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C H A P T E R 2

Cameras, Light and Shading

2.1 CAMERAS

2.1.1 The Pinhole Camera

A pinhole camera is a light-tight box with a very small hole in the front (Figure 2.1).
Think about a point on the back of the box. The only light that arrives at that
point must come through the hole, because the box is light-tight. If the hole is very
small, then the light that arrives at the point comes from only one direction. This
means that an inverted image of a scene appears at the back of the box (Figure 2.1).
An appropriate sensor (CMOS sensor; CCD sensor; light sensitive film) at the back
of the box will capture this image.

Pinhole

X

Y

Z

(X, Y, Z)

z=f

(fX/Z, fY/Z, f)

camera center

focal point

image plane

FIGURE 2.1: The pinhole imaging model. On the left, a light-tight box with a pinhole
in it views an object. The only light that a point on the back of the box sees comes
through the very small pinhole, so that an inverted image is formed on the back face
of the box. On the right, the usual geometric abstraction. The box doesn’t affect
the geometry, and is omitted. The pinhole has been moved to the back of the box, so
that the image is no longer inverted. The image is formed on the plane z = f , by
convention. Notice the coordinate system is left-handed, because the camera looks
down the z-axis. This is because most people’s intuition is that z increases as one
moves into the image. The text provides some more detail on this point.

Pinhole camera models produce an upside-down image. This is easily dealt
with in practice (turn the image the right way up). An easy way to account for this
is to assume the sensor is in front of the hole, so that the image is not upside-down.
One could not build a camera like this (the sensor blocks light from the hole) but it
is a convenient abstraction. There is a standard model of this camera, in a standard
coordinate system. The coordinate system is left-handed even though coordinate
systems in 3D are usually right-handed coordinate systems. This is because most

14
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people’s intuition is that z increases as one moves into the image. The pinhole –
usually called the focal point – is at the origin, and the sensor is on the plane z = f .
This plane is the image plane, and f is the focal length. We ignore any camera
body and regard the image plane as infinite.

Under this highly abstracted camera model, almost any point in 3D will map
to a point in the image plane. We image a point in 3D by constructing a ray through
the 3D point and the focal point, and intersecting that ray with the image plane.
The focal point has an important, distinctive, property: It cannot be imaged, and
it is the only point that cannot be imaged.

Similar triangles yields that the point (X,Y, Z) in 3D is imaged to

(fX/Z, fY/Z, f)

on the sensor (Figure 2.1). Notice that the z-coordinate is the same for each point
on the image plane, so it is quite usual to ignore it and use the model

(X,Y, Z) → (fX/Z, fY/Z).

The focal length just scales the image. In standard camera models, other scaling
effects occur as well, and we write projection as if f = 1, yielding

(X,Y, Z) → (X/Z, Y/Z).

The projection process is known as perspective projection. The point where
the z-axis intersects the image plane (equivalently, where the ray through the focal
point perpendicular to the image plane intersects the image plane) is the camera
center. Remarkably, in almost every publication in computer vision the camera
is expressed in left-handed coordinates and everything else works in right-handed
coordinates. The exercises demonstrate that there is no real difficulty here.

Remember this: Most practical cameras can be modelled as a pinhole
camera. The standard model of the pinhole camera maps

(X,Y, Z) → (X/Z, Y/Z).

Figure 2.1 shows important terminology (focal point; image plane; camera
center).

2.1.2 Perspective Effects

Perspective projection has a number of important properties, summarized as:

� lines project to lines;

� more distant objects are smaller;

� lines that are parallel in 3D meet in the image;
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X

Y

Z

z=-f

X

Y

Z

z=-f

FIGURE 2.2: Perspective projection maps almost any 3D line to a line in the image
plane (left). Some rays from the focal point to points on the line are shown as
dotted lines. The family of all such rays is a plane, and that plane must intersect
the image plane in a line as long as the 3D line does not pass through the focal
point. On the right, two 3D objects viewed in perspective projection; the more
distant object appears smaller in the image.

� planes have horizons;

� planes image as half-planes.

Lines project to lines: Almost every line in 3D maps to a line in the image.
You can see this by noticing that the image of the 3D line is formed by intersecting
rays from the focal point to each point on the 3D line with the image plane. But
these rays form a plane, so we are intersecting a plane with the image plane, and so
obtain a line (Figure 2.2). The exceptions are the 3D lines through the focal point
– these project to points.

More distant objects are smaller: The further away an object is in 3D,
the smaller the image of that object, because of the division by Z (Figure 2.2).

Lines that are parallel in 3D meet in the image: Now think about a
set of infinitely long parallel railroad tracks. The sleepers supporting the tracks are
all the same size. Distant sleepers are smaller than nearby sleepers, and arbitrarily
distant sleepers are arbitrarily small. This means that parallel lines will meet in the
image. The point at which the lines in a collection of parallel lines meet is known
as the vanishing point for those lines (Figure 2.3). The vanishing point for a set
of parallel lines can be obtained by intersecting the ray from the focal point and
parallel to those lines with the image plane (Figure 2.3).

Planes have horizons: Now think about the image of a plane. As Figure 2.5
shows, the plane through the focal point and parallel to that plane produce a line
in the image, known as the horizon of the plane.

Planes image as half-planes: For an abstract perspective camera, any
point on the plane can be imaged to a point on the image plane. In practical
cameras, we cannot image points that lie behind the camera in 3D. Now cast a ray
through the focal point and some point x in the image plane. If x is on one side of
the horizon, the ray will hit the plane in the z > 0 half space and so we can see the
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X
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Z

vanishing point

vanishing point

FIGURE 2.3: Perspective projection maps a set of parallel lines to a set of lines that
meet in a point. On the left, a set of lines parallel to the z-axis, with “railway
sleepers” shown. As these sleepers get further away, they get smaller in the image,
meaning the projected lines must meet. The vanishing point (the point where they
meet) is obtained by intersecting the ray parallel to the lines and through the focal
point with the image plane. On the right, a different pair of parallel lines with a
different vanishing point. The figure establishes that, if there are more than two
lines in the set of parallel lines, all will meet at the vanishing point.

X

Y

Z

X

Y

Z

horizon horizon

x

FIGURE 2.4: Left shows a plane in 3D (in this case, y = −1). The intersection of
the plane through the focal point parallel to the 3D plane (in this case, y = 0) and
the image plane, forms an image line called the horizon. This line cuts the image
plane into two parts. Construct the ray through the focal point and a point x in the
image plane. For x on one side of the horizon, this ray will intersect the 3D plane
in the half space z > 0 (and so in front of the camera, shown here). If x is on
the other side of the horizon, the intersection will be in the half space z < 0 (and
so behind the camera, where it cannot be seen). Right shows a different 3D plane
with a different horizon. The gradients on the planes indicate roughly where points
on the 3D plane appear in the image plane (light points map to light, dark to dark).

plane. If it is on the other side, it will hit the plane in the z < 0 half space, so we
cannot see the plane.
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Remember this: Under perspective projection:

� points project to points;

� lines project to lines;

� more distant objects are smaller;

� lines that are parallel in 3D meet in the image;

� planes have horizons;

� planes image as half-planes.

2.1.3 Scaled Orthographic Projection and Orthographic Projection

Under some circumstances, perspective projection can be simplified. Assume the
camera views a set of points which are close to one another compared with the
distance to the camera. Write Xi = (Xi, Yi, Zi) for the i’th point, and assume that
Zi = Z(1+ϵi), where ϵi is quite small. In this case, the distance to the set of points
is much larger than the relief of the points, which is the distance from nearest to
furthest point. The i’th point projects to (fXi/Zi, fYi/Zi), which is approximately
(f(Xi/Z)(1 − ϵi), f(Yi/Z)(1 − ϵi)). Ignoring ϵi because it is small, we have the
projection model

(X,Y, Z) → (f/Z)(X,Y ) = s(X,Y ).

This model is usually known as scaled orthograpic projection. The model applies
quite often. One important example is pictures of people. Very often, all body
parts are roughly the same distance from the camera — think of a side view of a
pedestrian seen from a motor car. Scaled orthographic projection applies in such
cases. It is not always an appropriate model. For example, when a person is
holding up a hand to block the camera’s view, perspective effects can be significant
(Figure ??).

Occasionally, it is useful to rescale the camera (or assume that f/Z = 1),
yielding (X,Y, Z) → (X,Y ). This is known as orthographic projection.

Remember this: Scaled orthographic projection maps

(X,Y, Z) → s(X,Y )

where s is some scale. The model applies when the distance to the points
being viewed is much greater than their relief. Many views of people have
this property.



Section 2.1 Cameras 19

FIGURE 2.5: The pedestrian on the left is viewed from some way away, so the dis-
tance to the pedestrian is much larger than the change in depth over the pedestrian.
In this case, which is quite common for views of people, scaled orthography will ap-
ply. The celebrity on the right is holding a hand up to prevent the camera viewing
their face; the hand is quite close to the camera, and the body is an armslength
away. In this case, perspective effects are strong. The hand looks big because it is
close, and the head looks small because it is far.

2.1.4 Lenses

One practical version of a pinhole camera is a camera obscura – the box is built as
a room, and you can stand in the room and see the view on the back wall (some ex-
amples are at https://www.atlasobscura.com/lists/camera-obscura-places;
the internet yields amusing disputes about the correct plural form of the term).
You can also build a simple pinhole camera with a matchbox, some tape, a pin, and
some light sensitive film do the trick. Getting good images takes trouble, however.

A large hole in front of the camera will cause the image at the back to be
brighter, but blurrier, because each point on the sensor will average light over all
directions that happen to go through the hole. If the hole is smaller, the image will
get sharper, but darker. In practical cameras, achieving an image that is both bright
and focused is the job of the lens system. There may be one or several lenses that
light passes through before reaching the sensor at the back of the camera. Each of
these lenses is built from refracting materials. The shape and position of the lenses,
together with the refractive index of the materials they are built of, determine the
path that light follows through the lens system. Generally, the lens system is
designed to collect as much light as possible at the input and produce a focused
image on the image plane. Remarkably, the many or most lens systems result
in an imaging geometry that can be modelled with a pinhole camera model, and
lens system effects are ignored in all but quite specialized applications of computer
vision.

Lens systems are designed and modelled using geometric optics, but lens de-
signs always involve compromises. The result is that cameras with lenses differ
from pinhole cameras in some ways that are worth knowing about, although they
are not always important. First, in an abstract pinhole camera, all objects at what-
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ever distance are in focus. Geometric optics means that a lens with this property
admits very little light, so it is common to work with cameras that have a limited
depth of field – the range of distances to the camera over which objects are in fo-
cus on the image plane. Second, manufacturing difficulties and cost considerations
mean that lenses will have various aberrations. The net effect of most aberrations
is a tendency to defocus some objects under some circumstances, but chromatic
aberrations can cause colors to be less crisp and objects to have “halos” of color.
Chromatic aberration occurs because light of different wavelengths takes slightly
different paths through a refracting object. Various lens coatings can correct chro-
matic aberration, but the resulting lens system will be more expensive. Third, in
most lens systems, the periphery of the image tends to be brighter than it would
be in a pure pinhole camera. For more complex lens systems, an effect in the lens
known as vignetting can darken the periphery somewhat. Finally, lenses may cause
geometric distortions of the image. The most noticeable effect of these distortions
is that straight lines in the world may project to curves in the image. Most com-
mon is barrel distortion, where a square is imaged as a bulging barrel; pincushion
distortion, where the square bulges in rather than out, can occur (Figure ??).

Neutral grid Barrel distortion Pincushion distortion

FIGURE 2.6: On the left a neutral grid observed in a non-distorting lens (and viewed
frontally to prevent any perspective distortion). Center shows the same grid, viewed
in a lens that produces barrel distortion. Right, the same grid, now viewed in a
lens that produces pincushion distortion.

2.2 LIGHT AND SURFACES

Three major phenomena determine the brightness of a pixel: the response of the
camera to light, the fraction of light reflected from the surface to the camera, and
the amount of light falling on the surface. Each can be dealt with quite straight-
forwardly.

Camera response: Modern camera sensors respond linearly to light. This
linear response is adjusted in software, because humans find linear images confusing
(such images tend to be too dark in most places, and too light in others). The cam-
era response function or CRF determines what value is reported at each location.
Typical CRF’s are close to linear in mid-ranges, but have pronounced nonlinearities
for darker and brighter illumination. This allows the camera to reproduce the very
wide dynamic range of natural light without saturating.

Write X for a point in space that projects to x in the image, Ipatch(X) for



Section 2.2 Light and Surfaces 21

the intensity of the surface patch at X, C(·) for the camera response function, and
Icamera(x) for the camera response at x. Then our model is:

Icamera(x) = C(Ipatch(x)).

It is quite usual to assume that the camera response is linearly related to the
intensity of the surface patch. In this case, C(Ipatch(x)) = kIpatch(x), and it is
common to assume that k is known if needed. A CRF can be recovered from
enough image data, if required (Section 4.1.1).

Surface reflection: Different points on a surface may reflect more or less
of the light that is arriving. Darker surfaces reflect less light, and lighter surfaces
reflect more. There is a rich set of possible physical effects, but most can be ignored.
Section 2.2.1 describes the relatively simple model that is sufficient for almost all
purposes in computer vision.

Illumination: The amount of light a patch receives depends on the overall
intensity of the light, and on the geometry. The overall intensity could change
because some luminaires (the formal term for light sources) might be shadowed, or
might have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 2.2.2 describes the most important model used in computer
vision; Section 2.2.4 describes a much more complex model that is necessary to
explain some important practical difficulties in shading inference.

2.2.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with
this test: most cloth has this property, as do most paints, rough wooden surfaces,
most vegetation, and rough stone or concrete. The only parameter required to
describe a surface of this type is its albedo, the fraction of the light arriving at the
surface that is reflected. This does not depend on the direction in which the light
arrives or the direction in which the light leaves. Surfaces with very high or very
low albedo are difficult to make. For practical surfaces, albedo lies in the range
0.05 – 0.90 (see ?, who argue the dynamic range is closer to 10 than the 18 implied
by these numbers). Mirrors are not diffuse, because what you see depends on the
direction in which you look at the mirror. The behavior of a perfect mirror is known
as specular reflection. For an ideal mirror, light arriving along a particular direction
can leave only along the specular direction, obtained by reflecting the direction of
incoming radiation about the surface normal (Figure 2.7). Usually some fraction
of incoming radiation is absorbed; on an ideal specular surface, this fraction does
not depend on the incident direction.

If a surface behaves like an ideal specular reflector, you could use it as a
mirror, and based on this test, relatively few surfaces actually behave like ideal
specular reflectors. Imagine a near perfect mirror made of polished metal; if this
surface suffers slight damage at a small scale, then around each point there will be
a set of small facets, pointing in a range of directions. In turn, this means that
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FIGURE 2.7: The two most important reflection modes for computer vision are dif-
fuse reflection (left), where incident light is spread evenly over the whole hemi-
sphere of outgoing directions, and specular reflection (right), where reflected light
is concentrated in a single direction. The specular direction S is coplanar with the
normal and the source direction (L), and has the same angle to the normal that
the source direction does. Most surfaces display both diffuse and specular reflection
components. In most cases, the specular component is not precisely mirror like, but
is concentrated around a range of directions close to the specular direction (lower
right). This causes specularities, where one sees a mirror like reflection of the light
source. Specularities, when they occur, tend to be small and bright. In the photo-
graph, they appear on the metal spoon and on the plate. Large specularities can
appear on flat metal surfaces (arrows). Most curved surfaces (such as the plate)
show smaller specularities. Most of the reflection here is diffuse; some cases are
indicated by arrows. Martin Brigdale cO Dorling Kindersley, used with permission.

light arriving in one direction will leave in several different directions because it
strikes several facets, and so the specular reflections will be blurred. As the surface
becomes less flat, these distortions will become more pronounced; eventually, the
only specular reflection that is bright enough to see will come from the light source.
This mechanism means that, in most shiny paint, plastic, wet, or brushed metal
surfaces, one sees a bright blob—often called a specularity—along the specular
direction from light sources, but few other specular effects. Specularities are easy to
identify, because they are small and very bright (Figure 2.7; ?). Most surfaces reflect
only some of the incoming light in a specular component, and we can represent the
percentage of light that is specularly reflected with a specular albedo. Although
the diffuse albedo is an important material property that we will try to estimate
from images, the specular albedo is largely seen as a nuisance and usually is not
estimated.
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For almost all purposes, it is enough to model all surfaces as being diffuse
with specularities. This is the lambertian+specular model. Specularities are rela-
tively seldom used in inference, and so there is no need for a formal model of their
structure. Because specularities are small and bright, they are relatively easy to
identify and remove with straightforward methods (find small bright spots, and
replace them by smoothing the local pixel values). More sophisticated specularity
finders use color information []. Thus, to apply the lambertian+specular model, we
find and remove specularities, and then use Lambert’s law (Section 2.2.2) to model
image intensity.

2.2.2 Sources and Their Effects

The main source of illumination outdoors is the sun, whose rays all travel parallel to
one another in a known direction because it is so far away. We model this behavior
with a distant point light source. This is the most important model of lighting
(because it is like the sun and because it is easy to use), and can be quite effective
for indoor scenes as well as outdoor scenes. Because the rays are parallel to one
another, a surface that faces the source cuts more rays (and so collects more light)
than one oriented along the direction in which the rays travel. The amount of light
collected by a surface patch in this model is proportional to the cosine of the angle
θ between the illumination direction and the normal (Figure 2.8). The figure yields
Lambert’s cosine law, which states the brightness of a diffuse patch illuminated by
a distant point light source is given by

I = ρI0 cos θ,

where I0 is the intensity of the light source, θ is the angle between the light source
direction and the surface normal, and ρ is the diffuse albedo. This law predicts that
bright image pixels come from surface patches that face the light directly and dark
pixels come from patches that see the light only tangentially, so that the shading
on a surface provides some shape information. We explore this cue in Section ??.

If the surface cannot see the source, then it is in shadow. Since we assume
that light arrives at our patch only from the distant point light source, our model
suggests that shadows are deep black; in practice, they very seldom are, because
the shadowed surface usually receives light from other sources. Outdoors, the most
important such source is the sky, which is quite bright. Indoors, light reflected from
other surfaces illuminates shadowed patches. This means that, for example, we tend
to see few shadows in rooms with white walls, because any shadowed patch receives
a lot of light from the walls. These effects are sometimes modelled by adding a
constant ambient illumination term to the predicted intensity. The ambient term
ensures that shadows are not too dark, but this is not a particularly good model of
the spatial properties of interreflections. We have sketched the effects to be aware
of in Section 2.2.4.

2.2.3 The Local Shading Model for Distant Luminaires

Surfaces reflect light onto one another (interreflections), meaning that the light
arriving at a surface could have come directly from a luminaire, but it could also
have been reflected from some other surface. Really accurate physical models of how
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FIGURE 2.8: The orientation of a surface patch with respect to the light affects how
much light the patch gathers. We model surface patches as illuminated by a distant
point source, whose rays are shown as light arrowheads. Patch A is tilted away from
the source (θ is close to 900) and collects less energy, because it cuts fewer light rays
per unit surface area. Patch B, facing the source (θ is close to 00), collects more
energy, and so is brighter. Shadows occur when a patch cannot see a source. The
shadows are not dead black, because the surface can see interreflected light from
other surfaces. These effects are shown in the photograph. The darker surfaces are
turned away from the illumination direction. Martin Brigdale cO Dorling Kinders-
ley, used with permission.

light is distributed on scenes are now very well known [?] and are extremely useful
in computer graphics. These models are very hard to use for inference, because
every variable affects every other variable. For example, changes in the orientation
of one surface element affect how much light it reflects onto every other surface
element.

This means we must simplify the model, and so we must be using a model
that isn’t exact, meaning we need to keep track of what that model will do well
and what it will do badly. The usual simplification is a local shading model, where
we assume that shading is caused only by light that comes from the luminaire (i.e.,
that there are no interreflections).

Now assume that the luminaire is an infinitely distant source. For this case,
write N(x) for the unit surface normal at x, S for a vector pointing from x toward
the source with length Io (the source intensity), ρ(x) for the albedo at x, and
V is(S,x) for a function that is 1 when x can see the source and zero otherwise.
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Then, the intensity at x is

I(x) = ρ(x) (N · S)Vis(S, x) + ρ(x)A + M

Image = Diffuse + Ambient + Specular (mirror-like)
intensity term term term

2.2.4 Shading Effects from Area Sources

The local shading model is a good rough and ready model, but it isn’t right. It
predicts dark shadows with sharp boundaries. These are quite common outdoors
where the sun is the most important light source, but are uncommon indoors. To
understand why, we must look at area sources.

An area source is an area that radiates light. Area sources occur quite com-
monly in natural scenes—an overcast sky is a good example—and in synthetic
environments—for example, the fluorescent light boxes found in many industrial
ceilings. Area sources are common in illumination engineering, because they tend
not to cast strong shadows and because the illumination due to the source does not
fall off significantly as a function of the distance to the source. Detailed models
of area sources are complex, but a simple model is useful to understand shadows.
Shadows from area sources are very different from shadows cast by point sources.
One seldom sees dark shadows with crisp boundaries indoors. Instead, one could
see no visible shadows, or shadows that are rather fuzzy diffuse blobs, or sometimes
fuzzy blobs with a dark core (Figure 2.9). These effects occur indoors because rooms
tend to have light walls and diffuse ceiling fixtures, which act as area sources. As
a result, the shadows one sees are area source shadows.

To compute the intensity at a surface patch illuminated by an area source, we
can break the source up into infinitesimal source elements, then sum effects from
each element. If there is an occluder, then some surface patches may see none of
the source elements. Such patches will be dark, and lie in the umbra (a Latin word
meaning “shadow”). Other surface patches may see some, but not all, of the source
elements. Such patches may be quite bright (if they see most of the elements), or
relatively dark (if they see few elements), and lie in the penumbra (a compound of
Latin words meaning “almost shadow”). One way to build intuition is to think of
a tiny observer looking up from the surface patch. At umbral points, this observer
will not see the area source at all whereas at penumbral points, the observer will see
some, but not all, of the area source. An observer moving from outside the shadow,
through the penumbra and into the umbra will see something that looks like an
eclipse of the moon (Figure 2.9). The penumbra can be large, and can change quite
slowly from light to dark. There might even be no umbral points at all, and, if the
occluder is sufficiently far away from the surface, the penumbra could be very large
and almost indistinguishable in brightness from the unshadowed patches. This is
why many objects in rooms appear to cast no shadow at all (Figure 2.10).

2.3 DEPTH MEASUREMENT

The cameras of chapter 36.2 project points in 3D to points on an image plane.
Building such cameras is now very well understood (and they are extremely cheap).
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FIGURE 2.9: Area sources generate complex shadows with smooth boundaries, because
from the point of view of a surface patch, the source disappears slowly behind the
occluder. Left: a photograph, showing characteristic area source shadow effects.
Notice that A is much darker than B; there must be some shadowing effect here,
but there is no clear shadow boundary. Instead, there is a fairly smooth gradient.
The chair leg casts a complex shadow, with two distinct regions. There is a core
of darkness (the umbra—where the source cannot be seen at all) surrounded by a
partial shadow (penumbra— where the source can be seen partially). A good model
of the geometry, illustrated right, is to imagine lying with your back to the surface
looking at the world above. At point 1, you can see all of the source; at point 2,
you can see some of it; and at point 3, you can see none of it. Peter Anderson cO
Dorling Kindersley, used with permission.

A lot is known about how to recover the points in 3D from the projected versions
under various circumstances (some of this appears in chapters 36.2), but doing so
can be inconvenient. It is often very useful to measure the 3D location of points
directly.

2.3.1 Stereoscopic Depth Measurement

Stereo uses two cameras somewhat offset from one another. Figure 36.2 sketches
this idea. The key is that if you know where the cameras are with respect to
one another, and where a 3D point projects to in each of two perspective images,
simple trigonometry will reveal where it is in 3D. Calibrating the relative geometry
of the cameras is now well understood (Chapter 36.2), as is determining which (if
any) point in the first image corresponds to which in the second (Chapter 36.2), and
recovering a good depth model from this information (Chapter 36.2). Stereo rigs can
be very cheap and accurate, and they have the great advantage that measurement
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FIGURE 2.10: The photograph on the left shows a room interior. Notice the lighting
has some directional component (the vertical face indicated by the arrow is dark,
because it does not face the main direction of lighting), but there are few visible
shadows (for example, the chairs do not cast a shadow on the floor). On the right,
a drawing to show why; here there is a small occluder and a large area source. The
occluder is some way away from the shaded surface. Generally, at points on the
shaded surface the incoming hemisphere looks like that at point 1. The occluder
blocks out some small percentage of the area source, but the amount of light lost
is too small to notice (compare figure 2.9). Jake Fitzjones cO Dorling Kindersley,
used with permission.

is passive – one does not have to send signals into the environment.

But there are limits to stereopsis. Measuring large depths with two cameras
that are close together requires highly accurate estimates of point positions in im-
ages. Figure 2.11 shows a simple geometry that illustrates the problem. The point
P projects to x1 in camera 1, and to x2 in camera 2. Notice because of the carefully
chosen camera geometry, the y-coordinates of x1 and x2 are the same; only the x-
coordinates differ. Write x1 for the x-coordinate of x1; X for the x-coordinate of
P , and so on. From the triangles in that figure, we have

d = x2 − x1 = f
(X −B)−X

Z
= −f B

Z

meaning that as P gets further away, the disparity (difference between projected
positions in left and right cameras) gets smaller, and so gets harder to measure.
Resolving small differences in large depths is going to be hard. This means that
either the baseline (distance between camera focal points, B in Figure 36.2) is large
(and so the equipment is bulky) or one can’t reliably measure large depths.

A second important limit is that some points will appear in one camera, but
not in the other (an effect known as Da Vinci stereopsis, illustrated in Figure 2.12),
and so their depth cannot be measured by stereo. The result is quite characteristic
“holes” in depth maps obtained from stereo cameras .
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FIGURE 2.11: When two pinhole cameras view a point, the 3D coordinates of the
point can be reconstructed from the two images of that point. This applies for almost
every configurations of the cameras. It is an elementary exercise in trigonometry
(exercises) to determine P from the positions of the two focal points, the locations
of the point in the two images, and the distance between the focal points. Consid-
erable work can be required to find appropriate matching points, but the procedures
required are now extremely well understood (Chapters 36.2). One can now buy
camera systems that use this approach to report 3D point locations (often known as
RGBD cameras). Here we show a specialized camera geometry, chosen to simplify
notation. The second camera is translated with respect to the first, along a direction
parallel to the image plane. The second camera is a copy of the first camera, so the
image planes are parallel. In this geometry, the point being viewed shifts somewhat
to the left in the right camera.

2.3.2 Camera-Projector Stereo

The key difficulty in stereo is establishing which point in the left image corresponds
to which in the right. This can be tricky even now for some kinds of object.
One could use one camera and one projector. This projector is constructed to have
geometry like that of a camera. Light leaves an analog of the focal point, and travels
along rays through pixel locations. Modulation tricks mean the light through each
different pixel location is uniquely identifiable. The geometry of Figure 2.11 still
applies, but now the ray from f1 to P is a ray of emitted light.

A natural modulation trick is for the projector to display a sequence of (say)
8 patterns. Each pixel in each pattern is either dark or light. If the patterns are
properly chosen, and if the camera observes all of them, you can think of each ray
through the projector focal point as being tagged with eight bits. These eight bits
identify the ray. Many rays will have the same bit pattern. If depth limits are
known for the scene, and if the patterns are appropriately chosen, this ambiguity
is not important.

For any baseline, there will be some practical limit to the largest and smallest
depths that can be measured. This has an interesting consequence. In the geometry
of Figure 2.11, imagine we fire a ray of modulated light from f1 through x1. If it
is observed in camera 2 (it might not be, because the geometry of Figure 2.12 also
still applies), we have a very good idea where it will be observed. The y-coordinate
will not have changed and the disparity is limited by the depth range. This means
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FIGURE 2.12: Right: shows two important triangles in the plane spanned by the
two focal points (f1, f2) and the point being viewed (P). The extent of the shift
leftwards (the disparity, d in the figure) reveals the depth to the point. Comparing
triangle f1, p, R with triangle f2, p, R yields the relationship between depth,
disparity and baseline (the distance between the two focal points.

we can use the same code for rays through two different points in camera 1 as long
as they are sufficiently far apart.

Camera projector stereo uses the same geometry as two camera stereo, so
that large depths are hard to measure without large baselines, and there will still
be holes in depth maps.

2.3.3 Structured light

Structured light uses

2.3.4 Time of flight sensors and Lidar

could fire light out from a location, then wait till it returns. The length of the wait
and the speed of light reveal the depth to the point (Figure 36.2).

PROBLEMS

2.1. Use Figure 36.2, and write B for the distance between fL and fR and vL for
the unit vector between fL and XL.
(a) Show that the point

P = fL + vL

 B

cos θL + cos θR

(
sin θL
sin θR

)


(b) Show that the point

P = fR + vR

 B

cos θR + cos θL

(
sin θR
sin θL

)
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(c) Under what circumstances could these two expressions produce different
results? (hint: fL, fR, XL, XR and P are coplanar, but what happens if
XL and XR are measured with small errors?)
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Image 1 Image 2

Depth Map

FIGURE 2.13: Top shows two pinhole cameras viewing a rectangular depression in
a flat surface. As the images show, camera on the left can see the right wall,
and that on the right can see the left wall. This means that these walls cannot be
reconstructed directly using trigonometry, and so the depth map will have holes in
it. The depth map here is shown with a fairly common convention, where nearer
surfaces are lighter, farther surfaces are darker, and holes are “infinitely far away”.
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Color Phenomena

The light receptors in cameras and in the eye respond more or less strongly to
different wavelengths of light. Most cameras and most eyes have several different
types of receptor, whose sensitivity to different wavelengths varies. Comparing
the response of several types of sensor yields information about the distribution
of energy with wavelength for the incoming light; this is color information. Color
information can be used to remove shadows. The color of an object seen in an
image depends on how the object was lit, but there are algorithms that can correct
for this effect.

3.1 HUMAN COLOR PERCEPTION

The light coming out of sources or reflected from surfaces has more or less energy
at different wavelengths, depending on the processes that produced the light. This
distribution of energy with wavelength is sometimes called a spectral energy density;
Figure 3.1 shows spectral energy densities for sunlight measured under a variety of
different conditions. The visual system responds to light in a range of wavelengths
from approximately 400nm to approximately 700nm. Light containing energy at
just one wavelength looks deeply colored (these colors are known as spectral colors).
The colors seen at different wavelengths have a set of conventional names, which
originate with Isaac Newton (the sequence from 700nm to 400nm goes Red Or-
ange Yellow Green Blue Indigo Violet, or Richard of York got blisters in Venice,
although indigo is now frowned upon as a name because people typically cannot
distinguish indigo from blue or violet). If the intensity is relatively uniform across
the wavelengths, the light will look white.

Different kinds of color receptor in the human eye respond more or less
strongly to light at different wavelengths, producing a signal that is interpreted
as color by the human vision system. The precise interpretation of a particular
light is a complex function of context; illumination, memory, object identity, and
emotion can all play a part. The simplest question is to understand which spectral
energy densities produce the same response from people under simple viewing con-
ditions (Section 3.1.1). This yields a simple, linear theory of color matching that
is accurate and extremely useful for describing colors. We sketch the mechanisms
underlying the transduction of color in Section 3.1.2.

3.1.1 Color Matching

The simplest case of color perception is obtained when only two colors are in view
on a black background. In a typical experiment, a subject sees a colored light—the
test light—in one half of a split field (Figure 3.2). The subject can then adjust
a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture.

