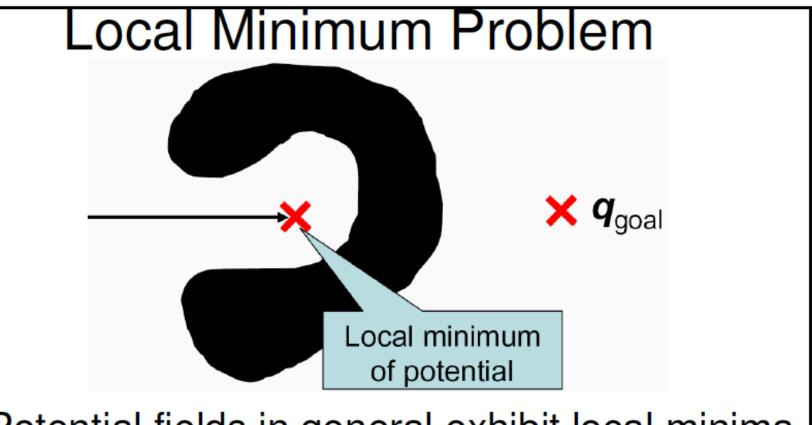
 Move closer to the goal: Imagine that the goal location is a particle that generates an *attractive* field



Choset slides







- Potential fields in general exhibit local minima
- Special case: Navigation function

$$-U(\boldsymbol{q}_{\text{goal}})=0$$

- For any \boldsymbol{q} different from \boldsymbol{q}_{goal} , there exists a neighbor \boldsymbol{q} such that $U(\boldsymbol{q}) < U(\boldsymbol{q})$

Getting out of Local Minima I

- Repeat
 - $-If U(\mathbf{q}) = 0$ return Success
 - -If too many iterations return Failure
 - -Else:
 - Find neighbor \boldsymbol{q}_n of \boldsymbol{q} with smallest $U(\boldsymbol{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$ OR \boldsymbol{q}_n has not yet been visited

-Move to $\boldsymbol{q}_n (\boldsymbol{q} \leftarrow \boldsymbol{q}_n)$

-Remember **q**n~

May take a long time to explore region "around" local minima

Getting out of Local Minima I

- Repeat
 - -If U(q) = 0 return Success
 - -If too many iterations return Failure
 - -Else:
 - Find neighbor \boldsymbol{q}_n of \boldsymbol{q} with smallest $U(\boldsymbol{q}_n)$
 - If $U(\boldsymbol{q}_n) < U(\boldsymbol{q})$ OR \boldsymbol{q}_n has not yet been visited May take a long
 - -Move to \boldsymbol{q}_{n} ($\boldsymbol{q} \leftarrow \boldsymbol{q}_{n}$)
 - –Remember **q**n

• Think of this the following way:

time to explore

region "around"

local minima

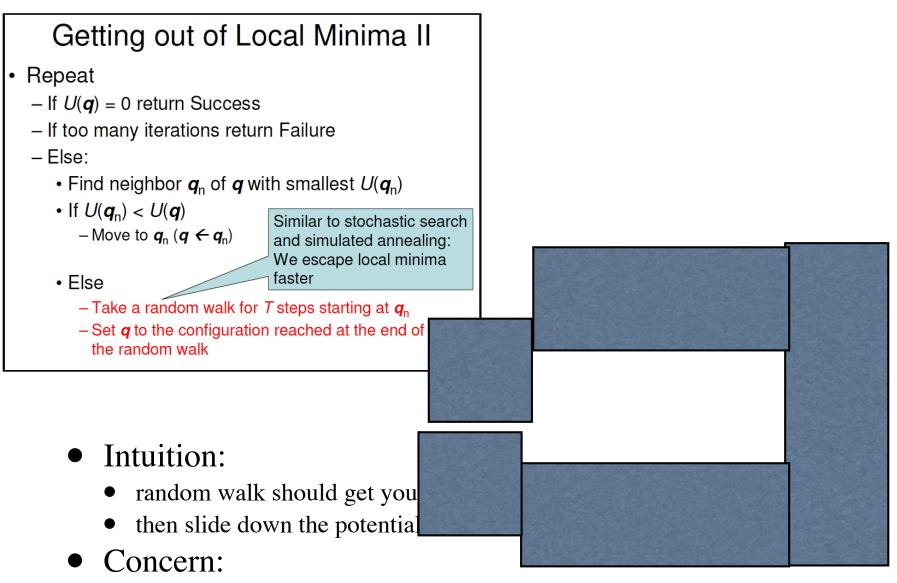
- impose a grid
- do depth first search on the potential
- Idea:
 - other kinds of search
 - randomization should help a lot
- Concern:
 - what if q has lots of neighbors?

Getting out of Local Minima II

- Repeat
 - If $U(\mathbf{q}) = 0$ return Success
 - If too many iterations return Failure
 - Else:
 - Find neighbor \boldsymbol{q}_n of \boldsymbol{q} with smallest $U(\boldsymbol{q}_n)$
 - If U(q_n) < U(q)
 Move to q_n (q ← q_n)

Similar to stochastic search and simulated annealing: We escape local minima faster

- Else
 - Take a random walk for T steps starting at \boldsymbol{q}_n
 - Set *q* to the configuration reached at the end of the random walk



- what if dimension is high?
 - random walk may not get out of local minima efficiently