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Object detection [73]
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Semantic segmentation [05]
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Rain has multiple interesting effects

Blur from wet air Puddles

Color shifts Streaks

These are often quite strongly coupled to scene geometry



Rain - multiple extrinsic phenomena,
including smoothing, raindrops, loss of saturation,
glossy/wet surfaces, etc. etc.



Rain - phenomena

Refraction causes each drop to contain a tiny image

(a) An image of a drop hanging from a pipette (b) Perspective views created from (a)
Figure 7. Looking at the world through a raindrop. (a) An image of a drop hanging from a pipette and a magnified version. (b) Near-perspective

views computed using the geometric mapping due to refraction. Note that, in the perspective views, straight lines in the scene are mapped to straight
lines in the image.
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Backscatter

® Refraction in drops causes backscatter of headlight light
® makes driving in rain at night harder

® Neat trick

® (Tamburo et al 14)
® Do not illuminate raindrops by
® having headlights that are highly steerable (multiple micro mirrors)
® very fast exposure with usual illumination identifies raindrops
® too fast for driver to resolve
® now direct light between drops
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Fig.7. A: Our headlight has unprecedented resolution over space and time so that
beams of light may be sent in between the falling snow. Illustration adapted from [11].
B: Artificial snowflakes brightly illuminated by standard headlight. C: Our system
avoids illuminating snowflakes making them much less visible.
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Rain - phenomena

Drops move fast, and so create motion blur (streaks)
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Figure 9. (I) Raindrops and motion-blur. An image of a scene taken in rain with (a) a short exposure time of 1 ms and (b) with typical exposure
time of a camera (30 ms). (II) The intensities produced by motion-blurred raindrops. II (a) The average irradiance at the pixel due to the raindrop
is E, and that due to the background scene is Ej. Note that E, > Ej. The drop projects onto a pixel for time T < 1.18 ms, which is far less than
the typical exposure time T of a camera. (b) Intensities of a pixel in three frames. A drop stays over the pixel in only a single frame and produces a
positive intensity fluctuation of unit frame width.
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Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects
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Figure 13. Dynamic weather and visibility: (I)(a) Frame from a video of a scene where rain is visible. The intensity variation due to rain is high.
(b) Frame from a video of the same scene taken with camera parameters to reduce the visibility due to rain. The intensity at the same pixel shows low
variance over time. (II) The change in intensity produced by a falling raindrop as a function of the drop’s distance z from the camera. The change in
intensity A/ does not depend on z for drops that are close to the camera (z < z,,). While for raindrops far from the camera (z > z,,), Al decreases as
1/z and for distances greater than R z,,, A[ is too small to be detected by the camera. Therefore, the visual effects of rain are only due to raindrops

that lie close to the camera (z < Rz,,) which we refer to as the rain visible region.
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Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects
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Figure 1: (a) An example real photo that demonstrates the
scene visibility variation with depth, and the presence of
rain streaks and fog; and (b) a plot of rain streak intensity
(t,-) against scene depth (d) based on the model in [13].
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Strategies

Train on rainy data

® tough to get more labels in sufficient quantity
e BUT
® you could drive the same road many times, as above
® and fix labels

Simulate rain and fine-tune methods
® Jabels remain the same

Derain images



Simulating rain
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Depth estimation [

Clear weather Rain (200 mm/hr)

Fig. 1 Vision tasks in clear and rain-augmented images. Our syn-
thetic rain rendering framework allows for the evaluation of computer
vision algorithms in challenging bad weather scenarios. We render
physically-based, realistic rain on images from the KITTI [23] (rows
1-2) and Cityscapes [ | 3] (rows 3-4) datasets with object detection from
mx-RCNN [ 73] (row 2), semantic segmentation from ESPNet [65] (row
4). We also present a combined data-driven and physic-based rain ren-
dering approach which we apply to the nuScenes [V] (rows 5-6) dataset
with depth estimation from Monodepth2 [25] (row 6). All algorithms
are quite significantly affected by rainy conditions.

Semantic segmentation [05]
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Simulating rain - 1ssues

® Near field:;

® drops are bright, discrete, likely ballistic motion
® how bright?
® where?
® how moving?
® Jikely airis “wet”
® 50 some fogging, depending on depth

e Far field:
® fog like effects

® So we need to know
® depth, environment map, falling drops, camera movement



Simulating rain
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Fig. 2 Physics-Based Rendering for rain augmentation. We use par-
ticles simulation together with depth and illumination estimation to

render arbitrarily controlled rainfall on clear images.
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Simulating rain
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Minor errors in environment map have
no real effect on rain appearance
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® Trick:

Simulating rain

® rain causes color effects, specular effects etc.
® (CycleGAN is good at this, but bad at streaks
® Physics based simulation is bad at this but good at streaks
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Fig. 5 GAN+PBR rain-augmentation architecture. In this hybrid
approach, clear images are first translated into rain with CycleGAN [* ]
and subsequently augmented with rain streaks with our PBR pipeline

(see fig. 2).
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GAN+PBR
100mm/hr

GAN+PBR

- Other physic-based rain rendering
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Improvements on simulated data



Original Rain augmented (PBR)
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Fig. 11 Object detection on PBR rain augmentation of KITTIL From left to right, the original image (clear) and three PBR augmentations with
varying rainfall rates. Images are cropped for visualization.
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Original Rain augmented (GAN+PBR)
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Fig. 15 Object detection on our GAN+PBR augmented nuScenes. From left to right, the original image (clear), the GAN augmented image and
three GAN+PBR images.
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Improvements

Object det. [5Y]

Semantic seg. [5]

Depth est. [ 5]

mAP (%) + AP (%) + Sq.em (%) |
Clear Rain Clear Rain Clear Rain
Untuned 3253 16.30 40.8 18.7 2.96 3.53
Finetuned (PBR) 33.51 19.68 39.0 25.6 3.15 3.54
Finetuned (GAN) 3226 18.07 * * 2.89 3.40
Finetuned (GAN+PBR) 30.59 19.73 * * 3.01 3.29
De-rained DualResNet 32.60 18.30 * * 2.25 3.09

* Not evaluated due to lack of semantic labels for GAN training.

Table 2 Improving performance of computer vision tasks on real
nuScenes [Y] images. These tasks are object detection (YOLOv2 [5Y]),
semantic segmentation (PSPNet [%]), and depth estimation (Mon-
odepth2 [25]). The last line shows performance with the untuned models

after the de-raining [50] process.
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Deraining - strategies

® Essentially

® obtain images with/without rain (with rain by synthetic)
® train network to reproduce without rain image from with rain

® starts with Eigen et al 13

From Eigen et al. 13

Figure 1. A photograph taken through a glass pane covered in rain,
along with the output of our neural network model, trained to re-
move this type of corruption. The irregular size and appearance of
the rain makes it difficult to remove with existing methods. This
figure is best viewed in electronic form.



Rainy windows
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From Eigen et al. 13



Rain streaks

Figure 7: Visual comparison of different rain streak removal methods on real example images.
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Streaks

Figure 6: Real rain streaks removal experiments under different scenarios. From left to right are input image, results of

DSC[26], LP [24], CNN [10], DID-MDN[31] and ours. Demarcated areas in each image are amplified at a 3 time large:
scale.
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Both rain streaks and haze

’

rar

Figure 7. Examples of JORDER-R-DEVEIL on heavy rain (left two images) and mist images (right two images).

Yang et al 17