32
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FIGURE 3.1: Daylight has different amounts of power at different wavelengths.
These plots show the spectral energy density of daylight measured at different
times of day and under different conditions. The figure plots relative power
against wavelength for wavelengths from 400 nm to 700 nm for a series of
seven different daylight measurements, made by Jussi Parkkinen and Pertti Sil-
fsten, of daylight illuminating a sample of barium sulphate (which gives a high
reflectance white surface). At the foot of the plot, we show the names used
for spectral colors of the relevant wavelengths. Plot from data obtainable at
http://www.it.lut.fi/ip/research/color/database/database.html.

Write T for the test light, an equals sign for a match, the weights—which are
non-negative—as wi, and the primaries Pi. A match can then be written in an
algebraic form as

T = w1P1 + w2P2 + . . . ,

meaning that test light T matches the particular mixture of primaries given by
(w1, w2, . . .). The situation is simplified if subtractive matching is allowed. In
subtractive matching, the viewer can add some amount of some primaries to the
test light instead of to the match. This can be written in algebraic form by allowing
the weights in the expression above to be negative.

Under these conditions, most observers require only three primaries to match
a test light. This phenomenon is known as the principle of trichromacy. However,
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FIGURE 3.2: Human perception of color can be studied by asking observers to mix
colored lights to match a test light shown in a split field. The drawing shows the
outline of such an experiment. The observer sees a test light T and can adjust the
amount of each of three primaries in a mixture displayed next to the test light. The
observer is asked to adjust the amounts so that the mixture looks the same as the
test light. The mixture of primaries can be written as w1P1 + w2P2 + w3P3; if
the mixture matches the test light, then we write T = w1P1 + w2P2 + w3P3. It is
a remarkable fact that for most people three primaries are sufficient to achieve a
match for many colors, and three primaries are sufficient for all colors if we allow
subtractive matching (i.e., some amount of some of the primaries is mixed with the
test light to achieve a match). Some people require fewer primaries. Furthermore,
most people choose the same mixture weights to match a given test light.

there are some caveats. First, subtractive matching must be allowed; second, the
primaries must be independent, meaning that no mixture of two of the primaries
may match a third. There is now clear evidence that trichromacy occurs because
there are three distinct types of color transducer in the eye [?, ?]. Given the same
primaries and test light, most observers select the same mixture of primaries to
match that test light, because most people have the same types of color receptor.

Matching is (to an accurate approximation) linear. This yields Grassman’s
laws. First, if we mix two test lights, then mixing the matches will match the
result. Second, if two test lights can be matched with the same set of weights, then
they will match each other. Finally, matching is linear: a test light with doubled
intensity is matched by doubling the weights.

Given the same test light and set of primaries, most people use the same set of
weights to match the test light. This, trichromacy, and Grassman’s laws are about
as true as any law covering biological systems can be. The exceptions include the
following:

� people with too few kinds of color receptor as a result of genetic ill fortune
(who may be able to match everything with fewer primaries);

� people with neural problems (who may display all sorts of effects, including
a complete absence of the sensation of color);

� some elderly people (whose choice of weights differ from the norm because of
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the development of macular pigment in the eye);

� very bright lights (whose hue and saturation look different from less bright
versions of the same light);

� and very dark conditions (where the mechanism of color transduction is some-
what different than in brighter conditions).

3.1.2 Color Receptors

Human retinas contain two types of cell that are sensitive to light, differentiated
by their shape. The light-sensitive region of a cone has a roughly conical shape,
whereas that in a rod is roughly cylindrical. Cones largely dominate color vision.
Cones are somewhat less sensitive to light than rods are, meaning that in low light,
color vision is poor.

Trichromacy occurs because there are (usually!) three distinct types of cone
in the eye that mediate color perception. Each of these types turns incident light
into neural signals. The principle of univariance states that the activity of these
cones is of one kind (i.e., they respond strongly or weakly, but do not signal the
wavelength of the light falling on them). Univariance is a powerful idea because it
gives us a good and simple model of human reaction to colored light: two lights will
match if they produce the same receptor responses, whatever their spectral energy
densities.

Write pk for the response of the kth type of receptor, σk(λ) for its sensitivity,
E(λ) for the light arriving at the receptor, and Λ for the range of visible wavelengths.
We can obtain the overall response of a receptor by adding up the response to each
separate wavelength in the incoming spectrum so that

pk =

∫
Λ

σk(λ)E(λ)dλ.

Comparing color matching data for normal observers and those lacking one
cone type yields the sensitivities of the three different kinds of cone to different
wavelengths (Figure 3.3). The three types of cone are properly called S cones,
M cones, and L cones (for their peak sensitivity being to short-, medium-, and
long-wavelength light, respectively).

3.2 THE PHYSICS OF COLOR

Light sources can produce different amounts of light at different wavelengths, so
incandescent lights look orange or yellow, and fluorescent lights look bluish. For
most diffuse surfaces, albedo depends on wavelength, so that some wavelengths may
be largely absorbed and others largely reflected. This means that most surfaces will
look colored when lit by a white light. The light reflected from a colored surface
is affected by both the color of the light falling on the surface, and by the surface.
For example, a white surface lit by red light will reflect red light, and a red surface
lit by white light will also reflect red light.
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FIGURE 3.3: There are three types of color receptor in the human eye, usually called
cones. These receptors respond to all photons in the same way, but in different
amounts. The figure shows the log of the relative spectral sensitivities of the three
kinds of color receptor in the human eye, plotted against wavelength. On the wave-
length axis, we have shown the color name usually associated with lights which
contain energy only at that wavelength. The first two receptors—properly named
the long- and medium-wavelength receptors—have peak sensitivities at quite sim-
ilar wavelengths. The third receptor (short-wavelength receptor) has a different
peak sensitivity. The response of a receptor to incoming light can be obtained by
summing the product of the sensitivity and the spectral energy density of the light
over all wavelengths. Notice that each receptor responds to quite a broad range of
wavelengths. This means that human observers must perceive color by comparing
the response of the receptors to one another, and that there must be many spectral
energy densities that cannot be distinguished by humans. Figures plotted from data
disseminated by the Color and Vision Research Laboratories database, compiled by
Andrew Stockman and Lindsey Sharpe, and available at http://www.cvrl.org/.

3.2.1 The Color of Light Sources

A patch of surface outdoors during the day is illuminated both by light that comes
directly from the sun—usually called daylight—and by light from the sun that has
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been scattered by the air (sometimes called skylight or airlight; the presence of
clouds or snow can add other, important, phenomena). The color of daylight varies
with time of day (Figure 3.1) and time of year.
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FIGURE 3.4: There is a variety of illuminant models; the graph shows the relative
spectral power distribution of two standard CIE models, illuminant A—which models
the light from a 100W Tungsten filament light bulb, with color temperature 2800K—
and illuminant D-65—which models daylight. Figure plotted from data available at
http://www.cvrl.org/.

For clear air, the intensity of radiation scattered by a unit volume depends on
the fourth power of the frequency; this means that light of a long wavelength can
travel much farther before being scattered than light of a short wavelength (this is
known as Rayleigh scattering). This means that, when the sun is high in the sky,
blue light is scattered out of the ray from the sun to the earth—meaning that the
sun looks yellow—and can scatter from the sky into the eye—meaning that the sky
looks blue. There are standard models of the spectral energy density of the sky
at different times of day and latitude. Surprising effects occur when there are fine
particles of dust in the sky (the larger particles cause much more complex scattering
effects, usually modeled rather roughly by the Mie scattering model, described in
? or in ?).

Artificial Illumination

Typical artificial light sources are commonly of a small number of types:

� An incandescent light contains a metal filament that is heated to a high tem-
perature. The spectrum roughly follows the black-body law (Section 3.2.1),
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but the melting temperature of the element limits the color temperature of
the light source, so the light has a reddish tinge.

� A fluorescent light works by generating high-speed electrons that strike gas
within the bulb. The gas releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. Typically the coating consists
of three or four phosphors, which fluoresce in quite narrow ranges of wave-
lengths. Most fluorescent bulbs generate light with a bluish tinge, but some
bulbs mimic natural daylight (Figure 3.5).

� In some bulbs, an arc is struck in an atmosphere consisting of gaseous met-
als and inert gases. Light is produced by electrons in metal atoms dropping
from an excited state to a lower energy state. Typical of such lamps is strong
radiation at a small number of wavelengths, which correspond to particular
state transitions. The most common cases are sodium arc lamps and mercury
arc lamps. Sodium arc lamps produce a yellow-orange light extremely effi-
ciently and are quite commonly used for freeway lighting. Mercury arc lamps
produce a blue-white light and are often used for security lighting.

� TODO: LED lights

Figure 3.5 shows a sample of spectra from different light bulbs.

Black Body Radiators
One useful abstraction is the black body, a body that reflects no light. A

heated black body emits electromagnetic radiation. The spectral power distribution
of this radiation depends only on the temperature of the body. If we write T for
the temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, c for the speed of light, and λ for the wavelength, we have

E(λ) ∝ 1

λ5
1

(exp(hc/kλT )− 1)
.

This means that there is one parameter family of light colors corresponding to
black body radiators—the parameter being the temperature—and so we can talk
about the color temperature of a light source. This is the temperature of the black
body that looks most similar. At relatively low temperatures, black bodies are red,
passing through orange to a pale yellow-white to white as the temperature increases
(Figure 3.10 shows this locus). When hc ≫ kλT , we have 1/(exp(hc/kλT )− 1) ≈
exp(−hc/kλT ), so

E(λ;T ) = C
exp(−hc/kλT )

λ5

where C is the constant of proportionality; this model is somewhat easier to use
than the exact model (Section 4.3.1).

3.2.2 The Color of Surfaces

The color of surfaces is a result of a large variety of mechanisms, including differen-
tial absorbtion at different wavelengths, refraction, diffraction, and bulk scattering
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FIGURE 3.5: The relative spectral power distribution of four different lamps
from the Mitsubishi Electric Corporation. Note the bright, narrow bands
that come from the flourescing phosphors in the fluorescent lamp. The fig-
ure was plotted from data made available by the Coloring Info Pages at
http://www.colorpro.com/info/data/lamps.html; the data was measured by
Hiroaki Sugiura.

(for more details, see, for example ?, ?, ?, or ?). We can model surfaces as having
a diffuse and a specular component, each of which has a wavelength-dependent
albedo. The wavelength-dependent diffuse albedo is sometimes referred to as the
spectral reflectance (sometimes abbreviated to reflectance or, less commonly, spec-
tral albedo). Figures 3.6 and 3.7 show examples of spectral reflectances for a number
of different natural objects.

There are two color regimes for specular reflection. If the surface is dielectric
(i.e., does not conduct electricity), specularly reflected light tends to take the color
of the light source. If the surface is a conductor, the specular albedo may depend
quite strongly on wavelength, so that white light may result in colored specularities.

3.3 REPRESENTING COLOR

Describing colors accurately is a matter of great commercial importance. Many
products are closely associated with specific colors—for example, the golden arches,
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FIGURE 3.6: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

the color of various popular computers, and the color of photographic film boxes—
and manufacturers are willing to go to a great deal of trouble to ensure that differ-
ent batches have the same color. This requires a standard system for talking about
color. Simple color names are insufficient because relatively few people know many
color names, and most people are willing to associate a large variety of colors with
a given name. There are many linear and non-linear color spaces (? is a good refer-
ence). Generally, the choice of color space is driven by application. One important
consideration is that, some color representations are more redundant than others.
For example, the R, G and B layers in an RGB image are typically very similar,
but a linear transformation can decorrelate these layers quite well (exercises). Re-
dundancy is obviously a nuisance if one wishes to compress images. It is also a
nuisance if one wishes to synthesize images, because the synthesis process must
produce layers that are very, but not exactly, like each other. Another important
consideration is consistency with perception. In some color spaces a small change
in coordinates can result in a large change in perceived color. This is a problem if
one wishes to control errors in color, for example, when mapping or synthesizing
colors.
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FIGURE 3.7: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

3.3.1 Additive Linear Color Spaces

There is a natural mechanism for representing color: agree on a standard set of
primaries, and then describe any colored light by the three values of weights that
people would use to match the light using those primaries. This approach extends
to give a representation for surface colors as well if we use a standard light for
illuminating the surface (and if the surfaces are equally clean, etc.). Performing a
matching experiment each time we wish to describe a color can be practical (paint
stores will mix paint to match a flake, for example), but a simpler procedure is
available.

A linear color space is defined by a choice of primaries P1, P2, and P3. These
may not be physically realizable. One then obtains a set of color matching functions
from the primaries by experiment. The color matching functions f1(λ), f2(λ), and
f3(λ) have the property that, if a source S(λ) is matched by w1P1 +w2P2 +w3P3,
then

wi =

∫
fi(λ)S(λ)dλ.

There is a form of duality between primaries and color matching functions, so one
can obtain a linear color space by constructing the color matching functions and
then looking for primaries that produce these color matching functions. A variety of
different systems have been standardized by the CIE (the commission international
d’éclairage, which exists to create standards for such things).
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The CIE XYZ color space is one quite popular standard. The color matching
functions were chosen to be everywhere positive, so that the coordinates of any
real light are always positive. It is not possible to obtain CIE X, Y, or Z primaries
because for some wavelengths the value of their pectral energy density is negative.
However, given color matching functions alone, one can specify the XYZ coordinates
of a color and hence describe it.

Linear color spaces allow a number of useful graphical constructions that are
more difficult to draw in three dimensions than in two, so it is common to intersect
the XYZ space with the plane X + Y + Z = 1 (as shown in Figure 3.8) and draw
the resulting figure using coordinates

(x, y) =

(
X

X + Y + Z
,

Y

X + Y + Z

)
.

This space, which is often referred to as the CIE xy color space is shown in Fig-
ure 3.10. CIE xy is widely used in vision and graphics textbooks and in some
applications, but is usually regarded by professional colorimetrists as out of date.

X

Z

Y

X 1 Y 1 Z 5 1

X Y

Z

y 5 Y/(X 1 Y 1 Z)x 5 X/(X 1 Y 1 Z)

FIGURE 3.8: The volume of all visible colors in the CIE XYZ coordinate space is a
cone whose vertex is at the origin. Usually it is easier to suppress the brightness of
a color, which we can do because, to a good approximation, perception of color is
linear, and we do this by intersecting the cone with the plane X +Y +Z = 1 to get
the CIE xy space shown in Figure 3.10.

The RGB color space is a linear color space that formally uses single wave-
length primaries (645.16 nm for R, 526.32 nm for G, and 444.44 nm for B; see
Figure ??). Informally, RGB uses whatever phosphors a monitor has as primaries.
Available colors are usually represented as a unit cube—usually called the RGB
cube—whose edges represent the R, G, and B weights. The cube is drawn in Fig-
ure 3.11.

The opponent color space is a linear color space derived from RGB. There
is evidence that there are three kinds of color system in primates (e.g., see ?; ?).
The oldest responds to intensity (i.e., light-dark comparisons). A more recent, but
still old, color system compares blue with yellow. The most recent color system
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FIGURE 3.9: The figure shows a constant brightness section of the standard 1931
standard CIE xy color space, with color names marked on the diagram. Generally,
colors that lie farther away from the neutral point are more saturated—the difference
between deep red and pale pink—and hue—the difference between green and red—as
one moves around the neutral point.

compares red with green. In some applications, it is useful to use a comparable
representation. This can be obtained from RGB coordinates using I = (R+G+B)/3
for intensity, (B − (R+G)/2)/I for the blue-yellow comparison (sometimes called
B-Y), and (R−G)/I for the red-green comparison (sometimes called R-G). Notice
that B-Y (resp. R-G) is positive for strongly blue (resp. red) colors and negative
for strongly yellow (resp. green) colors, and is intensity independent.

There are two useful constructions that work in linear color spaces, but are
most commonly applied in CIE xy. First, because the color spaces are linear, and
color matching is linear, all colors that can be obtained by mixing two primaries
A and B lie on the line segment joining them plotted on the color space. Second,
all colors that can be obtained by mixing three primaries A, B, and C lie in the
triangle formed by the three primaries plotted on the color space. Typically, we
use this construction to determine the set of colors (or gamut) that a set of monitor
phosphors can display.
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FIGURE 3.10: The figure shows a constant brightness section of the standard 1931
standard CIE xy color space. This space has two coordinate axes. The curved
boundary of the figure is often known as the spectral locus; it represents the colors
experienced when lights of a single wavelength are viewed. The figure shows a locus
of colors due to black-body radiators at different temperatures and a locus of different
sky colors. Near the center of the diagram is the neutral point, the color whose
weights are equal for all three primaries. CIE selected the primaries so that this
light appears achromatic. Generally, colors that lie farther away from the neutral
point are more saturated—the difference between deep red and pale pink—and hue—
the difference between green and red—as one moves around the neutral point.

3.3.2 Subtractive Mixing and Inks

Intuition from one’s finger-painting days suggests that the primary colors should
be red, yellow, and blue, and that yellow and blue mix to make green. The reason
this intuition doesn’t apply to monitors is that paints involve pigments—which mix
subtractively—rather than lights. Pigments can behave in quite complex ways,
but the simplest model is that pigments remove color from incident light, which
is reflected from paper. Thus, red ink is really a dye that absorbs green and blue
light—incident red light passes through this dye and is reflected from the paper.
This is subtractive color mixing.

Color spaces for this kind of mixing can be quite complicated. In the simplest
case, mixing is linear (or reasonably close to linear), and the CMY space applies.
In this space, there are three primaries: cyan (a blue-green color), magenta (a
purplish color), and yellow. These primaries should be thought of as subtracting
a light primary from white light; cyan is W −R (white− red); magenta is W −G
(white − green), and yellow is W − B (white − blue). Now the appearance of
mixtures can be evaluated by reference to the RGB color space. For example, cyan
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and magenta mixed give

(W −R) + (W −G) = R+G+B −R−G = B,

that is, blue. Notice that W +W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow, and black) because mixing color inks
leads to a poor black, it is difficult to ensure good enough registration between
the three color inks to avoid colored haloes around text, and color inks tend to be
more expensive than black inks. One reason that fingerpainting is hard is that the
color resulting from mixing paints can be quite hard to predict. This is because the
outcome depends very strongly on details such as the specific pigment in the paint,
the size of pigment particles, the medium in which the pigment is suspended, the
care put into stirring the mixture, and similar parameters; usually, we do not have
enough detailed information to use a full physical model of these effects. A useful
study of this difficult topic is [?].

3.3.3 Non-linear Color Spaces

The coordinates of a color in a linear space may not necessarily encode properties
that are common in language or are important in applications. Useful color terms
include: hue, the property of a color that varies in passing from red to green;
saturation, the property of a color that varies in passing from red to pink; and
brightness (sometimes called lightness or value, the property that varies in passing
from black to white. Another difficulty with linear color spaces is that the individual
coordinates do not capture human intuitions about the topology of colors; it is a
common intuition that hues form a circle, in the sense that hue changes from red
through orange to yellow, and then green, and from there to cyan, blue, purple,
and then red again. Another way to think of this is to picture local hue relations:
red is next to purple and orange; orange is next to red and yellow; yellow is next
to orange and green; green is next to yellow and cyan; cyan is next to green and
blue; blue is next to cyan and purple; and purple is next to blue and red. Each of
these local relations works, and globally they can be modeled by laying hues out
in a circle. This means that no individual coordinate of a linear color space can
model hue, because that coordinate has a maximum value that is far away from
the minimum value.

Applying a non-linear transformation to the RGB space can produce a color
space that respects these relations. The HSV space (for hue, saturation, and value),
is obtained by looking down the center axis of the RGB cube. Because RGB is a
linear space, brightness—called value in HSV—varies with scale out from the origin.
We can flatten the RGB cube to get a 2D space of constant value and for neatness
deform it to be a hexagon. This gets the structure shown in Figure 3.11, where
hue is given by an angle that changes as one goes round the neutral point and
saturation changes as one moves away from the neutral point.

In some applications, it is important to know whether a color difference would
be noticeable to a human viewer. One can determine just noticeable differences by
modifying a color shown to observers until they can only just tell it has changed
in a comparison with the original color. With an appropriate choice of non-linear
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FIGURE 3.11: On the left, we see the RGB cube; this is the space of all colors that
can be obtained by combining three primaries (R, G, and B—usually defined by the
color response of a monitor) with weights between zero and one. It is common to
view this cube along its neutral axis—the axis from the origin to the point (1, 1,
1)—to see a hexagon. This hexagon codes hue (the property that changes as a color
is changed from green to red) as an angle, which is intuitively satisfying. On the
right, we see a cone obtained from this cross-section, where the distance along a
generator of the cone gives the value (or brightness) of the color, the angle around
the cone gives the hue, and the distance out gives the saturation of the color.

transformation applied to linear color coordinates, one can find a uniform color
space. In such a space, if the distance in coordinate space is below some threshold,
a human observer would not be able to tell the colors apart.

A uniform space can be obtained from CIE XYZ using a projective transfor-
mation to obtain the CIE u′v′ space CIE u’v’ space. The coordinates are:

(u′, v′) =

(
4X

X + 15Y + 3Z
,

9Y

X + 15Y + 3Z

)
.

Generally, the distance between coordinates in u′, v′ space is a fair indicator of the
significance of the difference between two colors. Of course, this omits differences
in brightness.

CIE LAB is now almost universally the most popular uniform color space.
Coordinates of a color in LAB are obtained as a non-linear mapping of the XYZ
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coordinates:

L∗ = 116

(
Y

Yn

) 1
3

− 16

a∗ = 500

[(
X

Xn

) 1
3

−
(
Y

Yn

) 1
3

]

b∗ = 200

[(
Y

Yn

) 1
3

−
(
Z

Zn

) 1
3

]

Here Xn, Yn, and Zn are the X, Y , and Z coordinates of a reference white patch.
The reason to care about the LAB space is that it is substantially uniform. In
some problems, it is important to understand how different two colors will look to
a human observer, and differences in LAB coordinates give a good guide.
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Using Color Models

4.1 SIMPLE INFERENCE FROM SHADING

4.1.1 Radiometric Calibration and High Dynamic Range Images

The intensity of light travelling through a point in space in some direction is rep-
resented with a unit known as radiance. The intensity of light arriving at a point
on a surface averaged over some range of directions is known as irradiance. Sensors
average the irradiance over the area of a pixel to obtain incoming power E. This
power is summed for some time period ∆t to obtain the amount of energy the pixel
receives. In turn, the energy determines the pixel intensity value reported by the
imaging system. A property called reciprocity means that the response is a function
of E∆t alone. In particular, we will get the same outcome if we image one patch
of intensity E for time ∆t and another patch of intensity E/k for time k∆t. The
actual response that the sensor produces is a function of E∆t. Determining this
function from data is known as radiometric calibration.

Radiometric calibration has a number of applications. For example, we might
want to compare renderings of a scene with pictures of the scene, and to do that we
need to work in real radiometric units and so must calibrate the camera radiomet-
rically. We might want to use pictures of a scene to estimate the lighting in that
scene so we can postrender new objects into the scene, which would need to be lit
correctly. Again, we would need to use radiometric units and so need to calibrate
the camera.

Likely the most important application is high dynamic range imaging or HDR
imaging. Many scenes have bright spots that are very much brighter than the dark
spots. The dynamic range is the ratio of brightest to darkest spot. The camera
response function (CRF) is typically somewhat linear over some range, and sharply
non-linear near the top and bottom of this range, so that the camera can capture
very dark and very light patches without saturation. However, it is quite easy to
find scenes where the dynamic range is so big that images in a reasonable camera
loses information. Either the brightest points are saturated or the darkest points
are very close to zero. In either case, color and relative intensity information is lost.
However, if we have multiple images of the scene, obtained with different values of
∆t, then we can recover information that would otherwise be lost. Using a small
∆t will allow very bright locations to be measured accurately (though mid range
locations will be dark, and dark locations will be lost). Using a large ∆t will allow
very dark locations to be measured accurately (though mid range locations will
be bright, and bright locations will be lost). If the CRF is known, then for each
location at each ∆ti we can compute the value of E∆ti and so recover E for each
location exactly.

Now assume we have multiple registered images, each obtained using a dif-

48
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ferent exposure time. At the i, j’th pixel, we know the image intensity value I
(k)
ij

for the k’th exposure time, we know the value of the k’th exposure time ∆tk, and
we know that the intensity of the corresponding surface patch Eij is the same for
each exposure, but we do not know the value of Eij . Write the camera response
function f , so that

I
(k)
ij = f(Eij∆tk).

There are now several possible approaches to solve for f . We could assume a
parametric form—say, polynomial—then solve using least squares. Notice that we
must solve not only for the parameters of f , but also for Eij . For a color camera,
we solve for calibration of each channel separately. ? have studied the polynomial
case in detail. Though the solution is not unique, ambiguous solutions are strongly
different from one another, and most cases are easily ruled out. Furthermore, one
does not need to know exposure times with exact accuracy to estimate a solution,
as long as there are sufficient pixel values; instead, one estimates f from a fixed set
of exposure times, then estimates the exposure times from f , and then re-estimates.
This procedure is stable.

Alternatively, because the camera response is monotonic, we can work with
its inverse g = f−1, take logs, and write

log g(I
(k)
ij ) = logEij + log∆tk.

We can now estimate the values that g takes at each point and the Eij by placing
a smoothness penalty on g. In particular, we minimize∑

i,j,k

(log g(I
(k)
ij )− (logEij + log∆tk))

2 + smoothness penalty on g

by choice of g. ? penalize the second derivative of g. Once we have a radio-
metrically calibrated camera, estimating a high dynamic range image is relatively
straightforward. We have a set of registered images, and at each pixel location,
we seek the estimate of radiance that predicts the registered image values best. In
particular, we assume we know f . We seek an Eij such that∑

k

w(Iij)(I
(k)
ij − f(Eij∆tk))

2

is minimized. Notice the weights because our estimate of f is more reliable when
Iij is in the middle of the available range of values than when it is at larger or
smaller values.

4.1.2 Inferring Lightness and Illumination

If we could estimate the albedo of a surface from an image, then we would know a
property of the surface itself, rather than a property of a picture of the surface. Such
properties are often called intrinsic representations. They are worth estimating,
because they do not change when the imaging circumstances change. It might seem
that albedo is difficult to estimate, because there is an ambiguity linking albedo
and illumination; for example, a high albedo viewed under middling illumination
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FIGURE 4.1: It is possible to calibrate the radiometric response of a camera from
multiple images obtained at different exposures. The top row shows four different
exposures of the same scene, ranging from darker (shorter shutter time) to lighter
(longer shutter time). Note how, in the dark frames, the lighter part of the image
shows detail, and in the light frames, the darker part of the image shows detail; this
is the result of non-linearities in the camera response. On the bottom left, we
show the inferred calibration curves for each of the R, G, and B camera channels.
On the bottom right, a composite image illustrates the results. The dynamic
range of this image is far too large to print; instead, the main image is normalized
to the print range. Overlaid on this image are boxes where the radiances in the box
have also been normalized to the print range; these show how much information is
packed into the high dynamic range image.

will give the same brightness as a low albedo viewed under bright light. However,
humans can report whether a surface is white, gray, or black (the lightness of the
surface), despite changes in the intensity of illumination (the brightness). This skill
is known as lightness constancy. There is a lot of evidence that human lightness
constancy involves two processes: one process compares the brightness of various
image patches and uses this comparison to determine which patches are lighter and
which darker; the second establishes some form of absolute standard to which these
comparisons can be referred (e.g. ?).

It is worth reviewing early algorithms for estimating lightness briefly, because
the underlying principles remain useful. These algorithms were developed in the
context of simple scenes. In particular, we assume that the scene is flat and frontal;
that surfaces are diffuse, or that specularities have been removed; and that the
camera responds linearly. In this case, the camera response C at a point x is the
product of an illumination term, an albedo term, and a constant that comes from
the camera gain:

C(x) = kcI(x)ρ(x).
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If we take logarithms, we get

logC(x) = log kc + log I(x) + log ρ(x).

We now make a second set of assumptions:

� First, we assume that albedoes change only quickly over space. This means
that a typical set of albedoes will look like a collage of papers of different grays.
This assumption is quite easily justified: There are relatively few continuous
changes of albedo in the world (the best example occurs in ripening fruit),
and changes of albedo often occur when one object occludes another (so we
would expect the change to be fast). This means that spatial derivatives of
the term log ρ(x) are either zero (where the albedo is constant) or large (at a
change of albedo).

� Second, illumination changes only slowly over space. This assumption is
somewhat realistic. For example, the illumination due to a point source will
change relatively slowly unless the source is very close, so the sun is a par-
ticularly good source for this method, as long as there are no shadows. As
another example, illumination inside rooms tends to change very slowly be-
cause the white walls of the room act as area sources. This assumption fails
dramatically at shadow boundaries, however. We have to see these as a spe-
cial case and assume that either there are no shadow boundaries or that we
know where they are.

These assumptions are sometimes called Mondrian world assumptions.
The earliest algorithm is the Retinex algorithm of ?; this took several forms,

most of which have fallen into disuse. The key insight of Retinex is that small
gradients are changes in illumination, and large gradients are changes in lightness.
We can use this by differentiating the log transform, throwing away small gradients,
and integrating the results [?]. Doing this, or something like it, is widely known as
Retinex. There is a constant of integration missing, so lightness ratios are available,
but absolute lightness measurements are not. Figure ?? illustrates the process for
a one-dimensional example, where differentiation and integration are easy.

This approach can be extended to two dimensions as well. Differentiating
and thresholding is easy: at each point, we estimate the magnitude of the gradient;
if the magnitude is less than some threshold, we set the gradient vector to zero;
otherwise, we leave it alone. The difficulty is in integrating these gradients to get
the log albedo map. The thresholded gradients may not be the gradients of an
image because the mixed second partials may not be equal (integrability again;
compare with Section 4.1.3).

The problem can be rephrased as a minimization problem: choose the log
albedo map whose gradient is most like the thresholded gradient. This is a relatively
simple problem because computing the gradient of an image is a linear operation.
The x-component of the thresholded gradient is scanned into a vector p, and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as l. Now the process of forming the x derivative is linear, and so there is some
matrix Mx, such that Mxl is the x derivative; for the y derivative, we write the
corresponding matrix My.
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Form the gradient of the log of the image
At each pixel, if the gradient magnitude is below
a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization
problem described in the text

Obtain a constant of integration
Add the constant to the log-albedo, and exponentiate

Algorithm 4.1: Determining the Lightness of Image Patches.

The problem becomes finding the vector l that minimizes

| Mxl− p |2 + | Myl− q |2 .

This is a quadratic minimization problem, and the answer can be found by a linear
process. Some special tricks are required because adding a constant vector to l
cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimization problem in the exercises.

The constant of integration needs to be obtained from some other assumption.
There are two obvious possibilities:

� we can assume that the brightest patch is white;

� we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.
More sophisticated algorithms are now available, but there were no quan-

titative studies of performance until recently. Grosse et al. built a dataset for
evaluating lightness algorithms, and show that a version of the procedure we de-
scribe performs extremely well compared to more sophisticated algorithms [?]. The
major difficulty with all these approaches is caused by shadow boundaries, which
we discuss in Section 4.3.1.

4.1.3 Photometric Stereo: Shape from Multiple Shaded Images

It is possible to reconstruct a patch of surface from a series of pictures of that
surface taken under different illuminants. First, we need a camera model. For
simplicity, we choose an orthographic camera situated so that the point (x, y, z) in
space is imaged to the point (x, y) in the camera (the method can be extended to
the other camera models described in Chapter ??).

In this case, to measure the shape of the surface, we need to obtain the
depth to the surface. This suggests representing the surface as (x, y, f(x, y))—a
representation known as a Monge patch after the French military engineer who first
used it (Figure 4.3). This representation is attractive because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch
because we need to observe the back of the object.
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Image

Shading

Albedo

FIGURE 4.2: Retinex remains a strong algorithm for recovering albedo from images.
Here we show results from the version of Retinex described in the text applied to
an image of a room (left) and an image from a collection of test images due to
?. The center-left column shows results from Retinex for this image, and the
center-right column shows results from a variant of the algorithm that uses color
reasoning to improve the classification of edges into albedo versus shading. Finally,
the right column shows the correct answer, known by clever experimental methods
used when taking the pictures. This problem is very hard; you can see that the
albedo images still contain some illumination signal. Part of this figure courtesy
Kevin Karsch, U. Illinois.

Photometric stereo is a method for recovering a representation of the Monge
patch from image data. The method involves reasoning about the image intensity
values for several different images of a surface in a fixed view illuminated by different
sources. This method recovers the height of the surface at points corresponding to
each pixel; in computer vision circles, the resulting representation is often known
as a height map, depth map, or dense depth map.

Fix the camera and the surface in position, and illuminate the surface using
a point source that is far away compared with the size of the surface. We adopt a
local shading model and assume that there is no ambient illumination (more about
this later) so that the brightness at a point x on the surface is

B(x) = ρ(x)N(x) · S1,

where N is the unit surface normal and S1 is the source vector. We can write
B(x, y) for the radiosity of a point on the surface because there is only one point on
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FIGURE 4.3: A Monge patch is a representation of a piece of surface as a height func-
tion. For the photometric stereo example, we assume that an orthographic camera—
one that maps (x, y, z) in space to (x, y) in the camera—is viewing a Monge patch.
This means that the shape of the surface can be represented as a function of position
in the image.

the surface corresponding to the point (x, y) in the camera. Now we assume that
the response of the camera is linear in the surface radiosity, and so have that the
value of a pixel at (x, y) is

I(x, y) = kB(x)

= kB(x, y)

= kρ(x, y)N(x, y) · S1

= g(x, y) ·V1,

where g(x, y) = ρ(x, y)N(x, y) and V1 = kS1, where k is the constant connecting
the camera response to the input radiance.

In these equations, g(x, y) describes the surface, and V1 is a property of the
illumination and of the camera. We have a dot product between a vector field g(x, y)
and a vector V1, which could be measured; with enough of these dot products, we
could reconstruct g and so the surface.

Now if we have n sources, for each of which Vi is known, we stack each of
these Vi into a known matrix V, where

V =


VT

1

VT
2

. . .
VT

n

 .

For each image point, we stack the measurements into a vector

i(x, y) = {I1(x, y), I2(x, y), . . . , In(x, y)}T .
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FIGURE 4.4: Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading
model and a distant point source. This is a convex object, so the only view where
there is no visible shadow occurs when the source direction is parallel to the viewing
direction. The variations in brightness occuring under different sources code the
shape of the surface.

Notice that we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

i(x, y) = Vg(x, y),

and g is obtained by solving this linear system—or rather, one linear system per
point in the image. Typically, n > 3, so that a least-squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.

Substantial regions of the surface might be in shadow for one or the other
light (see Figure 4.4). We assume that all shadowed regions are known, and deal
only with points that are not in shadow for any illuminant. More sophisticated
strategies can infer shadowing because shadowed points are darker than the local
geometry predicts.

We can extract the albedo from a measurement of g because N is the unit
normal. This means that |g(x, y)|= ρ(x, y). This provides a check on our measure-
ments as well. Because the albedo is in the range zero to one, any pixels where
|g| is greater than one are suspect—either the pixel is not working or V is incor-
rect. Figure 4.5 shows albedo recovered using this method for the images shown in
Figure 4.4.
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FIGURE 4.5: The image on the left shows the magnitude of the vector field g(x, y)
recovered from the input data of Figure 4.4 represented as an image—this is the
reflectance of the surface. The center figure shows the normal field, and the right
figure shows the height field.

We can extract the surface normal from g because the normal is a unit vector

N(x, y) =
g(x, y)

|g(x, y)|
.

Figure 4.5 shows normal values recovered for the images of Figure 4.4.
The surface is (x, y, f(x, y)), so the normal as a function of (x, y) is

N(x, y) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

{
∂f

∂x
,
∂f

∂y
, 1

}T

.

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=
a(x, y)

c(x, y)
and

∂f

∂y
=
b(x, y)

c(x, y)
.

We have another check on our data set, because

∂2f

∂x∂y
=

∂2f

∂y∂x
,

so we expect that

∂
(

a(x,y)
c(x,y)

)
∂y

−
∂
(

b(x,y)
c(x,y)

)
∂x

should be small at each point. In principle it should be zero, but we would have
to estimate these partial derivatives numerically and so should be willing to accept
small values. This test is known as a test of integrability, which in vision applications
always boils down to checking that mixed second partials are equal.
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Obtain many images in a fixed view under different illuminants
Determine the matrix V from source and camera information

Inferring albedo and normal:
For each point in the image array that is not shadowed
Stack image values into a vector i
Solve Vg = i to obtain g for this point
Albedo at this point is |g|
Normal at this point is g

|g|
p at this point is N1

N3

q at this point is N2

N3

end

Check: is ( ∂p∂y − ∂q
∂x )

2 small everywhere?

Integration:
Top left corner of height map is zero
For each pixel in the left column of height map
height value = previous height value + corresponding q value

end
For each row
For each element of the row except for leftmost
height value = previous height value + corresponding p value

end
end

Algorithm 4.2: Photometric Stereo.

Assuming that the partial derivatives pass this sanity test, we can reconstruct
the surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
we can get the surface by summing these changes in height along some path. In
particular, we have

f(x, y) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· dl+ c,

where C is a curve starting at some fixed point and ending at (x, y), and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. The recovered surface does not depend on the choice of curve
(exercises). Another approach to recovering shape is to choose the function f(x, y)
whose partial derivatives most look like the measured partial derivatives. Figure 4.5
shows the reconstruction obtained for the data shown in Figure 4.4.

Current reconstruction work tends to emphasize geometric methods that re-
construct from multiple views. These methods are very important, but often require
feature matching, as we shall see in Chapters ?? and ??. This tends to mean that
it is hard to get very high spatial resolution, because some pixels are consumed
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FIGURE 4.6: Photometric stereo could become the method of choice to capture com-
plex deformable surfaces. On the top, three images of a garment, lit from different
directions, which produce the reconstruction shown on the top right. A natural
way to obtain three different images at the same time is to use a color camera; if
one has a red light, a green light, and a blue light, then a single color image frame
can be treated as three images under three separate lights. On the bottom, an
image of the garment captured in this way, which results in the photometric stereo
reconstruction on the bottom right.

in resolving features. Recall that resolution (which corresponds roughly to the
spatial frequencies that can be reconstructed accurately) is not the same as ac-
curacy (which involves a method providing the right answers for the properties it
estimates). Feature-based methods are capable of spectacularly accurate recon-
structions. Because photometric cues have such spatial high resolution, they are a
topic of considerable current interest. One way to use photometric cues is to try
and match pixels with the same brightness across different cameras; this is diffi-
cult, but produces impressive reconstructions. Another is to use photometric stereo
ideas. For some applications, photometric stereo is particularly atractive because
one can get reconstructions from a single view direction—this is important, because
we cannot always set up multiple cameras. In fact, with a trick, it is possible to
get reconstructions from a single frame. A natural way to obtain three different
images at the same time is to use a color camera; if one has a red light, a green light
and a blue light, then a single color image frame can be treated as three images
under three separate lights, and photometric stereo methods apply. In turn, this
means that photometric stereo methods could be used to recover high-resolution
reconstructions of deforming surfaces in a relatively straightforward way. This is
particularly useful when it is difficult to get many cameras to view the object.
Figure 4.6 shows one application to reconstructing cloth in video (from ?), where
multiple view reconstruction is complicated by the need to synchronize frames (al-
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FIGURE 4.7: Light sources can have quite widely varying colors. This figure shows
the color of the four light sources of Figure 3.5, compared with the color of a uniform
spectral power distribution, plotted in CIE x, y coordinates.

ternatives are explored in, for example, ? or ?).

4.2 A MODEL OF IMAGE COLOR

Assume that an image pixel is the image of some surface patch. Many phenom-
ena affect the color of this pixel. The main effects are: the camera response to
illumination; the choice of camera receptors; the amount of light that arrives at
the surface; the color of light arriving at the surface; the dependence of the diffuse
albedo on wavelength; and specular components. We have already dealt with the
camera response (Section 4.1.1) and we will assume that the camera is linear, or
has been radiometrically calibrated. A quite simple model can be used to separate
the other effects.

Assume that the surfaces that we are dealing with can be described by the
diffuse+specular model. Write x for a point, λ for wavelength, E(x, λ) for the
spectral energy density of the light leaving a surface, ρ(x, λ) for the albedo of a
surface as a function of wavelength and position, Sd(x, λ) for the spectral energy
density of the light source (which may vary with position; for example, the intensity
might change), and Si(x, λ) for the spectral energy density of interreflected light.
Then we have that:

E(x, λ) = [diffuse term] + (specular term)

= [(direct term) + (interreflected term)] + (specular term)

= (ρ(x, λ)(geometric term))[(Sd(x, λ) + Si(x, λ))] + (specular term).

The geometric terms represent how intensity is affected by surface normal. Notice
that the diffuse term is affected both by the color of the surface and by the color
of the light (examples in Figures 4.7 and 4.8).
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FIGURE 4.8: The color of a light source affects the color of surfaces lit by the source.
The different colors obtained by lighting the violet flower of Figure 3.6 (left) and
the orange flower of Figure 3.6 (right) with the four light sources of Figure 3.5.

Because the camera is linear, the pixel value at x is a sum of terms corre-
sponding to each of the terms in E(x⃗, λ). Write d(x) for the color taken by a flat
patch facing the light source at x with the same albedo as the actual patch there,
g(x) for a geometric term (explained below), i(x) for the contribution of the inter-
reflected term, s(x) for the unit intensity color of the specular term, and gs(x) for
a geometric term (explained below). Then we have:

C(x) = [(direct term) + (interreflected term)] + (specular term)

= gd(x)d(x) + i(x) + gs(x)s(x).

Generally, to work with this model, we ignore i(x); we identify and remove spec-
ularities, using the methods of Section ??, and so assume that C(x) = gd(x)d(x).

4.2.1 The Diffuse Term

There are two diffuse components. One, i(x), is due to interreflections. Interreflec-
tions can be a significant source of colored light. If a large colored surface reflects
light onto another surface, that surface’s color can change quite substantially. This
is an effect that people find hard to see, but which is usually fairly easy to spot in
photographs. There are no successful models for removing these color shifts, most
likely because they can be very hard to predict. This is because many different
surface reflectances can have the same color, so that two surfaces with the same
color (but different reflectances) can have quite differently colored interreflections.
The interreflection term is often small, and usually is simply ignored.
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Ignoring the interreflected component, the diffuse term is

gd(x)d(x).

Here d(x) is the image color of an equivalent flat surface facing the light source and
viewed under the same light. The geometric term, gd(x), varies relatively slowly
over space and accounts for the change in brightness due to the orientation of the
surface.

We can model the dependence of d(x) on the light and on the surface by
assuming we are viewing flat, diffuse surfaces, illuminated from infinitely far behind
the camera. In this case, there will be no effects due to specularities or to surface
orientation. The color of light arriving at the camera will be determined by two
factors: first, the wavelength-dependent albedo of the surface that the light is
leaving; and second, the wavelength-dependent intensity of the light falling on that
surface. If a patch of perfectly diffuse surface with diffuse albedo ρ(λ) is illuminated
by a light whose spectrum is S(λ), the spectrum of the reflected light is ρ(λ)S(λ).
Assume the camera has linear photoreceptors, and the k’th type of photoreceptor
has sensitivity σk(λ). If a linear photoreceptor of the kth type sees this surface
patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)S(λ)dλ,

where Λ is the range of all relevant wavelengths.
The main engineering parameter here is the photoreceptor sensitivities σk(λ).

For some applications such as shadow removal (Section 4.3.1), it can be quite helpful
to have photoreceptor sensitivities that are “narrow-band” (i.e., the photoreceptors
respond to only one wavelength). Usually, the only practical methods to change the
photoreceptor sensitivities are to either put colored filters in front of the camera or
to use a different camera. Using a different camera doesn’t work particularly well,
because manufacturers try to have sensitivities that are reasonably compatible with
human receptor sensitivities. They do this so that cameras give about the same
responses to colored lights that people do; as a result, cameras tend to have quite
similar receptor sensitivities. There are three ways to proceed: install narrow-band
filters in front of the lens (difficult to do and seldom justified); apply a transfor-
mation to the receptor outputs that makes them behave more like narrow-band
receptors (often helpful, if the necessary data are available, ?;?); or assume that
they are narrow-band receptors and tolerate any errors that result (generally quite
successful).

4.2.2 The Specular Term

The specular component will have a characteristic color, and its intensity will change
with position. We can model the specular component as

gs(x)s(x),

where s(x) is the unit intensity image color of the specular reflection at that pixel,
and gs(x) is a term that varies from pixel to pixel, and models the amount of energy
specularly reflected. We expect gs(x) to be zero at most points, and large at some
points.
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The color s(x) of the specular component depends on the material. Generally,
metal surfaces have a specular component that is wavelength dependent and so
takes on a characteristic color that depends on the metal (gold is yellow, copper
is orange, platinum is white, and osmium is blue or purple). Surfaces that do not
conduct—dielectric surfaces— have a specular component that is independent of
wavelength (e.g., the specularities on a shiny plastic object are the color of the
light). Section ?? describes how these properties can be used to find specularities,
and to find image regions corresponding to metal or plastic objects.

4.3 INFERENCE FROM COLOR

Our color model supports a variety of inferences. Here we show methods to remove
shadows (Section 4.3.1) and to infer surface color (Section 4.3.2).

4.3.1 Shadow Removal Using Color

Lightness methods make the assumption that “fast” edges in images are due to
changes in albedo (Section 4.1.2). This assumption is usable, but fails badly at
shadows, particularly shadows in sunlight outdoors (Figure 4.10), where there can
be a large and fast change of image brightness. People usually are not fooled into
believing that a shadow is a patch of dark surface, so must have some method to
identify shadow edges. Home users often like editing and improving photographs,
and programs that could remove shadows from images would be valuable. A shadow
removal program would work something like a lightness method: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture
back.

There are some cues for finding shadow edges that seem natural, but don’t
work well. One might assume that shadow edges have very large dynamic range
(which albedo edges can’t have; see Section 2.2.1), but this is not always the case.
One might assume that, at a shadow edge, there was a change in brightness but not
in color. It turns out that this is not the case for outdoor shadows, because the lit
region is illuminated by yellowish sunlight, and the shadowed region is illuminated
by bluish light from the sky, or sometimes by interreflected light from buildings,
and so on. However, a really useful cue can be obtained by modelling the different
light sources.

We assume that light sources are black bodies, so that their spectral energy
density is a function of temperature. We assume that surfaces are diffuse. We
use the simplified black-body model of Section 3.2.1, where, writing T for the
temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, c for the speed of light, and λ for the wavelength, we have

E(λ;T ) = C
exp(−hc/kλT )

λ5

(C is some constant of proportionality). Now assume that the color receptors each
respond only at one wavelength, which we write λk for the k’th receptor, so that
σk(λ) = δ(λ − λk). If we view a surface with spectral albedo ρ(λ) illuminated by
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FIGURE 4.9: Changing the color temperature of the light under which a surface is
viewed moves the (c1, c2) coordinates of that surface along the color temperature
direction (left; the different gray patches represent the same surface under differ-
ent lights). If we now project the coordinates along the (c1, c2) direction onto some
line, we obtain a value that doesn’t change when the illuminant color temperature
changes. This is the invariant value for that pixel. Generally, we do not know
enough about the imaging system to estimate the color temperature direction. How-
ever, we expect to see many different surfaces in each scene; this suggests that the
right choice of color temperature direction on the right is 1 (where there are many
different types of surface) rather than 2 (where the range of invariant values is
small).

one of these sources at temperature T , the response of the j’th receptor will be

rj =

∫
σj(λ)ρ(λ)K

exp(−hc/kλT )
λ5

dλ = Kρ(λj)
exp(−hc/kλjT )

λ5j
.

We can form a color space that is very well behaved by taking c1 = log(r1/r3),
c2 = log(r2/r3), because (

c1
c2

)
=

(
a1
a2

)
+

1

T

(
b1
b2

)
where a1 = log ρ(λ1)− log ρ(λ3) + 5 log λ3 − 5 log λ1 and b1 = (hc/k)(1/λ3 − 1/λ1)
(and a2, b2 follow). Notice that, when one changes the color temperature of the
source, the (c1, c2) coordinates move along a straight line. The direction of the
line depends on the sensor, but not on the surface. Call this direction the color
temperature direction. The intercept of the line depends on the surface.

Now consider a world of colored surfaces, and map the image colors to this
space. There is a family of parallel lines in this space, whose direction is the color
temperature direction. Different surfaces may map to different lines. If we change
the color temperature of the illuminant, then each color in this space will move along
the color temperature direction, but colors will not move from line to line. We now
represent a surface color by its line. For example, we could construct a line through
the origin that is perpendicular to color temperature direction, then represent a
surface color by distance along this line (Figure 4.9). We can represent each pixel
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Invariant image Shadow removed imageImage

FIGURE 4.10: The invariant of the text and of Figure 4.9 does not change value
when a surface is shadowed. Finlayson et al. use this to build a shadow removal
system that works by (a) taking image edges; (b) forming an invariant image; then
(c) using that invariant image to identify shadow edges; and finally (d) integrating
only non-shadow edges to form the result. The results are quite convincing.

in the image in this space, and in this representation the color image becomes a
gray-level image, where the gray level does not change inside shadows (because a
shadow region just has a different color temperature to the non-shadowed region).
? calls this the invariant image. Any edge that appears in the image but not in
the invariant image is a shadow edge, so we can now apply our original formula:
find all edges, identify the shadow edges, remove those, and then integrate to get
the picture back.

Of course, under practical circumstances, usually we do not know enough
about the sensors to evaluate the as and bs that define this family of lines, so we
cannot get the invariant image directly. However, we can infer a direction in (c1, c2)
space that is a good estimate by a form of entropy reasoning. We must choose a
color temperature direction. Assume the world is rich in differently colored surfaces.
Now consider two surfaces S1 and S2. If c1 (the (c1, c2) values for S1) and c2 are
such that c1−c2 is parallel to the color temperature direction, we can choose T1 and
T2 so that S1 viewed under light with color temperature T1 will look the same as
S2 viewed under light with color temperature T2. We expect this to be uncommon,
because surfaces tend not to mimic one another in this way. This means we expect
that colors will tend to spread out when we project along a good estimate of the
color temperature direction. A reasonable measure of this spreading out is the
entropy of the histogram of projected colors. We can now estimate the invariant
image, without knowing anything about the sensor. We search directions in (c1, c2)
space, projecting all the image colors along that direction; our estimate of the color
temperature direction is the one where this projection yields the largest entropy.
From this we can compute the invariant image, and so apply our shadow removal
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strategy above. In practice, the method works well, though great care is required
with the integration procedure to get the best results (Figure 4.10).

4.3.2 Color Constancy: Surface Color from Image Color

In our model, the image color depends on both light color and on surface color. If
we light a green surface with white light, we get a green image; if we light a white
surface with a green light, we also get a green image. This makes it difficult to
name surface colors from pictures. We would like to have an algorithm that can
take an image, discount the effect of the light, and report the actual color of the
surface being viewed.

This process is called color constancy. Humans have some form of color con-
stancy algorithm. People are often unaware of this, and inexperienced photogra-
phers are sometimes surprised that a scene photographed indoors under fluorescent
lights has a blue cast, whereas the same scene photographed outdoors may have a
warm orange cast. The simple linear models of Section 3.3 can predict the color an
observer will perceive when shown an isolated spot of light of a given power spectral
distribution. But if this spot is part of a larger, more complex scene, these models
can give wildly inaccurate predictions. This is because the human color constancy
algorithm uses various forms of scene information to decide what color to report.
Demonstrations by ?, which are illustrated in Figure 4.11, give convincing examples
of this effect. It is surprisingly difficult to predict what colors a human will see in
a complex scene (?; ?; [?]; [?]; [?]). This is one of the many difficulties that make
it hard to produce really good color reproduction systems.

Human color constancy is not perfectly accurate, and people can choose to
disregard information from their color constancy system. As a result, people can
often report:

� the color a surface would have in white light (often called surface color);

� the color of the light arriving at the eye (a useful skill that allows artists to
paint surfaces illuminated by colored lighting); and

� the color of the light falling on the surface.

The model of image color in Section 4.2 is

C(x) = gd(x)d(x) + gs(x)s(x) + i(x).

We decided to ignore the interreflection term i(x). In principle, we could use
the methods of Section ?? to generate new images without specularities. This
brings us to the term gd(x)d(x). Assume that gd(x) is a constant, so we are
viewing a flat, frontal surface. The resulting term, d(x), models the world as a
collage of flat, frontal, diffuse colored surfaces. Such worlds are sometimes called
Mondrian worlds, after the painter. Notice that, under our assumptions, d(x)
consists of a set of patches of fixed color. We assume that there is a single illuminant
that has a constant color over the whole image. This term is a conglomeration of
illuminant, receptor, and reflectance information. It is impossible to disentangle
these completely in a realistic world. However, current algorithms can make quite
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Photometer reading
(1, .3, .3)

Audience name
"Blue"

Coloured light

Photometer reading
(1, .3, .3)

Audience name
"Red"

White light

FIGURE 4.11: Land showed an audience a quilt of rectangles of flat colored papers—
since known as a Mondrian for a purported resemblance to the work of that artist—
illuminated using three slide projectors, casting red, green and blue light respectively.
He used a photometer to measure the energy leaving a particular spot in three differ-
ent channels, corresponding to the three classes of receptor in the eye. He recorded
the measurement, and asked the audience to name the patch. Assume the answer
was “red” (on the left). Land then adjusted the slide projectors so that some other
patch reflected light that gave the same photometer measurements, and asked the
audience to name that patch. The reply would describe the patch’s color in white
light—if the patch looked blue in white light, the answer would be “blue” (on the
right). In later versions of this demonstration, Land put wedge-shaped neutral
density filters into the slide projectors so that the color of the light illuminating the
quilt of papers would vary slowly across the quilt. Again, although the photometer
readings vary significantly from one end of a patch to another, the audience sees
the patch as having a constant color.

usable estimates of surface color from image colors given a well-populated world of
colored surfaces and a reasonable illuminant.

Recall from Section 4.2 that if a patch of perfectly diffuse surface with diffuse
spectral reflectance ρ(λ) is illuminated by a light whose spectrum is E(λ), the
spectrum of the reflected light is ρ(λ)E(λ) (multiplied by some constant to do
with surface orientation, which we have already decided to ignore). If a linear
photoreceptor of the kth type sees this surface patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)E(λ)dλ,

where Λ is the range of all relevant wavelengths, and σk(λ) is the sensitivity of the
kth photoreceptor.

Finite-Dimensional Linear Models
This response is linear in the surface reflectance and linear in the illumination,

which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral albedoes
and illuminant spectral energy density as a weighted sum of a finite number of basis



Section 4.3 Inference from Color 67

functions. We need not use the same bases for reflectances and for illuminants.
If a finite-dimensional linear model of surface reflectance is a reasonable de-

scription of the world, any surface reflectance can be written as

ρ(λ) =

n∑
j=1

rjϕj(λ),

where the ϕj(λ) are the basis functions for the model of reflectance, and the rj
vary from surface to surface. Similarly, if a finite-dimensional linear model of the
illuminant is a reasonable model, any illuminant can be written as

E(λ) =

m∑
i=1

eiψi(λ),

where the ψi(λ) are the basis functions for the model of illumination.
When both models apply, the response of a receptor of the kth type is

pk =

∫
σk(λ)

 n∑
j=1

rjϕj(λ)

( m∑
i=1

eiψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirj

(∫
σk(λ)ϕj(λ)ψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirjgijk,

where we expect that the

gijk =

∫
σk(λ)ϕj(λ)ψi(λ)dλ

are known, as they are components of the world model (they can be learned from
observations; see the exercises).

Inferring Surface Color
The finite-dimensional linear model describes the interaction between illumi-

nation color, surface color, and image color. To infer surface color from image color,
we need some sort of assumption. There are several plausible cues that can be used.

Specular reflections at dielectric surfaces have uniform specular albedo. We
could find the specularities with the methods of that section, then recover surface
color using this information. At a specularity, we have

pk =

∫
σk(λ)

m∑
i=1

eiψi(λ)dλ,

and so if we knew the spectral sensitivities of the sensor and the basis functions ψi,
we could solve for ei by solving a linear system. Now we know all ei, and all pk for
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each pixel. We can solve the linear system

pk =

m,n∑
i=1,j=1

eirjgijk

in the unknown rj to recover reflectance coefficients.
Known average reflectance is another plausible cue. In this case, we

assume that the spatial average of reflectance in all scenes is constant and known
(e.g., we might assume that all scenes have a spatial average of reflectance that is
dull gray). In the finite-dimensional basis for reflectance, we can write this average
as

n∑
j=1

rjϕj(λ).

Now if the average reflectance is constant, the average of the receptor responses
must be constant too (if the imaging process is linear; see the discussion), and the
average of the response of the kth receptor can be written as:

pk =

m,n∑
i=1,j=1

eigijkrj .

We know pk and rj , and so have a linear system in the unknown light coefficients
ei. We solve this, and then recover reflectance coefficients at each pixel, as for the
case of specularities. For reasonable choices of reflectors and dimension of light and
surface basis, this linear system will have full rank.

The gamut of a color image is revealing. The gamut is the set of different
colors that appears in the image. Generally, it is difficult to obtain strongly colored
pixels under white light with current imaging systems. Furthermore, if the picture is
taken under strongly colored light, that will tend to bias the gamut. One doesn’t see
bright green pixels in images taken under deep red light, for example. As a result,
the image gamut is a source of information about the illumination. If an image
gamut contains two pixel values—call them p1 and p2—then it must be possible to
take an image under the same illuminant that contains the value tp1+(1− t)p2 for
0 ≤ t ≤ 1 (because we could mix the colorants on the surfaces). This means that
the illuminant information depends on the convex hull of the image gamut. There
are now various methods to exploit these observations. There is usually more than
one illuminant consistent with a given image gamut, and geometric methods can be
used to identify the consistent illuminants. This set can be narrowed down using
probabilistic methods (for example, images contain lots of different colors [?]) or
physical methods (for example, the main sources of illumination are the sun and
the sky, well modelled as black bodies [?]).

4.4 NOTES

There are a number of important general resources on the use of color. We rec-
ommend ?, ?, ?, ?, ?, ?. ? contains an enormous amount of helpful information.
Recent textbooks with an emphasis on color include ?, ?, ?, ? and ?.
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Trichromacy and Color Spaces

Until quite recently, there was no conclusive explanation of why trichromacy ap-
plied, although it was generally believed to be due to the presence of three different
types of color receptor in the eye. Work on the genetics of photoreceptors can be
interpreted as confirming this hunch (see ? and ?), although a full explanation is
still far from clear because this work can also be interpreted as suggesting many
individuals have more than three types of photoreceptor [?].

There is an astonishing number of color spaces and color appearance models
available. The important issue is not in what coordinate system one measures color,
but how one counts the difference, so color metrics may still bear some thought.

Color metrics are an old topic; usually, one fits a metric tensor to MacAdam el-
lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large-range color comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colors are two very different things.

Specularity Finding

The specularity finding method we describe is due to ?, with improvements due
to ?, [?], and to ?. Specularities can also be detected because they are small and
bright [?], because they differ in color and motion from the background [?, ?, ?],
or because they distort patterns [?]. Specularities are a prodigious nuisance in
reconstruction, because specularities cause matching points in different images to
have different colors; various motion-based strategies have been developed to remove
them in these applications [?, ?, ?].

Color Constancy

Land reported a variety of color vision experiments (?, [?], [?], [?]). Finite-dimensional
linear models for spectral reflectances can be supported by an appeal to surface
physics as spectral absorption lines are thickened by solid state effects. The main
experimental justifications for finite-dimensional linear models of surface reflectance
are measurements, by ?, of the surface reflectance of a selection of standard refer-
ence surfaces known as Munsell chips, and measurements of a selection of natural
objects by ?. ? performed a principal axis decomposition of his data to obtain a set
of basis functions, and ? fitted weighted sums of these functions to Krinov’s date
to get good fits with patterned deviations. The first three principal axes explained
in each case a high percentage of the sample variance (near 99 %), and hence a
linear combination of these functions fitted all the sampled functions rather well.
More recently, ? fitted Cohen’s [?] basis vectors to a large set of data, including
Krinov’s [?] data, and further data on the surface reflectances of Munsell chips,
and concluded that the dimension of an accurate model of surface reflectance was
on the order of five or six.

Finite-dimensional linear models are an important tool in color constancy.
There is a large collection of algorithms that follow rather naturally from the ap-
proach. Some algorithms exploit the properties of the linear spaces involved (?;
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?; ?). Illumination can be inferred from: reference objects [?]; specular reflections
(Judd [?] writing in 1960 about early German work in surface color perception
refers to this as “a more usual view”; recent work includes [?, ?, ?, ?]); the average
color [?, ?, ?]; and the gamut (?, ?, ?, [?]).

The structure of the family of maps associated with a change in illumination
has been studied quite extensively. The first work is due to Von Kries (who didn’t
think about it quite the way we do). He assumed that color constancy was, in
essence, the result of independent lightness calculations in each channel, meaning
that one can rectify an image by scaling each channel independently. This practice
is known as Von Kries’ law. The law boils down to assuming that the family of
maps consists of diagonal matrices. Von Kries’ law has proved to be a remarkably
good law [?]. Current best practice involves applying a linear transformation to the
channels and then scaling the result using diagonal maps (?, [?]).

Reference datasets are available for testing methods [?]. Color constancy
methods seem to work quite well in practice [?, ?]; whether this is good enough is
debated [?, ?]. Probabilistic methods can be applied to color constancy [?]. Prior
models on illumination are a significant cue [?].

There is surprisingly little work on color constancy that unifies a study of the
spatial variation in illumination with solutions for surface color, which is why we
were reduced to ignoring a number of terms in our color model. Ideally, one would
work in shadows and surface orientation, too. Again, the whole thing looks like
an inference problem to us, but a subtle one. The main papers on this extremely
important topic are ?, ?. There is substantial room for research here, too.

Interreflections between colored surfaces lead to a phenomenon called color
bleeding, where each surface reflects colored light onto the other. The phenomenon
can be surprisingly large in practice. People seem to be quite good at ignoring it
entirely, to the extent that most people don’t realize that the phenomenon occurs
at all. Discounting color bleeding probably uses spatial cues. Some skill is required
to spot really compelling examples. The best known to the authors is occasionally
seen in southern California, where there are many large hedges of white oleander
by the roadside. White oleander has dark leaves and white flowers. Occasionally, in
bright sunlight, one sees a hedge with yellow oleander flowers; a moment’s thought
attributes the color to the yellow service truck parked by the road reflecting yellow
light onto the white flowers. One’s ability to discount color bleeding effects seems to
have been disrupted by the dark leaves of the plant breaking up the spatial pattern.
Color bleeding contains cues to surface color that are quite difficult to disentangle
(see ?, ?, and ? for studies).

It is possible to formulate and attack color constancy as an inference prob-
lem [?, ?]. The advantage of this approach is that, for given data, the algorithm
could report a range of possible surface colors, with posterior weights.
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C H A P T E R 5

Classification and Basic Neural
Networks

5.1 LOGISTIC REGRESSION

5.1.1 Classifier Basics

A classifier is a predictor that accepts some description – say, an image or features
describing that image – and predicts a class. Typically, classifiers are learned from
labelled data, a set of N examples xi each with a class label yi, where the class label
is taken from a total of C classes. Learning takes these examples and produces a
predictor that can predict the class of future examples. Generally, this predictor
is chosen to predict training samples well. Much of what follows will deal with
how this is done for various different kinds of predictors, but here we deal with
generalities that apply to all cases.

Typically, we apply a classifier to data that hasn’t been seen in training and
whose labels aren’t (and may never be) known. For example, we might need to
label transactions as “sound” or “fraudulent”, but may never investigate whether
the label was right. A good classifier is one that causes its user the least loss (or
the most profit) when used. In the example, it might be profitable to tolerate some
level of fraud (perhaps because doing so means that customers are not put off).
Measuring how good a classifier is in these terms requires knowing the expected
cost of errors, which is often difficult. It is quite usual to evaluate accuracy (the
fraction of classification attempts that get the right answer) or error rate (the
fraction of classification attempts that get the wrong answer) instead.

What is important is accuracy on future data that hasn’t been seen in training.
For this to occur, training data must be “similar” to future data in some way.
Assume future data are samples from the joint distribution P (x, y), though we
don’t see y. It is possible to prove a variety of bounds on error if training data are
independent identically distributed (IID) samples from that joint distribution, but
little is known about other cases as of writing. An important mystery in computer
vision is that future data is quite often somewhat different from training data,
without any major problems occurring.

Notation: 5.1 I[f(x)=y](x, y): Indicator function

I[f(x)=y](x, y) is the indicator function that takes the value 1 when its
condition (here f(x) = y) is true, otherwise 0.

72
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Notation: 5.2 Ep[f ]: Expectation

Ep[f ] is the expectation of f under the probability distribution p.

Assume both training and future data are IID samples from some joint distri-
bution P (x, y). The accuracy of a classifier f(x) is EP (x,y)

[
I[f(x)=y](x, y)

]
. Because

we don’t know P (x, y) we cannot compute this directly, but if we had a set of IID
samples – a test set T – from this distribution we could estimate the accuracy as

EP (x,y)

[
I[f(x)=y](x, y)

]
≈ 1

Nt

∑
u∈T

I[f(xu)=yu)](xu, yu)

(which is the fraction of the samples in T that are correctly classified by f). There
is one very important caveat. The accuracy of f on training samples must be
an optimistic estimate of accuracy, because f was chosen to be accurate on those
training samples. This means that T must consist of examples that were not used
in training. So we take the labelled data, split it into two components (train and
test), and then use one to train f and the other to evaluate f . One can improve
the estimate of accuracy by cross-validation – repeating this process using different
random splits, then averaging the resulting estimates of accuracy.

Remember this: A classifier predicts a label from a representation.
Classifiers are evaluated by accuracy or error rate, estimated on data not
used in training. The standard recipe splits training data into two com-
ponents (train and test), uses one to train the classifier and the other to
evaluate it. Never evaluate on data that was used in training, because your
estimate will be wrong.

5.1.2 Logistic Regression

To classify, we will construct a model of P (c = v|x) (the posterior distribution of
the class) and then choose the class with the highest value of the posterior. The
model

logP (c = v|x) = wT
v x+ bv +K

results in a classification procedure known as logistic regression. The K – which
is the same for each class – ensures that the probabilities sum to one. A simple
calculation yields that

P (c = v|x) = ew
T
v x+bv∑C

j=1 e
wT

v x+bv
.
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Notation: 5.3 s(u): Softmax

The softmax function of a d dimensional vector u is given by

s(u) = [eu1 , . . . , eud ]

(
1∑d

j=1 e
ud

)
.

Now write W =
[
w1

T ; . . . ;wT
C

]
and b = [b1; . . . ; bC ]; then the vector of

posterior probabilities (one per class) can be written as

s(Wx+ b) = s(u)

where

u = Wx+ b

where we adjust θ = {W,b} to obtain the best classification results.

5.1.3 The Cross-entropy Loss and Regularization

The essential difficulty here is to choose the θ = {W,b} that results in the best
behavior. We do so by writing a cost function that estimates the error rate of
the classification, then searching for θ that makes that function small. A natural
cost function looks at the log likelihood of the data under the probability model
produced from the outputs of the units. If the i’th example is from class j, we
would like

− log p(class = j|xi, θ)

to be small (notice the sign here; it’s usual to minimize negative log likelihood).
We can compress notation by encoding the class of an example using a one hot
vector yi, which is C dimensional. If the i’th example is from class j, then the j’th
component of yi is 1, and all other components in the vector are 0. I will write
yij for the j’th component of yi. The components of yi can be used as switches to
obtain a loss function

1

N

∑
i

Llog(yi,xi, θ) =
1

N

∑
i

[− log p(class of example i|xi, θ)]

=
1

N

∑
i∈data

[{
−yT

i log s(Mxi + b)
}]

(recall the j’th component of log s is log sj). This loss is variously known as log-loss
or cross-entropy loss.

Remember this: Write θ for the parameters of a classifier. The log-loss
or cross-entropy loss is given by 1

N

∑
i [− log p(class of example i|xi, θ)]
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The goal of training is to find a classifier that performs well on held out
data. Such a classifier should have small loss on the training data, but this is not
sufficient. Imagine xi is a training example, and x is near this training example,
so that ||x− xi ||2 is small. It is likely that x will have the same label as xi if the
two are close enough, but if ||W (x− xi) ||2 is big, then the classifier might predict
a different label. In turn, ensuring that ||W (x− xi) ||2 is not much larger than
||x− xi ||2 is likely to improve performance on held out data.

The Frobenius norm of a matrix M is ||M||F =
∑

ij m
2
ij . It has the property

that ||Mx−Mxi ||2 ≤ ||M||F ||x− xi ||2. In turn, we would like to achieve a small
loss with a M that has small Frobenius norm. For some (currently unknown) λ,
we will minimize

1

N

∑
i

Llog(yi,xi,M) + λ||M||F

(sometimes known as the regularized training loss; the term ||M||F is one example
of a regularizer).

Remember this: Generally, one regularizes a training loss to control
error on future examples.

We will choose the value of λ by search. Experience shows that quite large
changes in λ have relatively little effect on the classifier, so we search a discrete set
of values (typically, in decades, so 1e− 3, 1e− 2, 1e− 1 and so on). For each value
of λ, we find and evaluate a classifier. We do this by splitting the training set into
a training portion and validation portion; training on the training portion with the
chosen value of λ; then evaluating on the validation portion. Because the classifier
was not trained on the validation portion, the estimate of accuracy is unbiased and
we can use it to choose λ. However, we do not have the best possible classifier
for that value of λ because we did not use the validation portion in training. We
retrain using the selected value of λ and all the training data. Finally, we evaluate
this classifier using the test dataset.
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Procedure: 5.1 Evaluating a classifier for unknown regularization con-
stant λ

� If this hasn’t been done, split the labelled data into training and
test sets.

� Choose a discrete set of likely values, typically in decades, so
1e− 3, 1e− 2, 1e− 1 and so on.

� For each value of λ, find and evaluate a classifier, by:

– splitting the training set into a training portion and valida-
tion portion;

– training on the training portion with the chosen value of λ;

– evaluating on the validation portion.

� Use the estimates to choose λ.

� Train with this λ on the entire training set.

� Evaluate on the test dataset

5.1.4 Training with Stochastic Gradient Descent

We have a function g(θ), and we wish to obtain a value of θ that achieves the
minimum for that function. Solving in closed form doesn’t work (try it!). Typical
numerical methods take a point θ(n), update it to θ(n+1), then check to see whether
the result is a minimum. This process is started from a start point. The choice
of start point may or may not matter for general problems, but for our problem a
random start point is fine. The update is usually obtained by computing a direction
p(n) such that for small values of η, g(θ(n) + ηp(n)) is smaller than g(θ(n)). Such a
direction is known as a descent direction. We must then determine how far to go
along the descent direction, a process known as line search.

Obtaining a descent direction: One method to choose a descent direction
is gradient descent, which uses the negative gradient of the function. We can write
a Taylor series expansion for the function g(θ(n) + ηp(n)). We have that

g(θ(n) + ηp(n)) = g(θ(n)) + η
[
(∇g)Tp(n)

]
+O(η2)

This means that we can expect that if

p(n) = −∇g(θ(n)),

for small values of η, g(u(n) + ηp(n)) will be less than g(u(n)). This works (as long
as g is differentiable, and quite often when it isn’t) because g must go down for at
least small steps in this direction.
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But recall that our cost function is a sum of one error cost per example,
together with the regularizer. This means the cost function looks like

g(θ) =

[
(1/N)

N∑
i=1

gi(θ)

]
+ g0(θ),

as a function of θ. Gradient descent would require us to form

−∇g(θ) = −

([
(1/N)

N∑
i=1

∇gi(θ)

]
+∇g0(θ)

)

and then take a small step in this direction. But if N is large, this is unattractive,
as we might have to sum a lot of terms. This happens a lot in building classifiers,
where you might quite reasonably expect to deal with millions (billions; perhaps
trillions) of examples. Touching each example at each step really is impractical.

Stochastic gradient descent is an algorithm that replaces the exact gradient
with an approximation that has a random error, but is simple and quick to compute.
The term

(
1

N
)

N∑
i=1

∇gi(θ).

is a population mean, and we know (or should know!) how to deal with those. We
can estimate this term by drawing a random sample (a batch) of Nb (the batch size)
examples, with replacement, from the population of N examples, then computing
the mean for that sample. We approximate the population mean by

(
1

Nb
)
∑

j∈batch

∇gj(θ).

The batch size is usually determined using considerations of computer architecture
(how many examples fit neatly into cache?) or of database design (how many
examples are recovered in one disk cycle?). One common choice is Nb = 1, which
is the same as choosing one example uniformly and at random. We form

p
(n)
Nb

= −

(1/Nb)
∑

j∈batch

∇gi(θ(n))

+∇g0(θ(n))


and then take a small step along p

(n)
Nb

. Our new point becomes

θ(n+1) = θ(n) + ηp
(n)
Nb
,

where η is called the steplength (or sometimes step size or learning rate, even though
it isn’t the size or the length of the step we take, or a rate!).

Because the expected value of the sample mean is the population mean, if
we take many small steps along pNb

, they should average out to a step backwards
along the gradient. This approach is known as stochastic gradient descent because



78 Chapter 5 Classification and Basic Neural Networks

we’re not going along the gradient, but along a random vector which is the gradient
only in expectation. It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having to
take more steps. Current theory suggests we do gain, and there are other benefits.
For example, stochastic gradient descent appears to regularize very large models in
quite unexpected ways. In practice, the approach is hugely successful for training
classifiers.

Choosing a steplength: Because evaluating g is hard, we can’t search for
the η that gives the best value of g. Instead, we use an η that is large at the
start — so that the method can explore large changes in the values of the classifier
parameters — and small steps later — so that it settles down. The choice of how
η gets smaller is often known as a steplength schedule or learning rate schedule.
Often, you can tell how many steps are required to have seen the whole dataset;
this is called an epoch. A common steplength schedule sets the steplength in the
e’th epoch to be

η(e) =
m

e+ n
,

wherem and n are constants chosen by experiment with small subsets of the dataset.
There is no good test for whether stochastic gradient descent has converged

to the right answer, because natural tests involve evaluating the gradient and the
function, and doing so is expensive. More usual is to plot the error as a function
of iteration on the validation set, and interrupt or stop training when the error
has reached an acceptable level. The error (resp. accuracy) should vary randomly
(because the steps are taken in directions that only approximate the gradient) but
should decrease (resp. increase) overall as training proceeds (because the steps do
approximate the gradient). sometimes known as learning curves.

Remember this: Stochastic gradient descent is the dominant training
paradigm for classifiers. Stochastic gradient descent uses a sample of the
training data to estimate the gradient. Doing so results in a fast but noisy
gradient estimate. This is particularly valuable when training sets are very
large (as they should be). Steplengths are chosen according to a steplength
schedule, and there is no test for convergence other than evaluating classifier
behavior on validation data.

5.1.5 Example: Classifying MNIST with Logistic Regression

I will use the MNIST dataset of handwritten digits as a source of examples in this
and future chapters. This dataset is very widely used to check simple methods. It
was originally constructed by Yann Lecun, Corinna Cortes, and Christopher J.C.
Burges. You can find this dataset in several places. The original dataset is at
http://yann.lecun.com/exdb/mnist/. Each data item is a 28 × 28 grey level
image of a handwritten digit. Each comes with a label from 0 to 9. The images
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FIGURE 5.1: On the left, the learning curve for a logistic regression classifier trained
on MNIST data. Note the loss falls off quickly, then declines very slowly. The loss
plotted here is the loss for a particular batch after a step has been taken using the
gradient on that batch. Although the step follows the gradient, it may cause the
loss to rise because it goes too far along the gradient direction — there is no search
for a step length that guarantees descent and there are no second order terms here.
Nonetheless, because the steps are small and approximately in the right direction,
the loss declines. On the right, the error rate for the test set plotted at the end of
each epoch. Notice how this declines, but not monotonically.

were originally binary (ink and no-ink pixels) but are usually now seen in grey-level
form, but pixels are either very dark or very light. For most images, the digit is
pretty clear to a human observer, but some images contain quite mysterious digits.

MNIST can be classified with logistic regression. I straightened each image
into a feature vector, then proceeded. I used a simple PyTorch program (Sec-
tion 36.2 for PyTorch), with stochastic gradient descent as the optimizer. I used
a learning rate scheduler that multiplied the learning rate by 0.9 after each epoch.
I used the standard test-train split (60, 000 test and 10 000 train), and computed
the test error rate each epoch. Figure 36.2 shows the learning curve (loss plotted
against number of training images) and the test error rate. The error rate may
seem small, but good MNIST classifiers obtain very much smaller error rates.

5.2 SIMPLE NEURAL NETWORKS

The one problem with logistic regression is that its performance depends on the
features (the x). The key trick in neural networks is to learn a transformation of
these features to produce new, hopefully better, features. We do this by building
simple feature transformation layers, then stacking them.

5.2.1 Layers and Units

We will compose layers – functions that accept vector inputs (and often parameters)
and produce vector outputs – to form a classifier. Write the r’th function o(r).
functions don’t). The r’th layer receives parameters θ(r) (which will be empty
if the layer doesn’t need parameters). In this notation, the output of a network
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FIGURE 5.2: Notation for layers, inputs, and parameters, for reference.

applied to x could be written as

o(D)(o(D−1)(. . . (o1(x, θ(1)), θ(2)), . . .), θ(D))

which is messy. More clean is to write

o(D)

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(D−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

These equations really are a map for a computation. You feed in x; this gives u(1);
which gives u(2); and so on, up to o(D). This is important, because it allows us
to write an expression for the gradient fairly cleanly. (Figure 5.2 captures some of
this).

There are a number of important standard layers.

� A softmax layer forms o = s(u) (and has no parameters); we have already
seen this layer.

� A fully connected layer or fc layer forms o = Mu + b (and its parameters
are M, b). The logistic regression of Section 36.2 is a fully connected layer
followed by a softmax layer.
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� A ReLU layer applies F (u) = max (0, u) (a ReLU) to each element of the
input vector.

� A tanh layer applies F (u) = tanh(u) to each element of the input vector.

� A sigmoid layer applies F (u) = 1/(1 + e−u) to each element of the input
vector.

We will see important variants of fully connected layers obtained by constrain-
ing the form of M. Composing layers does not always yield anything interesting.
For example, having two fully connected layers rather than one would still yield
a logistic regression, because composing two affine functions yields another affine
function. This new logistic regression classifier would have a weird parametriza-
tion, but it would still be a logistic regression. But consider a fc layer, followed
by a ReLU layer, followed by another fc layer, followed by a softmax. We have
something genuinely new. The fc-softmax pair at the output is a familiar logistic
regression. But the fc-ReLU pair at the input maps the original feature representa-
tion into a new feature representation. If we can train this set of layers, we expect
better accuracy than the original logistic regression, because we are adjusting the
original features to obtain a new set that works better with a logistic regression.
And we could stack more layers between the input and the logistic regression, in
the hope of getting even better features.

An fc-layer followed by a non-linearity can be seen as a layer of units (another
term is perceptrons). A unit takes a vector x of inputs and uses a vector w of
parameters (known as the weights), a scalar b (known as the bias), and a nonlinear
function F to form its output, which is

F (wTx+ b).

Units are sometimes referred to as neurons, and there is a large and rather misty
body of vague speculative analogy linking devices built out of units to neuroscience.
There is no reason to engage with this analogy here (or perhaps anywhere).

5.2.2 Training a Multi-layer Classifier

We now form a classifier out of a set of layers. There will be multiple layers, followed
by an fc layer and then a softmax. The fc layer needs to produce a C dimensional
vector, because there are C classes, but we’ll be vague about the other layers for the
moment. Our loss will have two terms: the cross-entropy term, and a regularization
term. We will train this classifier with stochastic gradient descent on the loss. The
key question is determining the gradient with respect to parameters.

The cross-entropy term is an average of per-item losses, and so takes the form

1

N

∑
i

L(yi,o
(D)(xi, θ)).

The regularization term (which we won’t always use) is a term that depends on the
parameters. The gradient of the regularization term is easy.

Now imagine we have chosen a minibatch of M examples. We must compute
the gradient of the cost function. The penalty term is easily dealt with, but the
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per-item loss term is something of an exercise in the chain rule. We drop the index
for the example, and so have to handle the gradient of

L(y,o(D))

where

o(D) = o(D)(u(D), θ(D))

u(D) = o(D−1)(u(D−1), θ(L−1))

. . . = . . .

u(2) = o(1)(u(1), θ1)

u(1) = x.

Again, think of these equations as a map for a computation.
You should check (using whatever form of the chain rule you recall) that

∇θ(2)L = (∇sL)× Js;o × Jo;θ(2) .

Notation: 5.4 Jf ;x: Jacobian

The Jacobian Jf ;x is a matrix of partial derivatives
∂f1
∂x1

. . . ∂f1
∂x#(x)

. . . . . . . . .
∂f#(f)

∂x1
. . .

∂f#(s)

∂f#(o)


(in some circles, this is called the derivative of f , but this convention can
become confusing). The Jacobian simplifies writing out the chain rule.
Notice that the subscript marks which derivatives are being computed.

Now consider ∇θL and use the chain rule. We have

∇θ(D)L(y,o(D)) = (∇o(D)L)× Jo(D);θ(D)

Now think about ∇θ(D−1)L. The loss depends on θ(D−1) in a somewhat roundabout
way; layer D− 1 uses θ(D−1) to produce its outputs, and these are fed into layer D
as that layer’s inputs. So we must have

∇θ(D−1)L(yi,o
(D)(xi, θ)) = (∇o(D)L)× Jo(D);u(D) × Jo(D−1);θ(D−1)

(look carefully at the subscripts on the Jacobians, and remember that u(D) =
o(D−1)). And o(D) depends on θ(D−2) through u(D) which is a function of u(D−1)

which is a function of θ(D−2), so that

∇θ(D−2)L(yi,o
(D)(xi, θ)) = (∇o(D)L)× Jo(D);u(D) × Jo(D−1);u(D−1) × Jo(D−2);θ(D−2)

(again, look carefully at the subscripts on each of the Jacobians, and remember
that u(D) = o(D−1) and u(D−1) = o(D−2)).
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We can now get to the point. We have a recursion:

v(D) = (∇o(D)L)

∇θ(D)L = v(D)Jo(D);θ(D)

∇θ(D−1)L = v(D)Jo(D);u(D)Jo(D−1);θ(D−1)

. . .

∇θ(i−1)L = v(D)Jo(D);u(D) . . .Jo(i);u(i)Jo(i−1);θ(i−1)

. . .

But look at the form of the products of the matrices. We don’t need to remultiply
all those matrices; instead, we are attaching a new term to a product we’ve already
computed. All this is more cleanly written as:

v(D) =
(
∇(D)

o L
)

∇θ(D)L = v(D)Jo(D);θ(D)

v(D−1) = v(D)Jo(D);u(D)

∇θ(D−1)L = v(D−1)Jo(D−1);θ(D−1)

. . .

v(i−1) = v(i)Jo(i);u(i)

∇θ(i−1)L = v(i−1)Jo(i−1);θ(i−1)

. . .

I have not added notation to keep track of the point at which the partial derivative
is evaluated (it should be obvious, and we have quite enough notation already).
When you look at this recursion, you should see that, to evaluate v(i−1), you will
need to know u(k) for k ≥ i− 1. This suggests the following strategy. We compute
the u’s (and, equivalently, o’s) with a “forward pass”, moving from the input layer
to the output layer. Then, in a “backward pass” from the output to the input, we
compute the gradient. Doing this is often referred to as backpropagation.

Remember this: The gradient of a multilayer network follows from the
chain rule. A straightforward recursion known as backpropagation yields
an efficient algorithm for evaluating the gradient. Information flows up the
network to compute outputs, then back down to get gradients.

5.2.3 Dropout and Redundant Units

A very useful regularization strategy is to try and ensure that no unit relies too
much on the output of any other unit. One can do this as follows. At each training
step, randomly select some units, set their outputs to zero (and reweight the inputs



84 Chapter 5 Classification and Basic Neural Networks

of the units receiving input from them), and then take the step. Now units are
trained to produce reasonable outputs even if some of their inputs are randomly
set to zero — units can’t rely too much on one input, because it might be turned
off. Notice that this sounds sensible, but it isn’t quite a proof that the approach is
sound; that comes from experiment. The approach is known as dropout.

At test time, there is no dropout. Every unit computes its usual output in
the usual way. This creates an important training issue. Write p for the probability
that a unit is dropped out, which will be the same for all units subject to dropout.
You should think of the expected output of the i’th unit at training time as (1−p)oi
(because with probability p, it is zero). But at test time, the next unit will see oi;
so at training time, you should reweight the inputs by 1/(1 − p). In exercises, we
will use packages that arrange all the details for us.

Remember this: Dropout can force units to look at inputs from all of
a set of redundant units, and so regularize a network.

5.2.4 Housekeeping

There are now several software environments that can accept a description of a
network as a map of a computation, like the one above, and automatically construct
a code that implements that network. In essence, the user writes a map, provides
inputs, and decides what to do with gradients to get descent. These environments
support the necessary housekeeping to map a network onto a GPU, evaluate the
network and its gradients on the GPU, train the network by updating parameters,
and so on. The easy availability of these environments has been an important factor
in the widespread adoption of neural networks.

At time of writing, the main environments available are

� Darknet: This is an open source environment developed by Joe Redmon.
You can find it at https://pjreddie.com/darknet/. There is some tutorial
material there.

� Matconvnet: This is an environment for MATLAB users, originally written
by Andrea Vedaldi and supported by a community of developers. You can
find it at http://www.vlfeat.org/matconvnet. There is a tutorial at that
URL.

� MXNet: This is a software framework from Apache that is supported on
a number of public cloud providers, including Amazon Web Services and
Microsoft Azure. It can be invoked from a number of environments, including
R and MATLAB). You can find it at https://mxnet.apache.org.

� PaddlePaddle: This is an environment developed at Baidu research. You
can find it at http://www.paddlepaddle.org. There is tutorial material on
that page; I understand there is a lot of tutorial material in Chinese, but I
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can’t read Chinese and so can’t find it or offer URL’s. You should search the
web for more details.

� PyTorch: This is an environment developed at Facebook’s AI research. You
can find it at https://pytorch.org. There video tutorials at https://

pytorch.org/tutorials/.

� Tensorflow: This is an environment developed at Google. You can find
it at https://www.tensorflow.org. There is extensive tutorial material at
https://www.tensorflow.org/tutorials/.

� Keras: This is an environment developed by François Chollet, intended to
offer high-level abstractions independent of what underlying computational
framework is used. It is supported by the TensorFlow core library. You can
find it at https://keras.io. There is tutorial material at that URL.

Each of these environments has their own community of developers. It is now
common in the research community to publish code, networks and datasets openly.
This means that, for much cutting edge research, you can easily find a code base
that implements a network; and all the parameter values that the developers used
to train a network; and a trained version of the network; and the dataset they
used for training and evaluation. But these aren’t the only environments. You
can find a useful comparison at https://en.wikipedia.org/wiki/Comparison_

of_deep-learning_software that describes many other environments.

Remember this: Training even a simple network involves a fair amount
of housekeeping code. There are a number of software environments that
simplify setting up and training complicated neural networks.

5.2.5 Example: Multi-layer MNIST

Using multiple layers significantly improves MNIST classification accuracy. I straight-
ened each image into a feature vector, then proceeded. The network I used is shown
in Figure ??. I used a simple PyTorch program (Section 36.2 for PyTorch), with
stochastic gradient descent as the optimizer. I used a learning rate scheduler that
multiplied the learning rate by 0.9 after each epoch. I used the standard test-train
split (60, 000 test and 10 000 train), and computed the test error rate each epoch.
Figure 36.2 shows the learning curve and the test error rate. The error rate may
seem small, but good MNIST classifiers obtain very much smaller error rates.

5.2.6 Augmentation and Ensembles

Three important practical issues that need to be addressed to build very strong
image classifiers.
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� Data sparsity: Datasets of images are never big enough to show all effects
accurately. This is because an image of a horse is still an image of a horse
even if it has been through a small rotation, or has been resized to be a bit
bigger or smaller, or has been cropped differently, and so on. There is no way
to take account of these effects in the architecture of the network.

� Data compliance: We want each image fed into the network to be the same
size.

� Network variance: The network we have is never the best network; train-
ing started at a random set of parameters, and has a strong component of
randomness in it. For example, most minibatch selection algorithms select
random minibatches. Training the same architecture on the same dataset
twice will not yield the same network.

All three can be addressed by some care with training and test data.
Generally, the way to address data sparsity is data augmentation, by expand-

ing the training dataset to include different rotations, scalings, and crops of images.
Doing so is relatively straightforward. You take each training image, and generate
a collection of extra training images from it. You can obtain this collection by:
resizing and then cropping the training image; using different crops of the same
training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on.

There are some cautions. When you rotate then crop, you need to be sure
that no “unknown” pixels find their way into the final crop. You can’t crop too
much, because you need to ensure that the modified images are still of the relevant
class, and too aggressive a crop might cut out the horse (or whatever) entirely.
This somewhat depends on the dataset. If each image consists of a tiny object on a
large background, and the objects are widely scattered, crops need to be cautious;
but if the object covers a large fraction of the image, the cropping can be quite
aggressive.

Cropping is usually the right way to ensure that each image has the same
size. Resizing images might cause some to stretch or squash, if they have the
wrong aspect ratio. This likely isn’t a great idea, because it will cause objects to
stretch or squash, making them harder to recognize. It is usual to resize images to
a convenient size without changing the aspect ratio, then crop to a fixed size.

There are two ways to think about network variance (at least!). If the net-
work you train isn’t the best network (because it can’t be), then it’s very likely that
training multiple networks and combining the results in some way will improve clas-
sification. You could combine results by, for example, voting. Small improvements
can be obtained reliably like this, but the strategy is often deprecated because it
isn’t particularly elegant or efficient. A more usual approach is to realize that the
network might very well handle one crop of a test image rather better than others
(because it isn’t the best network, etc.). Small improvements in performance can
be obtained very reliably by presenting multiple crops of a test image to a given
network, and combining the results for those crops.
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FIGURE 5.3: On the left, the learning curve for a logistic regression classifier trained
on MNIST data. Note the loss falls off quickly, then declines very slowly. The loss
plotted here is the loss for a particular batch after a step has been taken using the
gradient on that batch. Although the step follows the gradient, it may cause the
loss to rise because it goes too far along the gradient direction — there is no search
for a step length that guarantees descent and there are no second order terms here.
Nonetheless, because the steps are small and approximately in the right direction,
the loss declines. On the right, the error rate for the test set plotted at the end of
each epoch. Notice how this declines, but not monotonically.
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Linear Filters

Pictures of zebras and of dalmatians have black and white pixels, and in about the
same number, too. The differences between the two have to do with the character-
istic appearance of small groups of pixels, rather than individual pixel values. In
this chapter, we introduce methods for obtaining descriptions of the appearance of
a small group of pixels.

Our main strategy is to use weighted sums of pixel values using different
patterns of weights to find different image patterns. Despite its simplicity, this
process is extremely useful. It allows us to smooth noise in images, and to find
edges and other image patterns.

6.1 LINEAR FILTERS AND CONVOLUTION

6.1.1 Pattern Detection by Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Iij for the pixel at position i, j. We will construct a small array (a mask or kernel)
W, and compute a new image N from the image and the mask, using the rule

Nij =
∑
uv

Ii−u,j−vWuv.

Here we sum over all u and v that apply to W; for the moment, do not worry
about what happens when an index goes out of the range of I. This operation is
known as convolution. You should look closely at this expression; the “direction”
of the dummy variable u (resp. v) has been reversed compared with correlation.
This is important because if you forget that it is there, you compute the wrong
answer. The reason for the reversal emerges from the derivation of Section 38.1.1.
We carefully avoid inserting the range of the sum; in effect, we assume that the
sum is over a large enough range of u and v that all nonzero values are taken into
account. Furthermore, we assume that any values that haven’t been specified are
zero; this means that we can model the kernel as a small block of nonzero values in
a sea of zeros. We use this common convention regularly in what follows.

We can write the new image as

N = conv(I,W)

where

Nij =
∑
uv

Ii−u,j−vWuv.

This operation is linear. You should check that:

� if I is zero, then conv(I,W) is zero;

� conv(kI,W) = kconv(I,W);

88
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FIGURE 6.1: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
I that lie on top of one another; and you sum the results.

� and conv(I + J ,W) = conv(I,W) + conv(J ,W).

6.1.2 Convolution as Pattern Detection

The value of Nij is a dot-product. The easiest way to see this is to flip W in both
directions to form M. Then

Nij =
∑
uv

Ii−u,j−vWuv

=
∑
uv

Ii+u,j+vMuv

This means that you can think about conv like this. To compute the value of
N at some location, you place M (the flipped version of W) at some location in
the image; you multiply together the elements of I and M that lie on top of one
another, ignoring everything in I outside M; then you sum the results (Figure 6.1).

In turn, you can think about conv as forming a dot product between M and
the piece of image that lies under M (reindex the two windows to be vectors). This
view explains why a convolution is interesting: it is a very simple pattern detector.
Assume that u and v are unit vectors. Then u · v is largest when u = v, and
smallest when u = −v. Using the dot-product analogy, for Nij to have a large and
positive value, the piece of image that lies under M must “look like” M. Figure 6.2
give some examples.

6.1.3 Convolution as Smoothing

Image noise tends to result in pixels not looking like their neighbors, so that simple
finite differences tend to give strong responses to noise. As a result, just taking one
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Digits

Kernels

Convolution output Test against threshold Superimposed

FIGURE 6.2: On the far left, some images from the MNIST dataset. Three kernels
appear on the center left; the small blocks show the kernels scaled to the size of
the image, so you can see the size of the piece of image the kernel is applied to. The
larger blocks show the kernels (mid-grey is zero; light is positive; dark is negative).
The kernel in the top row responds most strongly to a dark bar above a light bar;
that in the middle row responds most strongly to a dark bar to the left of a light
bar; and the bottom kernel responds most strongly to a spot. Center shows the
results of applying these kernels to the images. You will need to look closely to see
the difference between a medium response and a strong response. Center right
shows pixels where the response exceeds a threshold. You should notice that this
gives (from top to bottom): a horizontal bar detector; a vertical bar detector; and
a line ending detector. These detectors are moderately effective, but not perfect.
Far right shows detector responses (in black) superimposed on the original image
(grey) so you can see the alignment between detections and the image.

finite difference for x and one for y gives noisy gradient estimates. The way to deal
with this problem is to smooth the image and then differentiate it (we could also
smooth the derivative).

The most usual noise model is the additive stationary Gaussian noise model,
where each pixel has added to it a value chosen independently from the same
Gaussian probability distribution. This distribution almost always has zero mean.
The standard deviation is a parameter of the model. The model is intended to
describe thermal noise in cameras and is illustrated in Figure 6.3.

Smoothing works because, in general, any image gradient of significance to
us has effects over a pool of pixels. For example, the contour of an object can
result in a long chain of points where the image derivative is large. As another
example, a corner typically involves many tens of pixels. If the noise at each pixel
is independent and additive, then large image derivatives caused by noise are a local
event. Smoothing the image before we differentiate will tend to suppress noise at
the scale of individual pixels, because it will tend to make pixels look like their
neighbors. However, gradients that are supported by evidence over multiple pixels
will tend not to be smoothed out. This suggests differentiating a smoothed image
(Figure 6.8).
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FIGURE 6.3: The top row shows three realizations of a stationary additive Gaussian
noise process. We have added half the range of brightnesses to these images to show
both negative and positive values of noise. From left to right, the noise has standard
deviation 1/256, 4/256, and 16/256 of the full range of brightness, respectively. This
corresponds roughly to bits zero, two, and five of a camera that has an output range
of eight bits per pixel. The lower row shows this noise added to an image. In
each case, values below zero or above the full range have been adjusted to zero or
the maximum value accordingly.

Images typically have the property that the value of a pixel usually is similar
to that of its neighbor. Assume that the image is affected by noise of a form where
we can reasonably expect that this property is preserved. For example, there might
be occasional dead pixels, or small random numbers with zero mean might have
been added to the pixel values. It is natural to attempt to reduce the effects of this
noise by replacing each pixel with a weighted average of its neighbors, a process
often referred to as smoothing or blurring.

Replacing each pixel with an unweighted average computed over some fixed
region centered at the pixel is the same as convolution with a kernel that is a block
of ones multiplied by a constant. You can (and should) establish this point by close
attention to the range of the sum. This process is a poor model of blurring; its
output does not look like that of a defocused camera (Figure 6.4). The reason is
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FIGURE 6.4: Although a uniform local average may seem to give a good blurring
model, it generates effects not usually seen in defocusing a lens. The images above
compare the effects of a uniform local average with weighted average. The image on
the left shows a view of grass; in the center, the result of blurring this image using
a uniform local model; and on the right, the result of blurring this image using
a set of Gaussian weights. The degree of blurring in each case is about the same,
but the uniform average produces a set of narrow vertical and horizontal bars—an
effect often known as ringing. The small insets show the weights used to blur the
image, themselves rendered as an image; bright points represent large values and
dark points represent small values (in this example, the smallest values are zero).

clear. Assume that we have an image in which every point but the center point is
zero, and the center point is one. If we blur this image by forming an unweighted
average at each point, the result looks like a small, bright box, but this is not what
defocused cameras do. We want a blurring process that takes a small bright dot
to a circularly symmetric region of blur, brighter at the center than at the edges
and fading slowly to darkness. As Figure 6.4 suggests, a set of weights of this form
produces a much more convincing defocus model.

A good formal model for this fuzzy blob is the symmetric Gaussian kernel

Gσ(x, y) =
1

2πσ2
exp

(
− (x2 + y2)

2σ2

)
illustrated in Figure 6.5. σ is referred to as the standard deviation of the Gaussian
(or its “sigma”!); the units are interpixel spaces, usually referred to as pixels. The
constant term makes the integral over the whole plane equal to one and is often
ignored in smoothing applications. The name comes from the fact that this kernel
has the form of the probability density for a 2D normal (or Gaussian) random
variable with a particular covariance.

This smoothing kernel forms a weighted average that weights pixels at its
center much more strongly than at its boundaries. One can justify this approach
qualitatively: Smoothing suppresses noise by enforcing the requirement that pixels
should look like their neighbors. By downweighting distant neighbors in the average,
we can ensure that the requirement that a pixel looks like its neighbors is less
strongly imposed for distant neighbors. A qualitative analysis gives the following:

� If the standard deviation of the Gaussian is very small—say, smaller than one
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FIGURE 6.5: The symmetric Gaussian kernel in 2D. This view shows a kernel scaled
so that its sum is equal to one; this scaling is quite often omitted. The kernel shown
has σ = 1. Convolution with this kernel forms a weighted average that stresses the
point at the center of the convolution window and incorporates little contribution
from those at the boundary. Notice how the Gaussian is qualitatively similar to our
description of the point spread function of image blur: it is circularly symmetric,
has strongest response in the center, and dies away near the boundaries.

pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

� For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

� Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.

Figure 6.6 illustrates these phenomena. You should notice that Gaussian smoothing
can be effective at suppressing noise.

In applications, a discrete smoothing kernel is obtained by constructing a
2k + 1× 2k + 1 array whose i, jth value is

Hij =
1

2πσ2
exp

(
− ((i− k − 1)2 + (j − k − 1)2)

2σ2

)
.
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Notice that some care must be exercised with σ. If σ is too small, then only one
element of the array will have a nonzero value. If σ is large, then k must be large,
too; otherwise, we are ignoring contributions from pixels that should contribute
with substantial weight.

σ=0.05 σ=0.1 σ=0.2

no
smoothing

σ=1 pixel

σ=2 pixels

FIGURE 6.6: The top row shows images of a constant mid-gray level corrupted by
additive Gaussian noise. In this noise model, each pixel has a zero-mean normal
random variable added to it. The range of pixel values is from zero to one, so
that the standard deviation of the noise in the first column is about 1/20 of full
range. The center row shows the effect of smoothing the corresponding image in
the top row with a Gaussian filter of σ one pixel. Notice the annoying overloading
of notation here; there is Gaussian noise and Gaussian filters, and both have σ’s.
One uses context to keep these two straight, although this is not always as helpful as
it could be, because Gaussian filters are particularly good at suppressing Gaussian
noise. This is because the noise values at each pixel are independent, meaning that
the expected value of their average is going to be the noise mean. The bottom
row shows the effect of smoothing the corresponding image in the top row with a
Gaussian filter of σ two pixels.
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6.1.4 Convolution to Estimate Derivatives

Image derivatives can be approximated using another example of a convolution
process. Because

∂f

∂x
= lim

ϵ→0

f(x+ ϵ, y)− f(x, y)

ϵ
,

we might estimate a partial derivative as a symmetric finite difference:

∂h

∂x
≈ hi+1,j − hi−1,j .

This is the same as a convolution, where the convolution kernel is

H =

 0 0 0
1 0 −1
0 0 0

 .

Notice that this kernel could be interpreted as a template: it gives a large positive
response to an image configuration that is positive on one side and negative on the
other, and a large negative response to the mirror image.

As Figure 6.7 suggests, finite differences give a most unsatisfactory estimate
of the derivative. This is because finite differences respond strongly (i.e., have an
output with large magnitude) at fast changes, and fast changes are characteristic of
noise. Roughly, this is because image pixels tend to look like one another. For exam-
ple, if we had bought a discount camera with some pixels that were stuck at either
black or white, the output of the finite difference process would be large at those
pixels because they are, in general, substantially different from their neighbors. All
this suggests that some form of smoothing is appropriate before differentiation; the
details appear in Section ??.

6.1.5 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it with the
derivative of a smoothing kernel. This fact is most easily seen by thinking about
continuous convolution.

First, differentiation is linear and shift invariant. This means that there is
some kernel—we dodge the question of what it looks like—that differentiates. That
is, given a function I(x, y),

∂I

∂x
= K(∂/∂x) ∗ ∗I.

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(K(∂/∂x) ∗ ∗(S ∗ ∗I)) = (K(∂/∂x) ∗ ∗S) ∗ ∗I = (
∂S

∂x
) ∗ ∗I.

This fact appears in its most commonly used form when the smoothing function is
a Gaussian; we can then write

∂ (Gσ ∗ ∗I)
∂x

= (
∂Gσ

∂x
) ∗ ∗I,
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[width=1.6in]

FIGURE 6.7: The top row shows estimates of derivatives obtained by finite differ-
ences. The image at the left shows a detail from a picture of a zebra. The center
image shows the partial derivative in the y-direction—which responds strongly to
horizontal stripes and weakly to vertical stripes—and the right image shows the
partial derivative in the x-direction—which responds strongly to vertical stripes and
weakly to horizontal stripes. However, finite differences respond strongly to noise.
The image at center left shows a detail from a picture of a zebra; the next image
in the row is obtained by adding a random number with zero mean and normal dis-
tribution (σ = 0.03; the darkest value in the image is 0, and the lightest 1) to each
pixel; and the third image is obtained by adding a random number with zero mean
and normal distribution (σ = 0.09) to each pixel. The bottom row shows the
partial derivative in the x-direction of the image at the head of the row. Notice how
strongly the differentiation process emphasizes image noise; the derivative figures
look increasingly grainy. In the derivative figures, a mid-gray level is a zero value,
a dark gray level is a negative value, and a light gray level is a positive value.

that is, we need only convolve with the derivative of the Gaussian, rather than
convolve and then differentiate. As discussed in Section 12.3, smoothed derivative
filters look like the effects they are intended to detect. The x-derivative filters look
like a vertical light blob next to a vertical dark blob (an arrangement where there is
a large x-derivative), and so on (Figure 12.11). Smoothing results in much smaller
noise responses from the derivative estimates (Figure 6.8).

The choice of σ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar means that the
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d/dx

FIGURE 6.8: Derivative of Gaussian filters are less extroverted in their response
to noise than finite difference filters. The image at top left shows a detail from
a picture of a zebra; top center shows the same image corrupted by zero mean
stationary additive Gaussian noise, with σ = 0.03 (pixel values range from 0 to
1). Top right shows the same image corrupted by zero mean stationary additive
Gaussian noise, with σ = 0.09. The second row shows the finite difference in the
x-direction of each image. These images are scaled so that zero is mid-gray, the
most negative pixel is dark, and the most positive pixel is light; we used a different
scaling for each image. Notice how the noise results in occasional strong derivatives,
shown by a graininess in the derivative maps for the noisy images. The final row
shows the partial derivative in the x-direction of each image, in each case estimated
by a derivative of Gaussian filter with σ one pixel. Again, these images are scaled
so that zero is mid-gray, the most negative pixel is dark, and the most positive pixel
is light; we used a different scaling for each image. The images are smaller than the
input image, because we used a 13 × 13 pixel discrete kernel. This means that the
six rows (resp. columns) on the top and bottom of the image (resp. left and right)
cannot be evaluated exactly, because for these rows the kernel covers some points
outside the image; we have omitted these values. Notice how the smoothing helps
reduce the impact of the noise; this is emphasized by the detail images (between
the second and final row), which are doubled in size. The details show patches that
correspond from the finite difference image and the smoothed derivative estimate.
We show a derivative of Gaussian filter kernel, which (as we expect) looks like the
structure it is supposed to find. This is not to scale (it’d be extremely small if it
were).

filter responds on each side of the bar, and we are able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar is smoothed into
the background and the bar generates little or no response (Figure 6.9).
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FIGURE 6.9: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian
filter has significant effects on the results. The three images show estimates of the
derivative in the x direction of an image of the head of a zebra obtained using a
derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left
to right). Note how images at a finer scale show some hair, the animal’s whiskers
disappear at a medium scale, and the fine stripes at the top of the muzzle disappear
at the coarser scale.

FIGURE 6.10: The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a
smoothing kernel. The extent of the smoothing affects the gradient magnitude; in
this figure, we show the gradient magnitude for the figure of a zebra at different
scales. At the center, gradient magnitude estimated using the derivatives of a
Gaussian with σ = 1 pixel; and on the right, gradient magnitude estimated using
the derivatives of a Gaussian with σ = 2 pixel. Notice that large values of the
gradient magnitude form thick trails.

6.1.6 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image I will be replaced with sI for some value s. The magnitude
of the gradient scales with the image, i.e., ||∇I|| will be replaced with s||∇I||. This
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FIGURE 6.11: Different patterns have quite different orientation histograms. The
left shows rose plots and images for a picture of artists pastels at two different
scales; the right shows rose plots and images for a set of pastels arranged into
a circular pattern. Notice how the pattern of orientations at a particular scale,
and also the changes across scales, are quite different for these two very different
patterns. Philip Gatward cO Dorling Kindersley, used with permission.

creates problems for edge detectors, because edge points may appear and disappear
as the image gradient values go above and below thresholds with the scaling. One
solution is to represent the orientation of image gradient, which is unaffected by
scaling (Figure ??). The gradient orientation field depends on the smoothing scale
at which the gradient was computed. Orientation fields can be quite characteristic
of particular textures (Figure 6.11), and we will use this important property to
come up with more complex features below.

6.2 CONVOLUTIONAL LAYERS

6.2.1 Images as Patterns of Patterns of Patterns...

Images have important, quite general, properties (Figure 6.12). Images of “the
same thing” — in this case, the same handwritten digit — can look fairly different.
Small shifts and small rotations do not change the class of an image. Making the
image somewhat brighter of somewhat darker does not change the class of the image
either. Making the image somewhat larger, or making it somewhat smaller (then
cropping or filling in pixels as required) does not change the class either. This
means that individual pixel values are not particularly informative – you can’t tell
whether a digit image is, for example, a zero by looking at a given pixel, because
the ink might slide to the left or to the right of the pixel without changing the digit.

I will use the MNIST dataset of handwritten digits as a source of examples
in this chapter. This dataset is very widely used to check simple methods. It
was originally constructed by Yann Lecun, Corinna Cortes, and Christopher J.C.
Burges. You can find this dataset in several places. The original dataset is at
http://yann.lecun.com/exdb/mnist/. The version I used was prepared for a
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FIGURE 6.12: On the left, a selection of digits from the MNIST dataset. Notice how
images of the same digit can vary, which makes classifying the image demanding.
It is quite usual that pictures of “the same thing” look quite different. On the right,
digit images from MNIST that have been somewhat rotated and somewhat scaled,
then cropped fit the standard size. Small rotations, small scales, and cropping really
doesn’t affect the identity of the digit.

Kaggle competition (so I didn’t have to decompress Lecun’s original format). I
found it at http://www.kaggle.com/c/digit-recognizer.

If you look at the images in Figure 6.13, you will notice another important
property of images. Local patterns can be quite informative. Digits like 0 and 8
have loops. Digits like 4 and 8 have crossings. Digits like 1, 2, 3, 5 and 7 have line
endings, but no loops or crossings. Digits like 6 and 9 have loops and line endings.
Furthermore, spatial relations between local patterns are informative. A 1 has two
line endings above one another; a 3 has three line endings above one another. These
observations suggest a strategy that is a central tenet of modern computer vision:
you construct features that respond to patterns in small, localized neighborhoods;
then other features look at patterns of those features; then others look at patterns
of those, and so on.

6.2.2 Stride and Padding

In the original operation, we used a window at every location in I, but we may prefer
to look at (say) a window at every second location. The centers of the windows
we wish to look at lie on a grid of locations in I. The number of pixels skipped
between points on the grid is known as its stride. A grid with stride 1 consists of
each spatial location. A grid with stride 2 consists of every second spatial location
in I, and so on. You can interpret a stride of 2 as either performing conv then
keeping the value at every second pixel in each direction. Better is to think of the
kernel striding across the image — perform the conv operation as above, but now
move the window by two pixels before multiplying and adding.

The description of the original operation avoided saying what would happen if
the window at a location went outside I. We adopt the convention that N contains
entries only for windows that lie inside I. But we can apply padding to I to ensure
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FIGURE 6.13: Local patterns in images are quite informative. MNIST images, shown
here, are simple images, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops,
one above the other. All this suggests a key strategy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at patterns
of those features; then others that look at patterns of those, and so on. Each pattern
(here line-endings, crossings and loops) has a range of appearances. For example,
a line ending sometimes has a little wiggle as in the three. Loops can be big and
open, or quite squashed. The list of patterns isn’t comprehensive. The “?” shows
patterns that I haven’t named, but which appear to be useful. In turn, this suggests
learning the patterns (and patterns of patterns; and so on) that are most useful for
classification.

that N has the size we want. Padding attaches a set of rows (resp. columns) to the
top and bottom (resp. left and right) of I to make it a convenient size. Usually,
but not always, the new rows or columns contain zeros. By far the most common
case uses M that are square with odd dimension (making it much easier to talk
about the center). Assume I is nx × ny and M is (2k + 1) × (2k + 1); if we pad
I with k rows on top and bottom and k columns on each side, conv(I,M) will be
nx × ny.

6.2.3 Convolutional Layers to Make Feature Maps

Images are naturally 3D objects with two spatial dimensions (up-down, left-right)
and a third dimension that chooses a slice (R, G or B for a color image). This
structure is natural for representations of image patterns, too — two dimensions
that tell you where the pattern is and one that tells you what it is. The results in
Figure 6.2 show a block consisting of three such slices. These slices are the response
of a pattern detector for a fixed pattern, where there is one response for each spatial
location in the block, and so are often called feature maps.

We will generalize conv and apply it to 3D blocks of data (which I will call
blocks). Write I for an input block of data, which is now x×y×d. Two dimensions
– usually the first two, but this can depend on your software environment – are
spatial and the third chooses a slice. Write M for a 3D kernel, which is kx×ky×d.
Now choose padding and a stride. This determines a grid of locations in the spatial
dimensions of I. At each location, we must compute the value of N . To do so, take
the 3D window W of I at that location that is the same size as N ; you multiply
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Stride 1

Stride 2

No padding Padding of 1 tblr

FIGURE 6.14: The effects of stride and padding on conv. On the left, conv without
padding accepts an I, places a 3× 3 M on grid locations determined by the stride,
then reports values for valid windows. When the stride is 1, a 5 × 5 I becomes
a 3 × 3 N . When the stride is 2, a 5 × 5 I becomes a 2 × 2 N . The hatching
and shading show the window used to compute the corresponding value in N . On
the right, conv with padding accepts an I, pads it (in this case, by one row top
and bottom, and one column left and right), places a 3× 3 M on grid locations in
the padded result determined by the stride, then reports values for valid windows.
When the stride is 1, a 5× 5 I becomes a 5× 5 N . When the stride is 2, a 5× 5
I becomes a 3× 3 N . The hatching and shading show the window used to compute
the corresponding value in N .

together the elements of M and W that lie on top of one another; and you sum
the results (Figure 6.1). This sum now goes over the third dimension as well. This
produces a two dimensional N .

TODO: Notation for data blocks; also, work in batches
To make this operation produce a block of data, use a 4D block of kernels.

This kernel block consists of D kernels, each of which is a kx × ky × d dimensional
kernel. If you apply each kernel as in the previous paragraph to an x × y × d
dimensional I, you obtain an X × Y ×D dimensional block N , as in Figure 6.15.
What X and Y are depends on kx, ky, the stride and the padding. A convolutional
layer takes a kernel block and a bias vector of D bias terms. The layer applies the
kernel block to an input block (as above), then adds the corresponding bias value
to each slice.

Definition: 6.1 Convolutional Layer

A convolutional layer makes 3D blocks of data from 3D blocks of data,
using a stride, padding, a block of kernels and a vector of bias terms.
The details are in the text.



Section 6.2 Convolutional Layers 103

Kernel block 2

Kernel block 1

x

y

d

X

Y

D

Feature

map 1

Feature 

map 2

FIGURE 6.15: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x× y × d
block to an X × Y ×D block (as on the right).

Remember this: A fully connected layer can be thought of as a convo-
lutional layer followed by a ReLU layer. Assume you have an x×y×d block
of data. Reshape this to be a (xyd) × 1 × 1 block. Apply a convolutional
layer whose kernel block has size (xyd)×1×D, and then a ReLU. This pair
of layers produces the same result as a fully-connected layer of D units.

.
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Remember this: Take the output of a convolutional layer and apply a
ReLU. First, think about what happens to one particular piece of image the
size of one particular kernel. If that piece is “sufficiently similar” to the
kernel, we will see a positive response at the relevant location. If the piece is
too different, we will see a zero. This is a pattern detector as in Figure 6.2.
What “sufficiently similar” means is tuned by changing the bias for that
kernel. For example, a bias term that is negative with large magnitude
means the image block will need to be very like the kernel to get a non-zero
response. This pattern detector is (basically) a unit – apply a ReLU to a
linear function of the piece of image, plus a constant. Now it should be clear
what happens when all kernels are applied to the whole image. Each pixel
in a slice represents the result of a pattern detector applied to the piece of
image corresponding to the pixel. Each slice of the resulting block represents
the result of a different pattern detector. The elements of the output block
are often thought of as features.

Remember this: There isn’t a standard meaning for the term con-
volutional layer. I’m using one of the two that are widely used. Software
implementations tend to use my definition. Very often, research papers use
the alternative, which is my definition followed by a non-linearity (almost
always a ReLU). This is because convolutional layers mostly are followed
by ReLU’s in research papers, but it is more efficient in software implemen-
tations to separate the two.

Different software packages use different defaults about padding. One default
assumes that no padding is applied. This means that a kernel block of size kx ×
ky × d×D applied to a block of size x × y × d with stride 1 yields a block of size
(nx − kx + 1) × (ny − ky + 1) ×D (check this with a pencil and paper). Another
assumes that the input block is padded with zeros so that the output block is
nx × ny ×D.

Remember this: In Figure 6.2, most values in the output block are
zero (black pixels in that figure). This is typical of pattern detectors pro-
duced in this way. This is an experimental fact that seems to be related to
deep properties of images.
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Remember this: A kernel block that is 1 × 1 × nz × D is known as
a 1× 1 convolution. This is a linear map in an interesting way. Think of
the input and output blocks as sets of column vectors. So the input block
is a set of nx × ny column vectors, each of which has dimension nz × 1
(i.e. there is a column vector at each location of the input block). Write
iuv for the vector at location u, v in the input block, and ouv for the vector
at location u, v in the output block. Then there is a D × nz matrix M so
that the 1× 1 convolution maps iuv to

ouv = Miuv.

This can be extremely useful when the input has very high dimension, be-
cause M can be used to reduce dimension and is learned from data.
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Convolutional Image Classifiers

7.1 SIMPLE IMAGE CLASSIFICATION WITH MULTI-LAYER NETWORKS

TODO: We have a logistic regression on a feature stack

7.1.1 Convolutional Layer upon Convolutional Layer

Convolutional layers take blocks of data and make blocks of data, as do ReLU
layers. This suggests the output of a convolutional layer could be passed through a
ReLU, then connected to another convolutional layer, and so on. Doing this turns
out to be an excellent idea.

Think about the output of the first convolutional layer. Each location receives
inputs from pixels in a window about that location. The output of the ReLU, as
we have seen, forms a simple pattern detector. Now if we put a second layer on top
of this, each location in the second layer receives inputs from first layer values in
a window about that location. This means that locations in the second layer are
affected by a larger window of pixels than those in the first layer. You should think
of these as representing “patterns of patterns”. If we place a third layer on top of
the second layer, locations in that third layer will depend on an even larger window
of pixels. A fourth layer will depend on a yet larger window, and so on. The key
point here is that we can choose the patterns that are detected by learning what
kernels will be applied at each layer.

The window of pixels in the original image that is used to compute the value
at some location in a data block is referred to as its receptive field. Usually, all that
matters is the size of the receptive field, which will be the same for every location
in a given block if we ignore the boundary of the input image. The receptive field
of a location in the first convolutional layer will be given by the kernel of that layer.
Determining the receptive field for later layers requires some bookkeeping (among
other things, you must account for any stride or pooling effects).

7.1.2 Pooling

Now imagine we pass a data block through a set of layers as in Figure 36.2; its spatial
dimension will not change. This tends to be a problem, because the receptive field
of a location in the top layer will tend to have a large overlap with the receptive
field for a location next to it. In turn, the values that the units take will be similar,
and so there will be redundant information in the output block. It is usual to try
and deal with this by making blocks get smaller. One strategy is to occasionally
have a layer that has stride 2.

An alternative strategy is to use pooling. A pooling unit reports a summary
of its inputs. In the most usual arrangement, a pooling layer halves each spatial
dimension of a block. For the moment, ignore the entirely minor problems presented

106
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Pooling 2x2s2 Pooling 3x3s2

FIGURE 7.1: In a pooling layer, pooling units compute a summary of their inputs,
then pass it on. The most common case is 2x2, illustrated here on the left. We tile
each feature map with 2x2 windows that do not overlap (so have stride 2). Pooling
units compute a summary of the inputs (usually either the max or the average),
then pass that on to the corresponding location in the corresponding feature map of
the output block. As a result, the spatial dimensions of the output block will be about
half those of the input block. On the right, the common alternative of pooling in
overlapping 3x3 windows with stride 2.

by a fractional dimension. The new block is obtained by pooling units that pool
a window at each feature map of the input block to form each feature map of the
output block. If these units pool a 2×2 window with stride 2 (ie they don’t overlap),
the output block is half the size of the input block. We adopt the convention that
the output reports only valid input windows, so that this takes an x× y × d block
to an floor(x/2)× floor(y/2)× d block. So, as Figure 7.1 shows, a 5× 5× 1 block
becomes a 2 × 2 × 1 block, but one row and one column are ignored. A common
alternative is pooling a 3×3 window with a stride of 2; in this case, a 5×5×1 block
becomes a 2 × 2 × 1 block without ignoring rows or columns. Each unit reports
either the largest of the inputs (yielding a max pooling layer) or the average of its
inputs (yielding an average pooling layer).

7.1.3 CIFAR-10: an Example Dataset

CIFAR-10 is a dataset of 32 × 32 color images in 10 categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate image
classification algorithms. There are 50, 000 training images and 10, 000 test images,
and the test-train split is standard. Images are evenly split between the classes.
Figure 7.2 shows the categories, and examples from each category. There is no
overlap between the categories (so “automobile” consists of sedans, etc. and “truck”
consists of big trucks). You can download this dataset from https://www.cs.

toronto.edu/kriz/cifar.html.

7.1.4 Simple Convolutional Image Classifiers

We now know constraints a simple image classifier should meet, and can sketch
a structure. A set of layers accepts an image and produces a feature vector that
is passed to multiclass logistic regression (equivalently, a fully connected layer fol-
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FIGURE 7.2: The CIFAR-10 image classification dataset consists of 60, 000 images,
in a total of 10 categories. The images are all 32x32 color images. This figure shows
20 images from each of the 10 categories and the labels of each category. On the far
right, the mean of the images in each category. I have doubled the brightness of the
means, so you can resolve color differences. The per-category means are different,
and suggest that some classes look like a blob on a background, and others (eg ship,
truck) more like an outdoor scene.

lowed by a softmax layer). Experience teaches the feature vector should be high
dimensional, but not unmanageable (dimension 1024 is quite commonly used). The
image which goes into the set of layers is large spatially, but has few feature dimen-
sions – one for a grey level image, three for a color image. As the data block passes
up the network, we expect each location will have a larger receptive field. In turn,
because there are more different interesting big patterns than there are small ones,
we expect the feature dimension to grow. Finally, we expect that the spatial dimen-
sion of the data block should shrink, because if it does not, it will contain a great
deal of redundant information. Figure 7.6 shows three different representations of
one simple (and not very good) classification architecture. Here the feature vector
is 64 dimensional. Notice how the data blocks shrink spatially and grow in feature
dimension as they move toward the final classifier. Notice also how the size of the
receptive field of the blocks grows – this network is finding patterns of patterns of
patterns (etc.), then classifying using the presence of particular patterns.

The architecture of Figure 7.6 is not particularly effective (Figure ?? shows
what happens when it is trained on CIFAR-10). Part of the difficulty is that the
features are not sufficiently distinctive. Equivalently, the patterns the network
is trained to look for are not complicated enough. Seeing a convolutional layer
followed by a ReLU as a pattern detector suggests a solution: have more layers (in
jargon, a deeper network). But stacks of convolutional and pooling layers become
difficult to train as they get deeper.

The problem is that the features are now extremely complicated functions
of the original image and the network weights. When training starts, the weights
will mostly be wrong. Now look at the expressions for the gradient in Section 8.
All those jacobians mean that the gradient of the loss with respect to parameters
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FIGURE 7.3: Three different representations of a simple (and not very good) clas-
sification architecture. The top row shows the size of each data block leaving each
layer; the center row shows what the layers are; and the bottom row shows the size
of the receptive field. In this network, the final feature vector is 64 dimensional.
Notice how the data blocks shrink spatially and grow in feature dimension as they
move toward the final classifier. Notice also how the size of the receptive field of the
blocks grows – this network is finding patterns of patterns of patterns (etc.), then
classifying using the presence of particular patterns. Although the input is only
32x32, padding means that a location can have a receptive field considerably bigger
than 32x32.

in an early layer depends very strongly on the parameter values in later layers –
but in the early stages of training, these will be wrong, meaning the gradient may
not be particularly helpful. As the number of layers increases, this effect becomes
more pronounced, and deeper networks become very hard to train. Another way
to think about this problem is to consider some layer – after each training step,
the distribution of inputs to that layer will change because the earlier layer weights
have changed. This can make it difficult to choose a useful set of weights for that
layer. The effect will become more pronounced as there are more earlier layers,
making a deeper network very hard to train.

7.1.5 Batch Normalization

One important trick for training deeper networks is batch normalization. A batch
normalization layer attempts to control the distribution of its outputs. There are
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two stages. First, the normalizing stage adjusts the feature vector at each location
in the data block by subtracting an offset and then scaling it. The offset and scales
are chosen so that all feature vectors produced by the normalization block in the
data set should have zero mean and unit standard deviation (which takes some
work, below). The offset and the scale are properties of the data set, not learned
parameters. But this scale and offset could mean that the network does not perform
as well as it should. The correction stage compensates for the offset and scale by
offsetting and rescaling the features with learned parameters, so that – in principle
– the layer could just pass on its inputs.

Write µi for the offset and σi for the scale applied to the i’th feature map
by the normalizing stage (and assume for the moment we know them). Then the
normalizing stage forms N from X , where

nb,u,v,i = (xb,u,v,i − µi)/σi.

Now the correction stage computes O, where

ob,u,v,i = (nb,u,v,i −mi)/si

and mi, si are learned parameters. We would like the mean over the dataset of
nb,u,v,i to be zero, and the standard deviation to be one. In principle, we could
obtain the µ and σ by stopping training; passing the entire dataset through the
network; and computing means and standard deviations. Doing so would be very
slow and likely not very helpful. Instead, we could obtain a reasonable estimate by
observing the mean and standard deviations of the features for the previous batch.
Although the network will have changed because of the descent step, the change
will be small. Furthermore, an average over a batch should be a good estimate
of the average over the whole dataset. These parameters are often referred to as
running means.

Batch normalization comes with software overheads, but current environments
will deal with the details for you. There is one important issue. At test time, the
network should not obtain running means from the previous batch, but use a fixed
value obtained during training. This is usually handled with an instruction that
tells the environment that the net is being evaluated rather than trained.

Batch normalization is widely believed to be helpful in training very deep
networks, but it is less certain why it is helpful. There is some evidence that the
explanation I used to introduce the idea doesn’t actually explain why it batch
normalization is helpful [], and a range of other explanations have been offered [].
For our purposes, it is enough to know that it’s helpful.

7.1.6 Residual Layers

A residual layer is a straightforward and very effective way to control this problem.
Figure 36.2 illustrates a residual layer. Write xi for the input block. We then form

xi+1 = xi + F(xi; θi)

where F(·; θi) is a residual function, with parameters θi. Current best practice uses
the sequence of batch normalization, convolution and ReLU shown in Figure 36.2.
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For the moment, assume that F always produces an output block the same size as
the input block. Now consider a stack of two residual layers applied to an input
x1: we will obtain

x3 = x2 + F(x2; θ2)

= x1 + F(x1; θ1) + F(x1 + F(x1; θ1); θ2),

so that x3 depends in part on the input, in part directly on θ1, and in part on θ1
through a residual layer with parameters θ2. In turn, this means that

Jx3;θ1 = JF ;θ1 + JF ;θ2JF ;θ1

so that having a poor estimate of θ2 will not completely mangle the gradient of loss
with respect to θ1. Another way to think about this effect is to notice that some
signal goes directly from the input to x2; some goes from input to x2 via the first
residual layer (F(·; θ1)); and some goes through two residual layers.

Some minor difficulties occur if the convolutional layers in F change the num-
ber of features or the spatial dimension of the data block x. Typically, if F has
more features than x, we project off the extra features. If F has fewer features
than x, we add the residual block to a subblock of x of the same size. Finally, if
one is smaller than the other spatially, we can up or downsample as appropriate.

7.2 IMPROVING TRAINING

7.2.1 Augmentation and Ensembles

Three important practical issues that need to be addressed to build very strong
image classifiers.

� Data sparsity: Datasets of images are never big enough to show all effects
accurately. This is because an image of a horse is still an image of a horse
even if it has been through a small rotation, or has been resized to be a bit
bigger or smaller, or has been cropped differently, and so on. There is no way
to take account of these effects in the architecture of the network.

� Data compliance: We want each image fed into the network to be the same
size.

� Network variance: The network we have is never the best network; train-
ing started at a random set of parameters, and has a strong component of
randomness in it. For example, most minibatch selection algorithms select
random minibatches. Training the same architecture on the same dataset
twice will not yield the same network.

All three can be addressed by some care with training and test data.
Generally, the way to address data sparsity is data augmentation, by expand-

ing the training dataset to include different rotations, scalings, and crops of images.
Doing so is relatively straightforward. You take each training image, and generate
a collection of extra training images from it. You can obtain this collection by:
resizing and then cropping the training image; using different crops of the same
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training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on.

There are some cautions. When you rotate then crop, you need to be sure
that no “unknown” pixels find their way into the final crop. You can’t crop too
much, because you need to ensure that the modified images are still of the relevant
class, and too aggressive a crop might cut out the horse (or whatever) entirely.
This somewhat depends on the dataset. If each image consists of a tiny object on a
large background, and the objects are widely scattered, crops need to be cautious;
but if the object covers a large fraction of the image, the cropping can be quite
aggressive.

Cropping is usually the right way to ensure that each image has the same
size. Resizing images might cause some to stretch or squash, if they have the
wrong aspect ratio. This likely isn’t a great idea, because it will cause objects to
stretch or squash, making them harder to recognize. It is usual to resize images to
a convenient size without changing the aspect ratio, then crop to a fixed size.

There are two ways to think about network variance (at least!). If the net-
work you train isn’t the best network (because it can’t be), then it’s very likely that
training multiple networks and combining the results in some way will improve clas-
sification. You could combine results by, for example, voting. Small improvements
can be obtained reliably like this, but the strategy is often deprecated because it
isn’t particularly elegant or efficient. A more usual approach is to realize that the
network might very well handle one crop of a test image rather better than others
(because it isn’t the best network, etc.). Small improvements in performance can
be obtained very reliably by presenting multiple crops of a test image to a given
network, and combining the results for those crops.

7.2.2 Advanced Tricks: Gradient Scaling

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradi-
ent. The gradient is uphill, but repeated downhill steps are often not particularly
efficient. An example can help, and we will look at this point several ways because
different people have different ways of understanding this point.

We can look at the problem with algebra. Consider f(x, y) = (1/2)(ϵx2+y2),
where ϵ is a small positive number. The gradient at (x, y) is (ϵx, y). For simplicity,
use a fixed learning rate η, so we have[

x(r)

y(r)

]
=

[
(1− ϵη)x(r−1)

(1− η)y(r−1)

]
.

If you start at, say, (x(0), y(0)) and repeatedly go downhill along the gradient, you
will travel very slowly to your destination. You can show that[

x(r)

y(r)

]
=

[
(1− ϵη)rx(0)

(1− η)ry(0)

]
.

The problem is that the gradient in y is quite large (so y must change quickly) and
the gradient in x is small (so x changes slowly). In turn, for steps in y to converge
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FIGURE 7.4: A plot of the level curves (curves of constant value) of the function
f(x, y) = (1/2)(ϵx2 + y2). Notice that the value changes slowly with large changes
in x, and quickly with small changes in y. The gradient points mostly toward
the x-axis; this means that gradient descent is a slow zig-zag across the “valley”
of the function, as illustrated. We might be able to fix this problem by changing
coordinates, if we knew what change of coordinates to use.

we must have |1− η | < 1; but for steps in x to converge, we require only the much
weaker constraint |1− ϵη | < 1. Imagine we choose the largest η we dare for the
y constraint. The y value will very quickly have small magnitude, though its sign
will change with each step. But the x steps will move you closer to the right spot
only extremely slowly.

Another way to see this problem is to reason geometrically. Figure 7.4 shows
this effect for this function. The gradient is at right angles to the level curves of
the function. But when the level curves form a narrow valley, the gradient points
across the valley rather than down it. The effect isn’t changed by rotating and
translating the function (Figure 7.5).

You may have learned that Newton’s method resolves this problem. This is
all very well, but to apply Newton’s method we would need to know the matrix
of second partial derivatives. A network can easily have thousands to millions
of parameters, and we simply can’t form, store, or work with matrices of these
dimensions. Instead, we will need to think more qualitatively about what is causing
trouble.

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(x2 + y2). Imagine you start
far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(x) =
(1/2)(x2+ϵy2); as you move along the gradient, the gradient in the x direction gets
smaller very quickly, then points back in the direction you came from. You are not
justified in taking a large step in this direction, because if you do you will end up
at a point with a very different gradient. Similarly, the gradient in the y direction
is small, and stays small for quite large changes in y value. You would like to take
a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But we can’t do Newton’s method.
We would like to travel further in directions where the gradient doesn’t change
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FIGURE 7.5: Rotating and translating a function rotates and translates the gradient;
this is a picture of the function of figure 7.4, but now rotated and translated. The
problem of zig-zagging remains. This is important, because it means that we may
have serious difficulty choosing a good change of coordinates.

much, and less far in directions where it changes a lot. There are several methods
for doing so.

Momentum: We should like to discourage parameters from “zig-zagging” as
in the example above. In these examples, the problem is caused by components of
the gradient changing sign from step to step. It is natural to try and smooth the
gradient. We could do so by forming a moving average of the gradient. Construct a
vector v, the same size as the gradient, and initialize this to zero. Choose a positive
number µ < 1. Then we iterate

v(r+1) = µv(r) + η∇θE

θ(r+1) = θ(r) − v(r+1)

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of µ. If µ is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger µ lead to more smoothing.
A typical value is µ = 0.9. It is reasonable to make the learning rate go down with
epoch when you use momentum, but keep in mind that a very large µ will mean
you need to take several steps before the effect of a change in learning rate shows.

Adagrad: We will keep track of the size of each component of the gradient.
In particular, we have a running cache c which is initialized at zero. We choose a
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small number α (typically 1e-6), and a fixed η. Write g
(r)
i for the i’th component

of the gradient ∇θE computed at the r’th iteration.Then we iterate

c
(r+1)
i = c

(r)
i + (g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop: This is a modification of Adagrad, to allow it to “forget” large

gradients that occurred far in the past. Again, write g
(r)
i for the i’th component of

the gradient ∇θE computed at the r’th iteration. We choose another number, ∆,
(the decay rate; typical values might be 0.9, 0.99 or 0.999), and iterate

c
(r+1)
i = ∆c

(r)
i + (1−∆)(g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

Adam: This is a modification of momentum that rescales gradients, tries
to forget large gradients, and adjusts early gradient estimates to correct for bias.

Again, write g
(r)
i for the i’th component of the gradient ∇θE computed at the r’th

iteration. We choose three numbers β1, β2 and ϵ (typical values are 0.9, 0.999 and
1e-8, respectively), and some stepsize or learning rate η. We then iterate

v(r+1) = β1 ∗ v(r) + (1− β1) ∗ ∇θE

c
(r+1)
i = β2 ∗ c(r)i + (1− β2) ∗ (gri )2

v̂ =
v(r+1)

1− βt
1

ĉi =
ĉ
(r+1)
i

1− βt
2

θ
(r+1)
i = θ

(r)
i − η

v̂i√
ĉi + ϵ

Remember this: If you are not getting improvements during training,
use a gradient scaling trick.

7.3 A PRACTICAL IMAGE CLASSIFIER FOR CIFAR-10

TODO: Do this with a 101 layer resnet? and rebore
We can now put together image classifiers using the following rough archi-

tecture. A convolutional layer receives image pixel values as input. The output is



116 Chapter 7 Convolutional Image Classifiers

fed to a stack of convolutional layers, each feeding the next, possibly with ReLU
layers intervening. There are occasional max-pooling layers, or convolutional layers
with stride 2, to ensure that the data block gets smaller and the receptive field
gets bigger as the data moves through the network. The output of the final layer
is fed to one or more fully connected layers, with one output per class. Softmax
takes these outputs and turns them into class-probabilities. The whole is trained
by batch gradient descent, or a variant, as above, using a log-loss.

Notice that different image classification networks differ by relatively straight-
forward changes in architectural parameters. Mostly, the same thing will happen
to these networks (variants of batch gradient descent on a variety of costs; dropout;
evaluation). In turn, this means that we should use some form of specification
language to put together a description of the architecture of interest. Ideally, in
such an environment, we describe the network architecture, choose an optimiza-
tion algorithm, and choose some parameters (dropout probability, etc.). Then the
environment assembles the net, trains it (ideally, producing log files we can look
at) and runs an evaluation. The tutorials mentioned in section ?? each contain
examples of image classifiers for the relevant environments. In this example, I used
Matconvnet, because I am most familiar with Matlab.

Figure 7.6 shows the network used to classify CIFAR-10 images. This network
is again a standard classification network for CIFAR-10, distributed with Matcon-
vnet. Again, I have shown the network in three different representations. The
network layer representation, in the center of the figure, records the type of each
layer and the size of the relevant convolution kernels. The first layer accepts the
image which is a 32 × 32 × 3 block of data (the data block representation), and
applies a convolution.

In this network, the convolution was padded so that the resulting data block
was 32×32×32. You should check you agree with these figures, and you can tell by
how much the image needed to be padded to achieve this (a drawing might help). A
value in this data block is computed from a 5×5 window of pixels, so the receptive
field is 5 × 5. Again, by convention, every convolutional layer has a bias term, so
the total number of parameters in the first layer is (5× 5× 3)× 32 + 32. The next
layer is a 3× 3 max pooling layer. The notation 3s2 means that the pooling blocks
have a stride of 2, so they overlap. The block is padded for this pooling layer,
by attaching a single column at the right and a single row at the bottom to get a
33 × 33 × 32 block. With this padding and stride, the pooling takes 33 × 33 × 32
block and produces a 16× 16× 32 block (you should check this with a pencil and
paper drawing; it’s right). The receptive field for values in this block is 7× 7 (you
should check this with a pencil and paper drawing; it’s right, too).

The layer labelled “Apool 3s2” is an average pooling layer which computes
an average in a 3× 3 window, again with a stride of 2. The block is padded before
this layer in the same way the block before the max pooling layer was padded.
Eventually, we wind up with a 64 dimensional feature vector describing the image,
and the convolutional layer and softmax that follow are logistic regression applied
to that feature vector.

Just like MNIST, much of the information in a CIFAR-10 image is redundant.
It’s now somewhat harder to see the redundancies, but Figure 7.2 should make you
suspect that some classes have different backgrounds than others. Figure 7.2 shows
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FIGURE 7.6: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text.

the class mean for each class. There are a variety of options for normalizing these
images (more below). For this example, I whitened pixel values for each pixel in the
image grid independently (procedure 7.1, which is widely used). Whitened images
tend to be very hard for humans to interpret. However, the normalization involved
deals with changes in overall image brightness and moderate shifts in color rather
well, and can significantly improve classification.
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FIGURE 7.7: This figure shows the results of training the network of Figure 7.6
on the CIFAR-10 training set. Loss, top-1 error and top-5 error for training
and validation sets, plotted as a function of epoch for the network of the text.
The loss (recorded here as “objective”) is the log-loss. Note: the low valida-
tion error; the gap between train and validation error; and the very low top-
5 error. The validation error is actually quite high for this dataset — you
can find a league table at http: // rodrigob. github. io/ are_ we_ there_ yet/

build/ classification_ datasets_ results. html .

Procedure: 7.1 Simple image whitening

At training time: Start with N training images I(i). We assume

these are 3D blocks of data. Write I
(i)
uvw for the u, v, w’th location in

the i’th image. Compute M and S, where the u, v, w’th location in
each is given by

Muvw =

∑
i I

(i)
uvw

N

Suvw =

√∑
i(I

(i)
uvw −M

(i)
uvw)2

N

Choose some small number ϵ to avoid dividing by zero. Now the i’th
whitened image, W(i), has for its u, v, w’th location

W (i)
uvw = (I(i)uvw −Muvw)/(Suvw + ϵ)

Use these whitened images to train.
At test time: For a test image T , compute W which has for its u, v,
w’th location

Wuvw = (Tuvw −Muvw)/(Suvw + ϵ)

and classify that.
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FIGURE 7.8: Some of the approximately 2000 test examples misclassified by the
network trained in the text. Each row corresponds to a category. The images
in that row belong to that category, but are classified as belonging to some other
category. At least some of these images look like “uncommon” views of the object
or “strange” instances – it’s plausible that the network misclassifies images when
the view is uncommon or the object is a strange instance of the category.

I trained this network for 20 epochs using tutorial code circulated with Mat-
convnet. Mini-batches are pre-selected so that each training data item is touched
once per epoch, so an epoch represents a single pass through the data. It is common
in image classification to report loss, top-1 error and top-5 error. Top-1 error is
the frequency that the correct class has the highest posterior. Top-5 error is the
frequency that the correct class appears in the five classes with largest posterior.
This can be useful when the top-1 error is large, because you may observe improve-
ments in top-5 error even when the top-1 error doesn’t change. Figure 7.7 shows
the loss, top-1 error and top-5 error for training and validation sets plotted as a
function of epoch. This classifier misclassifies about 2000 of the test examples, so
it is hard to show all errors. Figure 7.8 shows examples from each class that are
misclassified as belonging to some other class. Figure 7.9 shows examples that are
that are misclassified into each class.

The phenomenon that ReLU’s are pattern detectors is quite reliable. Fig-
ure 7.10 shows the 20 images that give the strongest responses for each of 10 ReLU’s
in the final ReLU layer. These ReLU’s clearly have a quite strong theory of a pat-
tern, and different ReLU’s respond most strongly to quite different patterns. More
sophisticated visualizations search for images that get the strongest response from
units at various stages of complex networks; it’s quite reliable that these images
show a form of order or structure.

7.4 TRICKS AND QUIRKS

TODO: Other kinds of normalization

7.4.1 Quirks: Adversarial Examples

Adversarial examples are a curious experimental property of neural network image
classifiers. Here is what happens. Assume you have an image x that is correctly
classified with label l. The network will produce a probability distribution over
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FIGURE 7.9: Some of the approximately 2000 test examples misclassified by the
network trained in the text. Each row corresponds to a category. The images in
that row are classified as belonging to that category, but actually belong to another.
At least some of these images look like “confusing” views — for example, you can
find birds that do look like aircraft, and aircraft that do look like birds.

labels P (L|x). Choose some label k that is not correct. It is possible to use modern
optimization methods to search for a modification to the image δx such that

δx is small

and

P (k|x+ δx) is large.

You might expect that δx is “large”; what is surprising is that mostly it is so tiny
as to be imperceptible to a human observer. The property of being an adversar-
ial example seems to be robust to image smoothing, simple image processing, and
printing and photographing. The existence of adversarial examples raises the fol-
lowing, rather alarming, prospect: You could make a template that you could hold
over a stop sign, and with one pass of a spraypaint can, turn that sign into some-
thing that is interpreted as a minimum speed limit sign by current computer vision
systems. I haven’t seen this demonstration done yet, but it appears to be entirely
within the reach of modern technology, and it and activities like it offer significant
prospects for mayhem.

What is startling about this behavior is that it is exhibited by networks that
are very good at image classification, assuming that no-one has been fiddling with
the images. So modern networks are very accurate on untampered pictures, but
may behave very strangely in the presence of tampering. One can (rather vaguely)
identify the source of the problem, which is that neural network image classifiers
have far more degrees of freedom than can be pinned down by images. This ob-
servation doesn’t really help, though, because it doesn’t explain why they (mostly)
work rather well, and it doesn’t tell us what to do about adversarial examples.
There have been a variety of efforts to produce networks that are robust to adver-
sarial examples, but evidence right now is based only on experiment (some networks
behave better than others) and we are missing clear theoretical guidance.
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FIGURE 7.10: Visualizing the patterns that the final stage ReLU’s respond to for the
simple CIFAR example. Each block of images shows the images that get the largest
output for each of 10 ReLU’s (the ReLU’s were chosen at random from the 64
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class – these outputs go through a fully connected layer before classification – but
each ReLU are clearly responds to a pattern, and different ReLU’s respond more
strongly to different patterns.
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C H A P T E R 12

Sampling and Aliasing

12.1 SPATIAL FREQUENCY AND FOURIER TRANSFORMS

We have used the trick of thinking of a signal g(x, y) as a weighted sum of a large (or
infinite) number of small (or infinitely small) box functions. This model emphasizes
that a signal is an element of a vector space. The box functions form a convenient
basis, and the weights are coefficients on this basis. We need a new technique to
deal with two related problems so far left open:

� Although it is clear that a discrete image version cannot represent the full
information in a signal, we have not yet indicated what is lost.

� It is clear that we cannot shrink an image simply by taking every kth pixel—
this could turn a checkerboard image all white or all black—and we would
like to know how to shrink an image safely.

All of these problems are related to the presence of fast changes in an image. For
example, shrinking an image is most likely to miss fast effects because they could
slip between samples; similarly, the derivative is large at fast changes.

These effects can be studied by a change of basis. We change the basis to be
a set of sinusoids and represent the signal as an infinite weighted sum of an infinite
number of sinusoids. This means that fast changes in the signal are obvious, because
they correspond to large amounts of high-frequency sinusoids in the new basis.

12.1.1 Fourier Transforms

The change of basis is effected by a Fourier transform. We define the Fourier
transform of a signal g(x, y) to be

F(g(x, y))(u, v) =

∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy.

Assume that appropriate technical conditions are true to make this integral
exist. It is sufficient for all moments of g to be finite; a variety of other possible
conditions are available [?]. The process takes a complex valued function of x, y
and returns a complex valued function of u, v (images are complex valued functions
with zero imaginary component).

For the moment, fix u and v, and let us consider the meaning of the value of
the transform at that point. The exponential can be rewritten

e−i2π(ux+vy) = cos(2π(ux+ vy)) + i sin(2π(ux+ vy)).
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FIGURE 12.1: The real component of Fourier basis elements shown as intensity im-
ages. The brightest point has value one, and the darkest point has value zero. The
domain is [−1, 1]× [−1, 1], with the origin at the center of the image. On the left,
(u, v) = (0, 0.4); in the center, (u, v) = (1, 2); and on the right (u, v) = (10,−5).
These are sinusoids of various frequencies and orientations described in the text.

These terms are sinusoids on the x, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which is constant when ux+ vy
is constant (i.e., along a straight line in the x, y plane whose orientation is given by
tan θ = v/u). The gradient of this term is perpendicular to lines where ux+ vy is
constant, and the frequency of the sinusoid is

√
u2 + v2. These sinusoids are often

referred to as spatial frequency components; a variety are illustrated in Figure 12.1.

The integral should be seen as a dot product. If we fix u and v, the value
of the integral is the dot product between a sinusoid in x and y and the original
function. This is a useful analogy because dot products measure the amount of one
vector in the direction of another.

In the same way, the value of the transform at a particular u and v can be
seen as measuring the amount of the sinusoid with given frequency and orientation
in the signal. The transform takes a function of x and y to the function of u and v
whose value at any particular (u, v) is the amount of that particular sinusoid in the
original function. This view justifies the model of a Fourier transform as a change
of basis.

Linearity

The Fourier transform is linear:

F(g(x, y) + h(x, y)) = F(g(x, y)) + F(h(x, y))

and

F(kg(x, y)) = kF(g(x, y)).

The Inverse Fourier Transform It is useful to recover a signal from its
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Fourier transform. This is another change of basis with the form

g(x, y) =

∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv.

Fourier Transform Pairs Fourier transforms are known in closed form

TABLE 12.1: A variety of functions of two dimensions and their Fourier transforms.
This table can be used in two directions (with appropriate substitutions for u, v and
x, y) because the Fourier transform of the Fourier transform of a function is the
function. Observant readers might suspect that the results on infinite sums of δ
functions contradict the linearity of Fourier transforms. By careful inspection of
limits, it is possible to show that they do not (see, for example, ?). Observant
readers also might have noted that an expression for F(∂f∂y ) can be obtained by
combining two lines of this table.

Function Fourier transform

g(x, y)
∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv F(g(x, y))(u, v)

δ(x, y) 1

∂f
∂x

(x, y) uF(f)(u, v)

0.5δ(x+ a, y) + 0.5δ(x− a, y) cos 2πau

e−π(x2+y2) e−π(u2+v2)

box1(x, y)
sinu
u

sin v
v

f(ax, by) F(f)(u/a,v/b)
ab∑∞

i=−∞
∑∞

j=−∞ δ(x− i, y − j)
∑∞

i=−∞
∑∞

j=−∞ δ(u− i, v − j)

(f ∗ ∗g)(x, y) F(f)F(g)(u, v)

f(x− a, y − b) e−i2π(au+bv)F(f)

f(x cos θ − y sin θ, x sin θ + y cos θ) F(f)(u cos θ − v sin θ, u sin θ + v cos θ)

for a variety of useful cases; a large set of examples appears in ?. We list a few
in Table 12.1 for reference. The last line of Table 12.1 contains the convolution
theorem; convolution in the signal domain is the same as multiplication in the
Fourier domain.
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Phase and Magnitude The Fourier transform consists of a real and a
complex component:

F(g(x, y))(u, v) =

∫ ∫ ∞

−∞
g(x, y) cos(2π(ux+ vy))dxdy +

i

∫ ∫ ∞

−∞
g(x, y) sin(2π(ux+ vy))dxdy

= ℜ(F(g)) + i ∗ ℑ(F(g))

= FR(g) + i ∗ FI(g).

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot FR(g) and FI(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum, respectively.

The value of the Fourier transform of a function at a particular u, v point
depends on the whole function. This is obvious from the definition because the
domain of the integral is the whole domain of the function. It leads to some subtle
properties, however. First, a local change in the function (e.g., zeroing out a block
of points) is going to lead to a change at every point in the Fourier transform. This
means that the Fourier transform is quite difficult to use as a representation (e.g.,
it might be very difficult to tell whether a pattern was present in an image just by
looking at the Fourier transform). Second, the magnitude spectra of images tends
to be similar. This appears to be a fact of nature, rather than something that
can be proven axiomatically. As a result, the magnitude spectrum of an image is
surprisingly uninformative (see Figure 12.2 for an example).

12.2 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when we work on a discrete pixel grid, but what?
A good, simple example comes from an image of a checkerboard, and is given in
Figure 12.3. The problem has to do with the number of samples relative to the
function; we can formalize this rather precisely given a sufficiently powerful model.

12.2.1 Sampling

Passing from a continuous function—like the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. We construct a model that allows us to
obtain a precise notion of what is lost in sampling.

Sampling in One Dimension
Sampling in one dimension takes a function and returns a discrete set of

values. The most important case involves sampling on a uniform discrete grid, and
we assume that the samples are defined at integer points. This means we have a
process that takes some function and returns a vector of values:

sample1D(f(x)) = f .
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FIGURE 12.2: The second image in each row shows the log of the magnitude spec-
trum for the first image in the row; the third image shows the phase spectrum scaled
so that −π is dark and π is light. The final images are obtained by swapping the
magnitude spectra. Although this swap leads to substantial image noise, it doesn’t
substantially affect the interpretation of the image, suggesting that the phase spec-
trum is more important for perception than the magnitude spectrum.

We model this sampling process by assuming that the elements of this vector
are the values of the function f(x) at the sample points and allowing negative
indices to the vector (Figure 12.4). This means that the ith component of f is
f(xi).

Sampling in Two Dimensions
Sampling in 2D is very similar to sampling in 1D. Although sampling can

occur on nonregular grids (the best example being the human retina), we proceed
on the assumption that samples are drawn at points with integer coordinates. This
yields a uniform rectangular grid, which is a good model of most cameras. Our
sampled images are then rectangular arrays of finite size (all values outside the grid
being zero).

In the formal model, we sample a function of two dimensions, instead of one,
yielding an array (Figure 12.5). We allow this array to have negative indices in
both dimensions, and can then write

sample2D(F (x, y)) = F ,

where the i, jth element of the array F is F (xi, yj) = F (i, j).
Samples are not always evenly spaced in practical systems. This is quite often

due to the pervasive effect of television; television screens have an aspect ratio of
4:3 (width:height). Cameras quite often accommodate this effect by spacing sample
points slightly farther apart horizontally than vertically (in jargon, they have non-
square pixels).
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A Continuous Model of a Sampled Signal
We need a continuous model of a sampled signal. Generally, this model is used

to evaluate integrals; in particular, taking a Fourier transform involves integrating
the product of our model with a complex exponential. It is clear how this integral
should behave: the value of the integral should be obtained by adding up values
at each integer point. This means we cannot model a sampled signal as a function
that is zero everywhere except at integer points (where it takes the value of the
signal), because this model has a zero integral.

An appropriate continuous model of a sampled signal relies on an important
property of the δ function:∫ ∞

−∞
aδ(x)f(x)dx = a lim

ϵ→0

∫ ∞

−∞
d(x; ϵ)f(x)dx

= a lim
ϵ→0

∫ ∞

−∞

bar(x; ϵ)

ϵ
(f(x))dx

= a lim
ϵ→0

∞∑
i=−∞

bar(x; ϵ)

ϵ
(f(iϵ)bar(x− iϵ; ϵ))ϵ

= af(0).

Here we have used the idea of an integral as the limit of a sum of small strips.
An appropriate continuous model of a sampled signal consists of a δ-function

at each sample point weighted by the value of the sample at that point. We can
obtain this model by multiplying the sampled signal by a set of δ-functions, one
at each sample point. In one dimension, a function of this form is called a comb
function (because that’s what the graph looks like). In two dimensions, a function
of this form is called a bed-of-nails function (for the same reason).

Working in 2D and assuming that the samples are at integer points, this
procedure gets

sample2D(f) =

∞∑
i=−∞

∞∑
j=−∞

f(i, j)δ(x− i, y − j)

= f(x, y)


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)

 .

This function is zero except at integer points (because the δ-function is zero except
at integer points), and its integral is the sum of the function values at the integer
points.

12.2.2 Aliasing

Sampling involves a loss of information. As this section shows, a signal sampled
too slowly is misrepresented by the samples; high spatial frequency components
of the original signal appear as low spatial frequency components in the sampled
signal—an effect known as aliasing.



134 Chapter 12 Sampling and Aliasing

FIGURE 12.3: The two checkerboards on the top illustrate a sampling procedure
that appears to be successful (whether it is or not depends on some details that we
will deal with later). The gray circles represent the samples; if there are sufficient
samples, then the samples represent the detail in the underlying function. The sam-
pling procedures shown on the bottom are unequivocally unsuccessful; the samples
suggest that there are fewer checks than there are. This illustrates two important
phenomena: first, successful sampling schemes sample data often enough; and sec-
ond, unsuccessful sampling schemes cause high-frequency information to appear as
lower-frequency information.
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Sample
1D

FIGURE 12.4: Sampling in 1D takes a function and returns a vector whose elements
are values of that function at the sample points. For our purposes, it is enough
that the sample points be integer values of the argument. We allow the vector to be
infinite dimensional and have negative as well as positive indices.

Sample
2D

FIGURE 12.5: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.
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The Fourier Transform of a Sampled Signal
A sampled signal is given by a product of the original signal with a bed-of-

nails function. By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted δ-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is the
sum of a collection of shifted versions of the Fourier transforms of the signal, that
is,

F(sample2D(f(x, y))) = F

f(x, y)


∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)




= F(f(x, y)) ∗ ∗F


∞∑

i=−∞

∞∑
j=−∞

δ(x− i, y − j)




=

∞∑
i=−∞

F (u− i, v − j),

where we have written the Fourier transform of f(x, y) as F (u, v).
If the support of these shifted versions of the Fourier transform of the signal

does not intersect, we can easily reconstruct the signal from the sampled version.
We take the sampled signal, Fourier transform it, and cut out one copy of the
Fourier transform of the signal and Fourier transform this back (Figure 12.6).

However, if the support regions do overlap, we are not able to reconstruct the
signal because we can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figure 12.8 and exercises). Our argument also
yields Nyquist’s theorem: the sampling frequency must be at least twice the highest
frequency present for a signal to be reconstructed from a sampled version. By the
same argument, if we happen to have a signal that has frequencies present only in
the range [2k−1Ω, 2k+1Ω], then we can represent that signal exactly if we sample
at a frequency of at least 2Ω.

12.2.3 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking every
kth pixel (as Figure 12.8 confirms). Instead, we need to filter the image so that
spatial frequencies above the new sampling frequency are removed. We could do
this exactly by multiplying the image Fourier transform by a scaled 2D bar function,
which would act as a low-pass filter. Equivalently, we would convolve the image
with a kernel of the form (sinx sin y)/(xy). This is a difficult and expensive (a polite
way of saying impossible) convolution because this function has infinite support.

The most interesting case occurs when we want to halve the width and height
of the image. We assume that the sampled image has no aliasing (because if it
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FIGURE 12.6: The Fourier transform of the sampled signal consists of a sum of
copies of the Fourier transform of the original signal, shifted with respect to each
other by the sampling frequency. Two possibilities occur. If the shifted copies do not
intersect with each other (as in this case), the original signal can be reconstructed
from the sampled signal (we just cut out one copy of the Fourier transform and
inverse transform it). If they do intersect (as in Figure 12.7), the intersection
region is added, and so we cannot obtain a separate copy of the Fourier transform,
and the signal has aliased.

did, there would be nothing we could do about it anyway; once an image has been
sampled, any aliasing that is going to occur has happened, and there’s not much we
can do about it without an image model). This means that the Fourier transform
of the sampled image is going to consist of a set of copies of some Fourier transform,
with centers shifted to integer points in u, v space.

If we resample this signal, the copies now have centers on the half-integer
points in u, v space. This means that, to avoid aliasing, we need to apply a filter
that strongly reduces the content of the original Fourier transform outside the range
|u| < 1/2, |v| < 1/2. Of course, if we reduce the content of the signal inside this
range, we might lose information, too. Now the Fourier transform of a Gaussian is
a Gaussian, and Gaussians die away fairly quickly. Thus, if we were to convolve the
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FIGURE 12.7: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by
the sampling frequency. Two possibilities occur. If the shifted copies do not intersect
with each other (as in Figure 12.6), the original signal can be reconstructed from
the sampled signal (we just cut out one copy of the Fourier transform and inverse
transform it). If they do intersect (as in this figure), the intersection region is
added, and so we cannot obtain a separate copy of the Fourier transform, and the
signal has aliased. This also explains the tendency of high spatial frequencies to
alias to lower spatial frequencies.

image with a Gaussian—or multiply its Fourier transform by a Gaussian, which is
the same thing—we could achieve what we want.

The choice of Gaussian depends on the application. If σ is large, there is
less aliasing (because the value of the kernel outside our range is very small), but
information is lost because the kernel is not flat within our range; similarly, if σ is
small, less information is lost within the range, but aliasing can be more substantial.
Figures 12.9 and 12.10 illustrate the effects of different choices of σ.

We have been using a Gaussian as a low-pass filter because its response at
high spatial frequencies is low and its response at low spatial frequencies is high.
In fact, the Gaussian is not a particularly good low-pass filter. What one wants
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256x256 128x128 64x64 32x32 16x16

FIGURE 12.8: The top row shows sampled versions of an image of a grid obtained
by multiplying two sinusoids with linearly increasing frequency—one in x and one
in y. The other images in the series are obtained by resampling by factors of two
without smoothing (i.e., the next is a 128x128, then a 64x64, etc., all scaled to the
same size). Note the substantial aliasing; high spatial frequencies alias down to low
spatial frequencies, and the smallest image is an extremely poor representation of
the large image. The bottom row shows the magnitude of the Fourier transform
of each image displayed as a log to compress the intensity scale. The constant
component is at the center. Notice that the Fourier transform of a resampled image
is obtained by scaling the Fourier transform of the original image and then tiling the
plane. Interference between copies of the original Fourier transform means that we
cannot recover its value at some points; this is the mechanism underlying aliasing.

is a filter whose response is pretty close to constant for some range of low spatial
frequencies—the pass band—and whose response is also pretty close to zero—for
higher spatial frequencies—the stop band. It is possible to design low-pass filters
that are significantly better than Gaussians. The design process involves a detailed
compromise between criteria of ripple—how flat is the response in the pass band
and the stop band?—and roll-off—how quickly does the response fall to zero and
stay there? The basic steps for resampling an image are given in Algorithm 12.1.

12.3 FILTERS AS TEMPLATES

It turns out that filters offer a natural mechanism for finding simple patterns be-
cause filters respond most strongly to pattern elements that look like the filter. For
example, smoothed derivative filters are intended to give a strong response at a
point where the derivative is large. At these points, the kernel of the filter looks
like the effect it is intended to detect. The x-derivative filters look like a verti-
cal light blob next to a vertical dark blob (an arrangement where there is a large
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256x256 128x128 64x64 32x32 16x16

FIGURE 12.9: Top: Resampled versions of the image of Figure 12.8, again by factors
of two, but this time each image is smoothed with a Gaussian of σ one pixel before
resampling. This filter is a low-pass filter, and so suppresses high spatial frequency
components, reducing aliasing. Bottom: The effect of the low-pass filter is easily
seen in these log-magnitude images; the low-pass filter suppresses the high spatial
frequency components so that components interfere less, to reduce aliasing.

x-derivative), and so on.

It is generally the case that filters intended to give a strong response to a
pattern look like that pattern (Figure 12.11). This is a simple geometric result.

12.3.1 Convolution as a Dot Product

Recall from Section ?? that, for G, the kernel of some linear filter, the response of
this filter to an image H is given by

Rij =
∑
u,v

Gi−u,j−vHuv.

Apply a low-pass filter to the original image
(a Gaussian with a σ of between one
and two pixels is usually an acceptable choice).

Create a new image whose dimensions on edge are half
those of the old image

Set the value of the i, jth pixel of the new image to the value
of the 2i, 2jth pixel of the filtered image

Algorithm 12.1: Subsampling an Image by a Factor of Two.
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256x256 128x128 64x64 32x32 16x16

FIGURE 12.10: Top: Resampled versions of the image of Figure 12.8, again by
factors of two, but this time each image is smoothed with a Gaussian of σ two
pixels before resampling. This filter suppresses high spatial frequency components
more aggressively than that of Figure 12.9. Bottom: The effect of the low-pass
filter is easily seen in these log-magnitude images; the low-pass filter suppresses
the high spatial frequency components so that components interfere less, to reduce
aliasing.

FIGURE 12.11: Filter kernels look like the effects they are intended to detect. On
the left, a smoothed derivative of Gaussian filter that looks for large changes in
the x-direction (such as a dark blob next to a light blob); on the right, a smoothed
derivative of Gaussian filter that looks for large changes in the y-direction.
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Now consider the response of a filter at the point where i and j are zero. This is

R =
∑
u,v

G−u,−vHu,v.

This response is obtained by associating image elements with filter kernel
elements, multiplying the associated elements, and summing. We could scan the
image into a vector and the filter kernel into another vector in such a way that
associated elements are in the same component. By inserting zeros as needed, we
can ensure that these two vectors have the same dimension. Once this is done, the
process of multiplying associated elements and summing is precisely the same as
taking a dot product.

This is a powerful analogy because this dot product, like any other, achieves
its largest value when the vector representing the image is parallel to the vector
representing the filter kernel. This means that a filter responds most strongly when
it encounters an image pattern that looks like the filter. The response of a filter
gets stronger as a region gets brighter, too.

Now consider the response of the image to a filter at some other point. Nothing
significant about our model has changed. Again, we can scan the image into one
vector and the filter kernel into another vector, such that associated elements lie
in the same components. Again, the result of applying this filter is a dot product.
There are two useful ways to think about this dot product.

12.3.2 Changing Basis

We can think of convolution as a dot product between the image and a different
vector (because we have moved the filter kernel to lie over some other point in
the image). The new vector is obtained by rearranging the old one so that the
elements lie in the right components to make the sum work out. This means that,
by convolving an image with a filter, we are representing the image on a new basis
of the vector space of images—the basis given by the different shifted versions of
the filter. The original basis elements were vectors with a zero in all slots except
one. The new basis elements are shifted versions of a single pattern.

For many of the kernels discussed, we expect that this process will lose
information—for the same reason that smoothing suppresses noise—so that the
coefficients on this basis are redundant. This basis transformation is valuable in
texture analysis. Typically, we choose a basis that consists of small, useful pattern
components. Large values of the basis coefficients suggest that a pattern compo-
nent is present, and texture can be represented by representing the relationships
between these pattern components, usually with some form of probability model.

12.4 TECHNIQUE: NORMALIZED CORRELATION AND FINDING PATTERNS

We can think of convolution as comparing a filter with a patch of image centered at
the point whose response we are looking at. In this view, the image neighborhood
corresponding to the filter kernel is scanned into a vector that is compared with the
filter kernel. By itself, this dot product is a poor way to find features because the
value might be large simply because the image region is bright. By analogy with
vectors, we are interested in the cosine of the angle between the filter vector and
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the image neighborhood vector; this suggests computing the root sum of squares of
the relevant image region (the image elements that would lie under the filter kernel)
and dividing the response by that value.

This yields a value that is large and positive when the image region looks like
the filter kernel, and small and negative when the image region looks like a contrast-
reversed version of the filter kernel. This value could be squared if contrast reversal
doesn’t matter. This is a cheap and effective method for finding patterns, often
called normalized correlation.

12.4.1 Controlling the Television by Finding Hands by Normalized Correlation

It would be nice to have systems that could respond to human gestures. For ex-
ample, you might wave at the light to turn the room lights on, point at the air
conditioning to change the room temperature, or make an appropriate gesture at
an annoying politician on television to change the channel. In typical consumer
applications, there are quite strict limits to the amount of computation available,
meaning that it is essential that the gesture recognition system be simple. However,
such systems are usually quite limited in what they need to do, too.

Controlling the Television

Typically, a user interface is in some state—perhaps a menu is displayed—and
then an event occurs—perhaps a button is pressed on a remote control. This event
causes the interface to change state—a new menu item is highlighted, say—and the
whole process continues. In some states, some events cause the system to perform
some action, such as changing the channel. All this means that a state machine is
a natural model for a user interface.

One way for vision to fit into this model is to provide events. This is good
because there are generally few different kinds of event, and we know what kinds of
event the system should care about in any particular state. As a result, the vision
system needs to determine only whether either nothing or one of a small number of
known kinds of event has occurred. It is quite often possible to build systems that
meet these constraints.

A relatively small set of events is required to simulate a remote control; one
needs events that look like button presses (e.g., to turn the television on or off),
and events that look like pointer motion (e.g., to increase the volume; it is possible
to do this with buttons, too). With these events, the television can be turned on,
and an on-screen menu system can be navigated.

Finding Hands

? produced an interface where an open hand turns the television on. This can
be robust because all the system needs to do is determine whether there is a hand
in view. Furthermore, the user will cooperate by holding the hand up and open.
Because the user is expected to be a fairly constant distance from the camera—
so the size of the hand is roughly known, and there is no need to search over
scales—and in front of the television, the image region that needs to be searched
to determine whether there is a hand is quite small.

The hand is held up in a fairly standard configuration and orientation to turn
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a

b c

d e

FIGURE 12.12: Examples of Freeman et al.’s system controlling a television set. Each
state is illustrated with what the television sees on the left and what the user sees
on the right. In (a), the television is asleep, but a process is watching the user.
An open hand causes the television to come on and show its user interface panel
(b). Focus on the panel tracks the movement of the user’s open hand in (c), and
the user can change channels by using this tracking to move an icon on the screen
in (d). Finally, the user displays a closed hand in (e) to turn off the set.

the television set on, and it usually appears at about the same distance from the
television (so we know what it looks like). This means that a normalized correlation
score is sufficient to find the hand. Any points in the correlation image where the
score is high enough correspond to hands. This approach can also be used to control
volume and so on. To do so, we need some notion of where the hand is going—to
one side turns the volume up, to the other turns it down—and this can be obtained
by comparing the position in the previous frame with that in the current frame.
The system displays an iconic representation of its interpretation of hand position
so the user has some feedback as to what the system is doing (Figure 12.12). Notice
that an attractive feature of this approach is that it could be self-calibrating. In
this approach, when you install your television set, you sit in front of it and show
it your hand a few times to allow it to get an estimate of the scale at which the
hand appears.

12.5 TECHNIQUE: SCALE AND IMAGE PYRAMIDS

Images look quite different at different scales. For example, the zebra’s muzzle in
Figure 12.13 can be described in terms of individual hairs—which might be coded
in terms of the response of oriented filters that operate at a scale of a small number
of pixels—or in terms of the stripes on the zebra. In the case of the zebra, we would
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not want to apply large filters to find the stripes. This is because these filters are
inclined to spurious precision—we don’t wish to represent the disposition of each
hair on the stripe—inconvenient to build, and slow to apply. A more practical
approach than applying large filters is to apply smaller filters to smoothed and
resampled versions of the image.

12.5.1 The Gaussian Pyramid

An image pyramid is a collection of representations of an image. The name comes
from a visual analogy. Typically, each layer of the pyramid is half the width and
half the height of the previous layer; if we were to stack the layers on top of each
other, a pyramid would result. In a Gaussian pyramid, each layer is smoothed by
a symmetric Gaussian kernel and resampled to get the next layer (Figure 12.13).
These pyramids are most convenient if the image dimensions are a power of two or
a multiple of a power of two. The smallest image is the most heavily smoothed; the
layers are often referred to as coarse scale versions of the image.

With a little notation, we can write simple expressions for the layers of a
Gaussian pyramid. The operator S↓ downsamples an image; in particular, the j,
kth element of S↓(I) is the 2j, 2kth element of I. The nth level of a pyramid P (I)
is denoted P (I)n. With this notation, we have

PGaussian(I)n+1 = S↓(Gσ ∗ ∗PGaussian(I)n)
= (S↓Gσ)PGaussian(I)n)

(where we have written Gσ for the linear operator that takes an image to the
convolution of that image with a Gaussian). The finest scale layer is the original
image:

PGaussian(I)1 = I.

Set the finest scale layer to the image
For each layer, going from next to finest to coarsest
Obtain this layer by smoothing the next finest
layer with a Gaussian, and then subsampling it

end

Algorithm 12.2: Forming a Gaussian Pyramid.

12.5.2 Applications of Scaled Representations

Gaussian pyramids are useful because they make it possible to extract representa-
tions of different types of structure in an image. We give three applications here;
in section ??, we describe another method that can be sped up using a Gaussian
pyramid.

Search over Scale
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512 256 128 64 32 16 8

FIGURE 12.13: A Gaussian pyramid of images running from 512x512 to 8x8. On
the top row, we have shown each image at the same size (so that some have bigger
pixels than others), and the lower part of the figure shows the images to scale.
Notice that if we convolve each image with a fixed-size filter, it responds to quite
different phenomena. An 8x8 pixel block at the finest scale might contain a few
hairs; at a coarser scale, it might contain an entire stripe; and at the coarsest scale,
it contains the animal’s muzzle.

Numerous objects can be represented as small image patterns. A standard
example is a frontal view of a face. Typically, at low resolution, frontal views of
faces have a quite distinctive pattern: the eyes form dark pools, under a dark bar
(the eyebrows), separated by a lighter bar (specular reflections from the nose), and
above a dark bar (the mouth). There are various methods for finding faces that
exploit these properties (see Chapter ??). These methods all assume that the face
lies in a small range of scales. All other faces are found by searching a pyramid. To
find bigger faces, we look at coarser scale layers, and to find smaller faces we look
at finer scale layers. This useful trick applies to many different kinds of feature, as
we see in the chapters that follow.

Spatial Search

One application is spatial search, a common theme in computer vision. Typi-
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cally, we have a point in one image and are trying to find a point in a second image
that corresponds to it. This problem occurs in stereopsis—where the point has
moved because the two images are obtained from different viewing positions—and
in motion analysis—where the image point has moved, either because the camera
moved or because it is on a moving object.

Searching for a match in the original pairs of images is inefficient because we
might have to wade through a great deal of detail. A better approach, which is now
pretty much universal, is to look for a match in a heavily smoothed and resampled
image and then refine that match by looking at increasingly detailed versions of the
image. For example, we might reduce 1024× 1024 images down to 4× 4 versions,
match those, and then look at 8 × 8 versions (because we know a rough match, it
is easy to refine it); we then look at 16 × 16 versions, and so on, all the way up
to 1024 × 1024. This gives an extremely efficient search because a step of a single
pixel in the 4 × 4 version is equivalent to a step of 256 pixels in the 1024 × 1024
version. This strategy is known as coarse-to-fine matching.

Feature Tracking

Most features found at coarse levels of smoothing are associated with large,
high-contrast image events because for a feature to be marked at a coarse scale, a
large pool of pixels need to agree that it is there. Typically, finding coarse-scale
phenomena misestimates both the size and location of a feature. For example,
a single pixel error in a coarse-scale image represents a multiple pixel error in a
fine-scale image.

At fine scales, there are many features, some of which are associated with
smaller, low-contrast events. One strategy for improving a set of features obtained
at a fine scale is to track features across scales to a coarser scale and accept only the
fine-scale features that have identifiable parents at a coarser scale. This strategy,
known as feature tracking in principle, can suppress features resulting from textured
regions (often referred to as noise) and features resulting from real noise.

12.6 NOTES

We don’t claim to be exhaustive in our treatment of linear systems, but it wouldn’t
be possible to read the literature on filters in vision without a grasp of the ideas in
this chapter. We have given a fairly straightforward account here; more details on
these topics can be found in the excellent books by ?, [?].

Real Imaging Systems versus Shift Invariant Linear Systems

Imaging systems are only approximately linear. Film is not linear—it does not
respond to weak stimuli, and it saturates for bright stimuli—but one can usually
get away with a linear model within a reasonable range. CCD cameras are linear
within a working range. They give a small, but nonzero response to a zero input
as a result of thermal noise (which is why astronomers cool their cameras) and
they saturate for very bright stimuli. CCD cameras often contain electronics that
transforms their output to make them behave more like film because consumers
are used to film. Shift invariance is approximate as well because lenses tend to
distort responses near the image boundary. Some lenses—fish-eye lenses are a good
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example—are not shift invariant.

Scale

There is a large body of work on scale space and scaled representations. The origins
appear to lie with ? and the idea was developed by ?. Since then, a huge literature
has sprung up (one might start with ? or ?). We have given only the briefest
picture here because the analysis tends to be quite tricky. The usefulness of the
techniques is currently hotly debated, too.

Image pyramids are useful. The next step from a Gaussian pyramid, which is
a highly redundant, is the Laplacian pyramid, originally described by ?. This is an
efficient representation. Instead of storing each image level of a Gaussian pyramid,
one stores the difference between the observed level of the Gaussian pyramid and
that predicted by the upsampling the coarser scale level. Because coarse scale
images are moderately good representations of finer scale images, this difference is
small. As a result, there are numerous zeros in the pyramid, and it is a convenient
image code.

Anisotropic Scaling

One important difficulty with scale space models is that the symmetric Gaussian
smoothing process tends to blur out edges rather too aggressively for comfort. For
example, if we have two trees near one another on a skyline, the large-scale blobs
corresponding to each tree might start merging before all the small-scale blobs
have finished. This suggests that we should smooth differently at edge points than
at other points. For example, we might make an estimate of the magnitude and
orientation of the gradient. For large gradients, we would then use an oriented
smoothing operator that smoothed aggressively perpendicular to the gradient and
little along the gradient; for small gradients, we might use a symmetric smoothing
operator. This idea used to be known as edge-preserving smoothing.

In the modern, more formal version, due to ?, we notice the scale space
representation family is a solution to the diffusion equation

∂Φ

∂σ
=
∂2Φ

∂x2
+
∂2Φ

∂y2

= ∇2Φ,

with the initial condition

Φ(x, y, 0) = I(x, y)

If this equation is modified to have the form

∂Φ

∂σ
= ∇ · (c(x, y, σ)∇Φ)

= c(x, y, σ)∇2Φ+ (∇c(x, y, σ)) · (∇Φ)

with the same initial condition, then if c(x, y, σ) = 1, we have the diffusion equation
we started with, and if c(x, y, σ) = 0, there is no smoothing. We assume that c
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does not depend on σ. If we knew where the edges were in the image, we could
construct a mask that consisted of regions where c(x, y) = 1, isolated by patches
along the edges where c(x, y) = 0; in this case, a solution would smooth inside each
separate region, but not over the edge. Although we do not know where the edges
are—the exercise would be empty if we did—we can obtain reasonable choices of
c(x, y) from the magnitude of the image gradient. If the gradient is large, then c
should be small and vice versa. There is a substantial literature dealing with this
approach; a good place to start is ?.



C H A P T E R 13

Mapping Images to Image-Like
Things

13.1 ENCODERS, DECODERS AND AUTOENCODERS

13.1.1 Upsampling Layers

13.1.2 AutoEncoders and Denoising

13.1.3 Losses and Training Procedures

13.1.4 A Simple AutoEncoder

13.2 SPECIALIZED LOSSES

13.2.1 Perceptual Loss

13.2.2 Adversarial Losses

13.2.3 Cyclic Losses

13.3 EQUIVARIANCE AND AVERAGING

13.4 APPLICATIONS

13.4.1 Depth from Single Images

13.4.2 Normal from Single Images

13.4.3 Light Images from Dark

13.4.4 Image Superresolution

13.4.5 Albedo

13.4.6 CGI2Real

13.4.7 Colorization

150



C H A P T E R 14

Generating Images and Video from
Random Numbers

14.1 VARIATIONAL AUTO ENCODERS

14.2 GENERATIVE ADVERSARIAL NETWORKS

14.3 STYLE MAPPING WITH AN IMAGE GENERATOR

14.4 DIFFUSION METHODS

14.5 BLENDING, INTERPOLATING AND CONTROLLING GENERATORS

151



152 Chapter 14 Generating Images and Video from Random Numbers



P A R T S I X

GEOMETRY WITH ONE CAMERA

153



C H A P T E R 15

Camera Matrices

15.1 SIMPLE PROJECTIVE GEOMETRY

Draw a pattern on a plane, then view that pattern with a perspective camera. The
distortions you observe are more interesting than are predicted by simple rotation,
translation and scaling. For example, if you drew parallel lines, you might see lines
that intersect at a vanishing point – this doesn’t happen under rotation, translation
and scaling. Projective geometry can be used to describe the set of transformations
produced by a perspective camera.

15.1.1 Homogeneous Coordinates and Projective Spaces

The coordinates that every reader will be most familiar with are known as affine
coordinates. In affine coordinates, a point on the plane is represented by 2 numbers,
a point in 3D is represented with 3 numbers, and a point in k dimensions is rep-
resented with k numbers. Now adopt the convention that a point in k dimensions
is represented by k+ 1 numbers not all of which are zero. Two representations X1

and X2 represent the same point (write X1 ≡ X2) if there is some λ ̸= 0 so that

X1 = λX2.

These coordinates are known as homogeneous coordinates, and will offer a particu-
larly convenient representation of perspective projection.

Remember this: In homogeneous coordinates, a point in a k dimen-
sional space is represented by k + 1 coordinates (X1, . . . , Xk+1), together
with the convention that

(X1, . . . , Xk+1) ≡ λ(X1, . . . , Xk+1) for λ ̸= 0.

The space represented by k+1 homogeneous coordinates is different from the
space represented by k affine coordinates in important but subtle ways. We start
with a 1D space. In homogenous coordinates, we represent a point on a 1D space
with two coordinates, so (X1, X2) (by convention, homogeneous coordinates are
written with capital letters). Two sets of homogeneous coordinates (U1, U2) and
(V1, V2) represent different points if there is no λ ̸= 0 such that λ(U1, U2) = (V1, V2).
Now consider the set of all the distinct points, which is known as the projective line.
Any point on an ordinary line (the affine line) has a corresponding point on the
projective line. In affine coordinates, a point on the affine line is given by a single
coordinate x. This point can be identified with the point on the projective line

154
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given by (X1, X2) = λ(x, 1) (for λ ̸= 0) in homogeneous coordinates. Notice that
the projective line has an “extra point” – (X1, 0) are the homogeneous coordinates
of a single point (check this), but this point would be “at infinity” on the affine
line.

Example: 15.1 Seeing the point at infinity

You can actually see the point at infinity. Recall that lines that are
parallel in the world can intersect in the image at a vanishing point.
This vanishing point turns out to be the image of the point “at infinity”
on the parallel lines. For example, on the plane y = −1 in the camera
coordinate system, draw two lines (1,−1, t) and (−1,−1, t) (these lines
are in Figure 36.2). Now these lines project to (f1/t, f(−1/t), f) and
(f(−1/t), f(−1/t), f) on the image plane, and their vanishing point is
(0, 0, f). This vanishing point occurs when the parameter t reaches
infinity. The exercises work this example in homogeneous coordinates.

There isn’t anything special about the point on the projective line given by
(X1, 0). You can see this by identifying x on the affine line with (X1, X2) = λ(1, x)
(for λ ̸= 0). Now (X1, 0) is a point like any other, and (0, X2) is “at infinity”. A
little work establishes that there is a 1-1 mapping between the projective line and
a circle (exercises).

Higher dimensional spaces follow the same pattern. In affine coordinates, a
point in a k dimensional affine space (eg an affine plane; affine 3D space; etc)
is given by k coordinates (x1, x2, . . . , xk). The space described by k + 1 homo-
geneous coordinates is a projective space (a projective plane; projective 3D space;
etc). A point (x1, x2, . . . , xk) in a k dimensional affine space can be identified with
(X1, X2, . . . , Xk+1) = λ(x1, x2, . . . , xk, 1) (for λ ̸= 0) in the k dimensional projec-
tive space. The points in the projective space given by (X1, X2, . . . , 0) have no
corresponding points in the affine space. Notice that this set of points is a k − 1
dimensional space in homogeneous coordinates. When k = 2, this set is a projective
line, and is referred to as the line at infinity, and the whole space is known as the
projective plane. As the exercises show, you can see the line at infinity: the horizon
of a plane in the image is actually the image of the line at infinity in that plane.

When k = 3, this set is itself a projective plane, and is known as the plane
at infinity; the whole space is sometimes known as projective 3-space. Notice this
means that 3D projective space is obtained by “sewing” a projective plane to the
3D affine space we are accustomed to. The piece of the projective space “at infinity”
isn’t special, using the same argument as above. The particular line (resp. plane)
that is “at infinity” is chosen by the homogeneous coordinate you divide by. There
is an established convention in computer vision of dividing by the last homogeneous
coordinate and talking about the line at infinity and the plane at infinity.
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Remember this: The k dimensional space represented by k + 1 ho-
mogeneous coordinates is a projective space. You can represent a point
(x1, . . . , xk in affine k space in this projective space as (x1, . . . , xk, 1). Not
every point in the projective space can be obtained like this – the points
(X1, . . . , Xk, 0) are “extra”. These points form a projective k − 1 space
which is thought of as being “at infinity”. Important cases are k = 1 (the
projective line with a point at infinity); k = 2 (the projective plane with a
line at infinity).

15.1.2 Lines and Planes in Projective Space

Lines on the affine plane form one important example of homogeneous coordinates.
A line is the set of points (x, y) where ax+ by+ c = 0 . We can use the coordinates
(a, b, c) to represent a line. If (d, e, f) = λ(a, b, c) for λ ̸= 0 (which is the same as
(d, e, f) ≡ (a, b, c)), then (d, e, f) and (a, b, c) represent the same line. This means
the coordinates we are using for lines are homogeneous coordinates, and the family
of lines in the affine plane is a projective plane. Notice that encoding lines using
affine coordinates must leave out some lines. For example, if we insist on using
(u, v, 1) = (a/c, b/c, 1) to represent lines, the corresponding equation of the line
would be ux + vy + 1 = 0. But no such line can pass through the origin – our
representation has left out every line through the origin.

Lines on the projective plane work rather like lines on the affine plane. Write
the points on our line using homogeneous coordinates to get

(x, y, 1) = (X1/X3, X2/X3, 1)

or equivalently (X1, X2, X3) where X1 = xX3, X2 = yX3. Substitute to find the
equation of the corresponding line on the projective plane, aX1 + bX2 + cX3 = 0,
or aTX = 0. There is an interesting point here. A set of three homogenous
coordinates can be used to describe either a point on the projective plane or a line
on the projective plane.

Remember this: A line on the projective plane is the set of points X
such that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
line.
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Remember this: Write P1 and P2 for two points on the projective
plane that are represented in homogeneous coordinates and are different.
From the exercises, the line through these two points is given by

a = P1 ×P2.

From the exercises, a parametrization of this line is given by

UP1 + VP2.

Planes in projective 3-space work rather like lines on the projective plane.
The locus of points (x, y, z) where ax+ by+ cz + d = 0 is a plane in affine 3-space.
Because (a, b, c, d) and λ(a, b, c, d) give the same plane, we have that (a, b, c, d) are
homogeneous coordinates for a plane in 3D. We can write the points on the plane
using homogeneous coordinates to get

(x, y, z, 1) = (X1/X4, X2/X4, X3/X4, 1)

or equivalently

(X1, X2, X3, X4) where X1 = xX4, X2 = yX4, X3 = zX4.

Substitute to find the equation of the corresponding plane in projective 3-space
aX1 + bX2 + cX3 + dX4 = 0 or aTX = 0. A set of four homogenous coordinates
can be used to describe either a point in projective 3-space or a plane in projective
3-space.

Remember this: A plane in projective 3D is the set of points X such
that

aTX = 0.

Here a is a vector of homogeneous coordinates specifying the particular
plane.
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Remember this: Write P1, P2 and P3 for three points in projective
3D that are represented in homogeneous coordinates, are different points,
and are not collinear. From the exercises, the plane through these points is
given by

a = NullSpace

 PT
1

PT
2

PT
3

 .

From the exercises, a parametrization of this plane is given by

UP1 + VP2 +WP3.

15.1.3 Homographies

Write X = (X1, X2, X3) for the coordinates of a point on the projective plane. Now
consider V = MX, where M is a 3× 3 matrix with non-zero determinant. We can
interpret V as a point on the projective plane, and in fact M is a mapping from
the projective plane to itself. There is something to check here. Write M(X) for
the point that X maps to, etc. Because X ≡ λX (for λ ̸= 0), we must have that
M(X) ≡ M(λX) otherwise one point would map to several points. But

M(X) = MX ≡ λMX = M(λX)

so M is a mapping. Such mappings are known as homographies. You should check
thatM(−1) is the inverse ofM, and is a homography. You should check thatM and
λM represent the same homography. Homographies are interesting to us because
any view of a plane by a perspective (or orthographic) camera is a homography,
and a variety of useful tricks rest on understanding homographies.

Any homography will map every line to a line. Write a for the line in the
projective plane whose points satisfy aTX = 0. Now apply the homography M to
those points to get V = MX. Notice that

aTM(−1)V = aTX = 0,

so that the line a transforms to the line M(−T )a. Homographies are easily inverted.

Remember this: A homography is a mapping from the projective plane
to the projective plane. Assume M is a 3×3 matrix with non-zero determi-
nant; then the homography represented by M maps the point with homoge-
neous coordinates X to the point with homogeneous coordinates MX. The
two matrices M and λM represent the same homography, and the inverse
of this homography is represented by M−1. The homography represented by
M will map the line represented by a to the line represented by M−Ta.
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15.2 CAMERA MATRICES AND TRANSFORMATIONS

15.2.1 Perspective and Orthographic Camera Matrices

In affine coordinates we wrote perspective projection as (X,Y, Z) → (X/Z, Y/Z)
(remember, we will account for f later). Now write the 3D point in homogeneous
coordinates, so

X = (X1, X2, X3, X4) where X1 = XX4, etc.

Write the point in the image plane in homogeneous coordinates as well, to obtain

I = (I1, I2, I3) where I1 = (X/Z)I3 and I2 = (Y/Z)I3.

So we could use

I = (X,Y, Z) ≡ (X/Z, Y/Z, 1) ≡ (X1/X4, X2/X4, X3/X4) ≡ (X1, X2, X3).

Notice that (X,Y, Z) is a natural choice of homogeneous coordinates for the point
in the image plane. This means that, in homogeneous coordinates, we can represent
perspective projection as

(X1, X2, X3, X4) → (X1, X2, X3) ≡ (X1, X2, X3).

or  I1
I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 1 0



X1

X2

X3

X4


where the matrix is known as the perspective camera matrix (write Cp). Notice
that this representation preserves the property that the focal point of the camera
cannot be imaged, and is the only such point. The focal point can be represented
in homogeneous coordinates by (0, 0, 0, T ), for T ̸= 0. This maps to (0, 0, 0), which
is meaningless in homogeneous coordinates. You should check no other point maps
to (0, 0, 0).

Remember this: The perspective camera matrix is

Cp =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

In affine coordinates, in the right coordinate system and assuming that the
scale is chosen to be one, scaled orthographic perspective can be written as (X,Y, Z) →
(X,Y ). Following the argument above, we obtain in homogeneous coordinates I1

I2
I3

 =

 1 0 0 0
0 1 0 0
0 0 0 1



X1

X2

X3

X4
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where the matrix is known as the orthographic camera matrix (write Co).

Remember this: The orthographic camera matrix is

Co =

 1 0 0 0
0 1 0 0
0 0 0 1



15.2.2 Cameras in World Coordinates

The camera matrix describes a perspective (resp. orthographic) projection for a
camera in a specific coordinate system – the focal point is at the origin, the camera
is looking down the z-axis, and so on. In the more general case, the camera is placed
somewhere in world coordinates looking in some direction, and we need to account
for this. Furthermore, the camera matrix assumes that points in the camera are
reported in a specific coordinate system. The pixel locations reported by a practical
camera might not be in that coordinate system. For example, many cameras place
the origin at the top left hand corner. We need to account for this effect, too.

A general perspective camera transformation can be written as:

 I1
I2
I3

 =


Transformation
mapping image
plane coords to
pixel coords

 Cp


Transformation
mapping world
coords to camera

coords



X1

X2

X3

X4



= TiCpTe


X1

X2

X3

X4


The parameters of Ti are known as camera intrinsic parameters or camera intrin-
sics, because they are part of the camera, and typically cannot be changed. The
parameters of Te are known as camera extrinsic parameters or camera extrinsics,
because they can be changed.

15.2.3 Camera Extrinsic Parameters

The transformation Te represents a rigid motion (equivalently, a Euclidean transfor-
mation, which consists of a 3D rotation and a 3D translation). In affine coordinates,
any Euclidean transformation maps the vector x to

Rx+ t

where R is an appropriately chosen 3D rotation matrix (check the endnotes if
you can’t recall) and t is the translation. Any map of this form is a Euclidean
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FIGURE 15.1: A perspective camera (in its own coordinate system, given by X, Y
and Z axes) views a point in world coordinates (given by (u, v, w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u, v, w) to (s, t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.

transformation. You should confirm the transformation that maps the vector X
representing a point in 3D in homogeneous coordinates to

λ

[
R t
0T 1

]
X

represents a Euclidean transformation, but in homogeneous coordinates. It follows
that any map of this form is a Euclidean transformation. Because Te represents
a Euclidean transformation, it must have this form. The exercises explore some
properties of Te.

15.2.4 Camera Intrinsic Parameters

Camera intrinsic parameters must model a possible coordinate transformation in
the image plane from projected world coordinates (write (x, y)) to pixel coordinates
(write (u, v)), together with a possible change of focal length. This change is caused
by the image plane being further away from, or closer to, the focal point. The
coordinate transformation is not arbitrary (Figure 15.2). Typically, the origin of
the pixel coordinates is usually not at the camera center. Write ∆x for the step in
the image plane from pixel (i, j) to (i+1, j) and ∆y for the step to (i, j+1). These
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are vectors parallel to the camera coordinate axes. The vector ∆x may not be
perpendicular to the vector ∆y, causing skew. For many cameras, ||∆x || is different
from ||∆y || – such cameras have non-square pixels, and ||∆x ||/||∆y || is known as
the aspect ratio of the pixel. Furthermore, ||∆x || is not usually one unit in world
coordinates.

There is one tricky point here. Rotating the world about the Z axis has
an effect equivalent to rotating the camera coordinate system (Figure ??). This
means we cannot tell whether this rotation is the result of a change in the extrinsics
(the world rotated) or the intrinsics (the camera coordinate system rotated). By
convention, there is no rotation in the intrinsics, so a pure rotation of the image is
always the result of the world rotating.

There are two possible parametrizations of camera intrinsics. Recall f is the
focal length of the camera. Write (c′x, c

′
y) for the location of the camera center in

pixel coordinates; a for the aspect ratio of the pixels ; and k′ for the skew. Then
Ti is parametrized as ||∆x || k′ c′x

0 ||∆y || c′y
0 0 1/f

 ≡

 af ||∆y || fk′ fc′x
0 f ||∆y || fc′y
0 0 1


Notice in this case we are distinguishing between scaling resulting from ||∆y || and
scaling resulting from the focal length. This is unusual, but can occur. More usual
is to conflate these effects and parametrize the intrinsics as as k cx

0 s cy
0 0 1


where s = f ||∆y ||, a = ||∆x ||∆y, k = fk′, cx = fc′x, cy = fc′y.

Remember this: A general perspective camera can be written in
homogeneous coordinates as:

 I1
I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4



=

 as k cx
0 s cy
0 0 1

 1 0 0 0
0 1 0 0
0 0 −1 0

[ R t
0T 1

]
X1

X2

X3

X4


where R is a rotation matrix.
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Z C  , Cx xy

y
u

v

FIGURE 15.2: The camera reports pixel values in pixel coordinates, which are not
the same as world coordinates. The camera intrinsics represent the transformation
between world coordinates and pixel coordinates. On the left, a camera (as in
Figure 2.1), with the camera coordinate system shown in heavy lines. On the right,
a more detailed view of the image plane. The camera coordinate axes are marked
(u, v) and the image coordinate axes (x, y). It is hard to determine f from the
figure, and we will conflate scaling due to f with scaling resulting from the change
to camera coordinates. The camera coordinate system’s origin is not at the camera
center, so (cx, cy) are not zero. I have marked unit steps in the coordinate system
with ticks. Notice that the v-axis is not perpendicular to the u-axis (so k - the skew
- is not zero). Ticks in the u, v axes are not the same distance apart as ticks on the
x, y axes, meaning that s is not one. Furthermore, u ticks are further apart than v
ticks, so that a is not one.

By the arguments above, a general orthographic camera transformation can
be written as:  I1

I2
I3

 = Ti

 1 0 0 0
0 1 0 0
0 0 0 1

 Te


X1

X2

X3

X4


PROBLEMS

15.1. We construct the vanishing point of a pair of parallel lines in homogeneous
coordinates.
(a) Show that the set of points in homogeneous coordinates in 3D given by

(s,−s, t, s) (for s, t parameters) form a line in 3D.
(b) Now image the line (s,−s, t, s) in 3D in a standard perspective camera

with focal length 1. Show the result is the line (s,−s, t) in the image
plane.

(c) Now image the line (−s,−s, t, s) in 3D in a standard perspective camera
with focal length 1. Show the result is the line (−s,−s, t) in the image
plane.

(d) Show that the lines (s,−s, t) and (−s,−s, t) intersect in the point (0, 0, t).
15.2. We construct the horizon of a plane for a standard perspective camera with
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focal length 1. Write a = [a1, a2, a3, a4]
T for the coefficients of the plane, so

that for every point X on the plane we have aTX = 0.
(a) Show that the plane given by u = [a1, a2, a3, 0] is parallel to the plane

given by a, and passes through (0, 0, 0, 1).
(b) Write the points on the image plane (u, v, 1) ≡ (U, V,W ) in homogeneous

coordinates. Show that the horizon of the plane is the set of points u in
the image plane given by lTu = 0, where l = [a1, a2, a3]

T .
15.3. A pinhole camera with focal point at the origin and image plane at z = f

views two parallel lines u+ tw and v + tw. Write w = [w1, w2, w3]
T , etc.

(a) Show that the vanishing point of these lines, on the image plane, is given
by (f w1

w3
, f w2

w3
).

(b) Now we model a family of pairs of parallel lines, by writing w(r, s) =
ra + sb, for any (r, s). In this model, u + tw(r, s) and v + tw(r, s) are
the pair of lines, and (r, s) chooses the direction. First, show that this
family of vectors lies in a plane. Now show that the vanishing point for
the (r, s)’th pair is (f ra1+sb1

ra3+sb3
, f ra2+sb2

ra3+sb3
).

(c) Show that the family of vanishing points (f ra1+sb1
ra3+sb3

, f ra2+sb2
ra3+sb3

) lies on a

straight line in the image. Do this by constructing c such that cT a =
cTb = 0. Now write (x(r, s), y(r, s)) = (−f ra1+sb1

ra3+sb3
,−f ra2+sb2

ra3+sb3
) and

show that c1x(r, s) + c2y(r, s) + c3 = 0.
15.4. All points on the projective plane with homogeneous coordinates (U, V, 0) lie

“at infinity” (divide by zero). As we have seen, these points form a projective
line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).

(b) A homography M =
[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective plane.

Show that the line whose coefficients are v3 maps to the line at infinity.
(c) Now write the homography as M =

[
m′

1,m
′
2,m

′
3

]
(so m′ are columns).

Show that the homography maps the points at infinity to a line given in
parametric form as sm′

1 + tm′
2.

(d) Now write n for a non-zero vector such that nTm′
1 = nTm′

2 = 0. Show
that, for any point x on the line given in parametric form as sm′

1 + tm′
2,

we have nTx = 0. Is n unique?
(e) Use the results of the previous subexercises to show that for any given line,

there are some homographies that map that line to the line at infinity.
(f) Use the results of the previous subexercises to show that for any given

line, there are some homographies that map the line at infinity to that
line.

15.5. We will show that there is no significant difference between choosing a right-
handed camera coordinate system and a left-handed camera coordinate system.
Notice that, in a right handed camera coordinate system (where the camera
looks down the negative z-axis rather than the positive z-axis) the image plane
is at z = −f .
(a) Show that, in a right-handed coordinate system, a pinhole camera maps

(X,Y, Z) → (−fX/Z,−fY/Z).

(b) Show that the argument in the text yields a camera matrix of the form

C′p =

 1 0 0 0
0 1 0 0
0 0 −1/f 0

 .
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(c) Show that, if one allows the scale in Ti to be negative, one could still use

Cp =

 1 0 0 0
0 1 0 0
0 0 1/f 0


as a camera matrix.



C H A P T E R 16

Using Camera Models

16.1 CAMERA CALIBRATION FROM A 3D REFERENCE

Camera calibration involves estimating the intrinsic parameters of the camera, and
perhaps lens parameters if needed, from one or more images. There are numer-
ous strategies, all using versions of the following recipe: build a calibration object,
where the positions of some points (calibration points) are known; view that object
from one or more viewpoints; obtain the image locations of the calibration points;
and solve an optimization problem to recover camera intrinsics and perhaps lens
parameters. As one would expect, much depends on the choice of calibration ob-
ject. If all the calibration points sit on an object, the extrinsics will yield the pose
(for position and orientation) of the object with respect to the camera. We use a
two step procedure: formulate the optimization problem, then find a good starting
point.

16.1.1 Formulating the Optimization Problem

The optimization problem is relatively straightforward to formulate. Notation is
the main issue. We have N reference points si = [sx,i, sy,i, sz,i] with known position
in some reference coordinate system in 3D. The measured location in the image for
the i’th such point is t̂i =

[
t̂x,i, t̂y,i

]
. There may be measurement errors, so the

t̂i = ti + ξi, where ξi is an error vector and ti is the unknown true position of the
image point. We will assume the magnitude of error does not depend on direction in
the image plane (it is isotropic), so it is natural to minimize the squared magnitude
of the error ∑

i

ξTi ξi. (16.1)

The main issue here is writing out expressions for ξi in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te for the
extrinsic transformation, whose u, v’th component will be euv. Recalling that Ti is
upper triangular, and engaging in some manipulation, we obtain∑

i

ξTi ξi =
∑
i

(tx,i − px,i)
2 + (ty,i − py,i)

2 (16.2)

where

px,i =
i11gx,i + i12gy,i + i13gz,i

gz,3

py,i =
i22gx,i + i23gz,i

gz,i

166
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and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

(which you should check as an exercise). This is a constrained optimization problem,
because Te is a Euclidean transformation. The constraints here are

1−
∑
v

e21v = 0 and 1−
∑
v

e22v = 0 and 1−
∑
v

e23v = 0∑
v

e1ve2v = 0 and
∑
v

e1ve3v = 0 and 1−
∑
v

e2ve3v = 0 .

We might just throw this into a constrained optimizer (review Section 36.2), but
good behavior requires a good start point. This can be obtained by a little ma-
nipulation, which I work through in the next section. Some readers may prefer to
skip this at first (or even higher) reading because it’s somewhat specialized, but it
shows how the practical application of some tricks worth knowing.

16.1.2 Setting up a Start Point

Write CT
j for the j’th row of the camera matrix, and Si = [sx,i, sy,i, sz,i, 1]

T
for

homogeneous coordinates representing the i’th point in 3D. Then, assuming no
errors in measurement, we have

t̂x,i =
CT

1 Si

CT
3 Si

and t̂y,i =
CT

2 Si

CT
3 Si

, (16.3)

which we can rewrite as

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0. (16.4)

We now have two homogenous linear equations in the camera matrix elements for
each pair (3D point, image point). There are a total of 12 degrees of freedom in the
camera matrix, meaning we can recover a least squares solution from six point pairs.
The solution will have the form λP where λ is an unknown scale and P is a known
matrix. This is a natural consequence of working with homogeneous equations, but
also a natural consequence of working with homogeneous coordinates. You should
check that if P is a projection from projective 3D to the projective plane, λP will
yield the same projection as long as λ ̸= 0.

This is enough information to recover the focal point of the camera. Recall
that the focal point is the single point that images to [0, 0, 0]

T
. This means that

if we are presented with a 3 × 4 matrix claiming to be a camera matrix, we can
determine what the focal point of that camera is without fuss – just find the null
space of the matrix. Notice that we do not need to know λ to estimate the null
space.
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Remember this: Given a 3 × 4 camera matrix P, the homogeneous
coordinates of the focal point of that camera are given by X, where PX =
[0, 0, 0]

T

There is an important relationship between the focal point of the camera and
the extrinsics. Assume that, in the world coordinate system, the focal point can be

represented by
[
fT , 1

]T
. This point must be mapped to [0, 0, 0, 1]

T
by Te. Because

we can recover f from P easily, we have an important constraint on Te, given in the
box.

Remember this: Assume camera matrix P has null space λu =

λ
[
fT , 1

]T
. Then we must have Teu = [0, 0, 0, 1]

T
, so we must have

Te =
[

R −Rf
0T 1

]
(16.5)

This means that, if we know R, we can recover the translation from the focal
point. We must now recover the intrinsic transformation and R from what we
know.

λP = Ti

 1 0 0 0
0 1 0 0
0 0 1 0

[ R −Rf
0T 1

]
=
[
TiR −TiRf

]
(16.6)

We do not know λ, but we do know P. Now write Pl for the left 3× 3 block of P,
and recall that Ti is upper triangular and R orthonormal. The first question is the
sign of λ. We expect Det (R) = 1, and Det (Ti) > 0, so Det (Pl) should be positive.
This yields the sign of λ – choose a sign s ∈ {−1, 1} so that Det (sPl) is positive.

We can now factor sPl into an upper triangular matrix T and an orthonormal
matrix Q. This is an RQ factorization (Section 36.2). Recall we could not distin-
guish between scaling caused by the focal length and scaling caused by pixel scale,
so that

Ti =

 as k cx
0 s cy
0 0 1

 (16.7)

In turn, we have λ = s(1/t33), cy = (t23/t33), s = (t22/t33), cx = (t13/t33), k =
(t12/t33), and a = (t11/t22).
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Procedure: 16.1 Calibrating a Camera using 3D Reference Points

For N reference points si = [sx,i, sy,i, sz,i] with known position in some
reference coordinate system in 3D, write the measured location in the
image for the i’th such point t̂i =

[
t̂x,i, t̂y,i

]
. Now minimize∑

i

ξTi ξi =
∑
i

(t̂x,i − px,i)
2 + (t̂y,i − py,i)

2 (16.8)

where

px,i =
i11gx,i + i12gy,i + i13gi,3

gi,3

py,i =
i22gx,i + i23gi,3

gi,3

and

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34

subject to:

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

Use the start point of procedure 16.2
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Procedure: 16.2 Calibrating a Camera using 3D Reference Points: Start
Point

Estimate the rows of the camera matrix Ci using at least six points and

CT
3 Sit̂x,i −CT

1 Si = 0 and CT
3 Sit̂y,i −CT

2 Si = 0. (16.9)

Write λP for the 1D family of solutions to this set of homogeneous
linear equations, organized into 3×4 matrix form. Compute the vector
n =

[
fT , 1

]
such that Pn. Write Pl for the left 3×3 block of P. Choose

s ∈ {−1, 1} such that Det (sPl) > 0. Use RQ factorization to obtain
T and Q such that sPl = T Q. Then the start point for the intrinsic
parameters is: 

a
s
k
cx
cy

 =


(t11/t22)
(t22/t33)
(t12/t33)
(t13/t33)
(t23/t33)

 (16.10)

and for Te is: [
Q −Qf
0 1

]
. (16.11)

16.2 CALIBRATING THE EFFECTS OF LENS DISTORTION

Now assume the lens applies some form of geometric distortion, as in Section 36.2.
There are now strong standard models of the major lens distortions (Section 36.2).
We will now estimate lens parameters, camera intrinsics and camera extrinsics from
a view of a calibration object (as in Section 36.2; note the methods of Section 36.2
apply to this problem too). As in those sections, we use a two step procedure:
formulate the optimization problem (Section 36.2), then find a good starting point
(Section 36.2).

16.2.1 Modelling Geometric Lens Distortion

Geometric distortions caused by lenses are relatively easily modelled by assuming
the lens causes (x, y) in the image plane to map to (x+δx, y+δy) in the image plane.
We seek a model for δx, δy that has few parameters and that captures the main
effects. A natural model of barrel distortion is that points are “pulled” toward the
camera center, with points that are further from the center being “pulled” more.
Similarly, pincushion distortion results from points being “pushed” away from the
camera center, with distant points being pushed further (Figure ??).

Set up a polar coordinate system (r, θ) in the image plane using the image
center as the origin. The figure and description suggest that barrel and pincushion
distortion can be described by a map (r, θ) → (r + δr, θ). We model δr as a
polynomial in r. Brown and Conrady [] established the model δr = k1r

3 + k2r
5 as

sufficient for a wide range of distortions, and we use (r, θ) → (r + k1r
3 + k2r

5, θ)
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k  = -0.2 k  =  0.2k  = 0
1 1 1

k =-0.026

k =0

k = 0.026

2

2

2

FIGURE 16.1: The effects of k1 and k2 on a neutral grid (center), showing how
the parameters implement various barrel or pincushion distortions. Notice how k2
slightly changes the shape of the curves that k1 produces from straight lines in the
grid.

for unknown k1, k2. We must map this model to image coordinates to obtain a
map (x, y) → (x + δx, y + δy). Since cos θ = x/r, sin θ = y/r, we have (x, y) →
(x+ x(k1(x

2 + y2) + k2(x
2 + y2)2), y + y(k1(x

2 + y2) + k2(x
2 + y2)2)). Figure 16.1

shows distortions resulting from different choices of k1 and k2. This model is known
as a radial distortion model.

More sophisticated lens distortion models account for the lens being off-center.
This causes tangential distortion (Figure 16.2). The most commonly used model of
tangential distortion is a map (x, y) → (x+ p1(x

2 + y2 + 2x2) + 2p2xy, y+ p2(x
2 +

y2 + 2y2) + 2p1xy) (derived from []; more detail in, for example []).
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p  = -0.8 p  = 0 p  = 0.8

p  = -0.8

p  = 0

p  = 0.8

1 1 1

2

2

2

FIGURE 16.2: The effects of p1 and p2 on a neutral grid (center), showing how
the parameters implement various distortions. These parameters model effects that
occur because the lens is off-center; note the grid “turning away” from the lens.

Remember this: A full lens distortion model is(
x
y

)
→
(
x+ x(k1(x

2 + y2) + k2(x
2 + y2)2) + p1(x

2 + y2 + 2x2) + 2p2xy
y + y(k1(x

2 + y2) + k2(x
2 + y2)2) + p2(x

2 + y2 + 2y2) + 2p1xy

)
.

(16.12)
for k1, k2, p1, p2 parameters. It is common to ignore tangential distortion
and focus on radial distortion by setting p1 = p2 = 0.

16.2.2 Lens Calibration: Formulating the Optimization Problem

Again, the optimization problem is relatively straightforward to formulate. Write
t̂i = [tx,i, ty,i] for the measured x, y position in the image plane of the i’th reference
point. We have that t̂i = ti + ξi, where ξi is an error vector and ti is the true
(unknown) position of the i’th point. Again, assume the error is isotropic, so it is
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natural to minimize ∑
i

ξTi ξi. (16.13)

We obtain expressions for ξi,j in the appropriate coordinates as in Section 36.2, and
using the notation of that section, but now accounting for the effects of the lens.
We have ∑

i

ξTi ξi =
∑
i

(tx,i − lx,i)
2 + (ty,i − ly,i)

2 (16.14)

where

lx,i = px,i + px,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p1(p
2
x,i + p2y,i + 2p2x,i) + 2p2px,ipy,i

ly,i = py,i + py,i(k1(p
2
x,i + p2y,i) + k2(p

2
x,i + p2y,i)

2) + p2(p
2
x,i + p2y,i + 2p2y,i) + 2p1px,ipy,i

(which models the effect of the lens on the imaged points). The imaged points are

px,i =
i11gx,i + i12gy,i + i13gz,i

gz,i

py,i =
i22gx,i + i23gz,i

gz,i

and, as before, we have

gx,i = e11sx,i + e12sy,i + e13sz,i + e14

gy,i = e21sx,i + e22sy,i + e23sz,i + e24

gz,i = e31sx,i + e32sy,i + e33sz,i + e34.

(which you should check as an exercise). As before, this is a constrained opti-
mization problem, because Te is a Euclidean transformation. The constraints here
are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

As in Section 36.2, simply dropping this problem into a constrained optimizer is
not a particularly good approach. If we assume the lens distortion is minor, we
can obtain a start point for the intrinsics and the extrinsics using Section 36.2. We
then use those parameters, together with k1 = 0, k2 = 0, p1 = 0 and p2 = 0, as a
start point.
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Interest Points

One strategy for registering an image to another is to find interest points and
register those. Interest points have the following important properties:

� It must be possible to find them reasonably reliably, even when image bright-
ness changes.

� It must be possible to localize the point (ie tell where the point is) by looking
at an image window around the point. For example, a corner can be localized;
but a point along a straight edge can’t, because sliding a window around the
point along the edge leads to a new window that looks like the original.

� The location of the point must be covariant under at least some natural image
transformations. This means that, if the image is transformed, the point will
be found in an appropriate spot in the transformed image. Equivalently, the
points “stick to” objects in the image – if the camera moves, the point stays
on the object where it was, and so moves in the image. So if, for example, if
I2 is obtained by rotating I1, then there should be an interest point at each
location in I2 obtained by rotating the position of an interest point in I1.

� It must be possible to compute a description of the image in the neighborhood
of the point, so the point can be matched. Ideally, corresponding points in
different images will have similar descriptions, and different points will have
different images. To compute this description, we need to be able to construct
a neighborhood of the interest point that is covariant. So, for example, if the
image is zoomed in, the neighborhood in the image gets bigger; and if it is
zoomed out, the neighborhood gets smaller. Using a fixed size neighborhood
when the image zooms won’t work, because the neighborhood in the zoomed
in image will contain patterns that aren’t in the neighborhood in the zoomed
out image.

These properties are summarized in Figure ??. The direct constructions for interest
points are worth reviewing, because they expose how these properties are achieved.
Learned constructions are now competitive with direct constructions, and I describe
one in section 36.2.

17.1 DIRECT INTEREST POINT DETECTORS

17.1.1 Finding Corners

Interest points are usually constructed at corners, because they can be localized
and are quite easy to find with a straightforward detector. At a corner, we expect
two important effects. First, there should be large gradients. Second, in a small
neighborhood, the gradient orientation should swing sharply. We can identify cor-
ners by looking at variations in orientation within a window. In particular, the

174
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FIGURE 17.1: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (center). Top left, a detail from the
pencil points; top center, the response of the Harris corner detector, where more
positive values are lighter. The top right shows these overlaid on the original
image. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). Note that the detector is affected
by contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
bottom sequence shows corners for a detail of pencil ends. Notice that responses
are quite local, and there are a relatively small number of very strong corners. Steve
Gorton cO Dorling Kindersley, used with permission.

matrix

H =
∑

window

{
(∇I)(∇I)T

}
≈

∑
window

{
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I)
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I) (∂Gσ

∂y ∗ ∗I)(∂Gσ

∂y ∗ ∗I)

}

gives a good idea of the behavior of the orientation in a window. In a window of
constant gray level, both eigenvalues of this matrix are small because all the terms
are small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients run in other
directions. But in a corner window, both eigenvalues should be large.
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FIGURE 17.2: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. cO Dorling Kindersley, used with permission.

The Harris corner detector looks for local maxima of

det(H)− k(
trace(H)

2
)2

where k is some constant [?]; we used 0.5 for Figure 17.1. These local maxima are
then tested against a threshold. This tests whether the product of the eigenvalues
(which is det(H)) is larger than the square of the average (which is (trace(H)/2)2).
Large, locally maximal values of this test function imply the eigenvalues are both
big, which is what we want. Figure 17.1 illustrates corners found with the Harris
detector. This detector is unaffected by translation and rotation (Figure 17.2).

17.1.2 Building Neighborhoods

There are many ways of representing a neighborhood around an interesting cor-
ner. Methods vary depending on what might happen to the neighborhood. In
what follows, we will assume that neighborhoods are only translated, rotated, and
scaled (rather than, say, subjected to an affine or projective transformation), and
so without loss of generality we can assume that the patches are circular. We
must estimate the radius of this circle. There is technical machinery available for
the neighborhoods that result from more complex transformations, but it is more
intricate; see [].
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FIGURE 17.3: The scale of a neighborhood around a corner can be estimated by find-
ing a local extremum, in scale of the response at that point to a smoothed Laplacian
of Gaussian kernel. On the left, a detail of a piece of fencing. In the center, a
corner identified by an arrow (which points to the corner, given by a white spot
surrounded by a black ring). Overlaid on this image is a Laplacian of Gaussian
kernel, in the top right corner; dark values are negative, mid gray is zero, and
light values are positive. Notice that, using the reasoning of Section 12.3, this filter
will give a strong positive response for a dark blob on a light background, and a
strong negative response for a light blob on a dark background, so by searching for
the strongest response at this point as a function of scale, we are looking for the size
of the best-fitting blob. On the right, the response of a Laplacian of Gaussian at
the location of the corner, as a function of the smoothing parameter (which is plot-
ted in pixels). There is one extremal scale, at approximately 2 pixels. This means
that there is one scale at which the image neighborhood looks most like a blob (some
corners have more than one scale). cO Dorling Kindersley, used with permission.

To turn a corner into an image neighborhood, we must estimate the radius of
the circular patch (equivalently, its scale). The radius estimate should get larger
proportionally when the image gets bigger. For example, in a 2x scaled version
of the original image, our method should double its estimate of the patch radius.
This property helps choose a method. We could center a blob of fixed appearance
(say, dark on a light background) on the corner, and then choose the scale to be
the radius of the best fitting blob. An efficient way to do this is to use a Laplacian
of Gaussian filter.

The Laplacian of a function in 2D is defined as

(∇2f)(x, y) =
∂2f

∂x2
+
∂2f

∂y2
.

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator (if you’re not sure about this, you should check),
meaning that we could represent taking the Laplacian as convolving the image
with some kernel (which we write as K∇2). Because convolution is associative, we
have that

(K∇2 ∗ ∗(Gσ ∗ ∗I)) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇2Gσ) ∗ ∗I.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
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the Laplacian of the kernel used for smoothing. Figure 17.3 shows the resulting
kernel for Gaussian smoothing; notice that this looks like a dark blob on a light
background.

Imagine applying a smoothed Laplacian operator to the image at the center
of the patch. Write I for the image, ∇2

σ for the smoothed Laplacian operator with
smoothing constant σ, ↑k I for the the image with size scaled by k, (xc, yc) for
the coordinates of the patch center, and (xkc, ykc) for the coordinates of the patch
center in the scaled image. Assume that upscaling is perfect, and there are no
effects resulting from the image grid. This is fair because effects will be small for
the scales of interest for us. Then, we have

(∇2
kσ ↑k I)(xc, yc) = (∇2

σI)(xkc, ykc)

(this is most easily demonstrated by reasoning about the image as a continuous
function, the operator as a convolution, and then using the change of variables
formula for integrals). Now choose a radius r for the circular patch centered at
(xc, yc), such that

r(xc, yc) =
argmax

σ
∇2

σI(xc, yc)

(Figure 17.3). If the image is scaled by k, then this value of r will be scaled by
k too, which is the property we wanted. This procedure looks for the scale of the
best approximating blob. Notice that a Gaussian pyramid could be helpful here; we
could apply the same smoothed Laplacian operator to different levels of a pyramid
to get estimates of the scale.

As we have seen, orientation histograms are a natural representation of im-
age patches. However, we cannot represent orientations in image coordinates (for
example, using the angle to the horizontal image axis), because the patch we are
matching to might have been rotated. We need a reference orientation so all angles
can be measured with respect to that reference. A natural reference orientation is
the most common orientation in the patch. We compute a histogram of the gradi-
ent orientations in this patch, and find the largest peak. This peak is the reference
orientation for the patch. If there are two or more peaks of the same magnitude,
we make multiple copies of the patch, one at each peak orientation.

17.1.3 Describing Neighborhoods with Orientations

We know the center, radius, and orientation of a set of an image patch, and must
now represent it. Orientations should provide a good representation. They are
unaffected by changes in image brightness, and different textures tend to have
different orientation fields. The pattern of orientations in different parts of the
patch is likely to be quite distinctive. Our representation should be robust to small
errors in the center, radius, or orientation of the patch, because we are unlikely to
estimate these exactly right.

We must build features that can make it obvious what orientations are present,
and roughly where they are, but are robust to some rearrangement. One approach
is to represent the neighborhood with a histogram of the elements that appear
there. This will tell us what is present, but it confuses too many patterns with
one another. For example, all neighborhoods with vertical stripes will get mixed
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FIGURE 17.4: To construct a SIFT descriptor for a neighborhood, we place a grid
over the rectified neighborhood. Each grid is divided into a subgrid, and a gradient
estimate is computed at the center of each subgrid element. This gradient estimate
is a weighted average of nearby gradients, with weights chosen so that gradients
outside the subgrid cell contribute. The gradient estimates in each subgrid element
are accumulated into an orientation histogram. Each gradient votes for its orien-
tation, with a vote weighted by its magnitude and by its distance to the center of
the neighborhood. The resulting orientation histograms are stacked to give a single
feature vector. This is normalized to have unit norm; then terms in the normalized
feature vector are thresholded, and the vector is normalized again.
TODO: Source, Credit, Permission: SIFTPIC

up, however wide the stripe. The natural approach is to take histograms locally,
within subpatches of the neighborhood. This leads to a very important feature
construction.

A SIFT descriptor (for Scale Invariant Feature Transform) is constructed
out of image gradients, and uses both magnitude and orientation. The descriptor is
normalized to suppress the effects of change in illumination intensity. The descriptor
is a set of histograms of image gradients that are then normalized. These histograms
expose general spatial trends in the image gradients in the patch but suppress detail.
For example, if we estimate the center, scale, or orientation of the patch slightly
wrong, then the rectified patch will shift slightly. As a result, simply recording the
gradient at each point yields a representation that changes between instances of
the patch. A histogram of gradients will be robust to these changes. Rather than
histogramming the gradient at a set of sample points, we histogram local averages
of image gradients; this helps avoid noise.

There is now extensive experimental evidence that image patches that match one
another will have similar SIFT feature representations, and patches that do not will tend
not to.
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FIGURE 17.5: SuperPoint uses an encoder with two heads (left), one of which pre-
dicts the locations of interest points and the other of which predicts a descriptor.
The location finder assumes that there is at most one interest point per 8x8 image
tile, and predicts which (if any) location is that point. A basic location finder is
trained using a cross-entropy loss with a dataset of rendered images where interest
point locations are known (right).
TODO: Source, Credit, Permission

17.2 SUPERPOINT: A LEARNED INTEREST POINT DETECTOR

It turns out the list of properties of interest points is crisp enough that one can
learn an interest point finder, and learned interest point finders now are dominant.
SuperPoint uses a network architecture that is adapted to fast computation of points
and descriptors, with a mixture of learned and non-learned components. This is
trained in a series of steps. The first builds an elementary interest point finder.
The second uses a clever trick with image transformations to significantly improve
the interest point finder. The third refines point positions and descriptors with a
matching loss.

17.2.1 Network Architecture

First, pass the image through an encoder, which encodes the image with series
of convolutional layers, non-linear layers, and three 2 × 2 downsampling layers, so
that it takes an H ×W image and produces an H/8 ×W/8 × 256 feature block.
This block goes to two heads. One finds interest points, the other describes them.
The interest point finder is trained discriminatively, by dividing the image into a
grid of H/8 ×W/8 tiles (each tile is 8 × 8 pixels). Now assume there is at most
one interest point in any tile. A 65 dimensional one-hot vector encodes where the
interest point is if there is one (there are 64 locations for the point, and the last
component is one if there isn’t a point). The interest point finder maps the original
block to an H/8×W/8× 65 block, which is passed through a softmax. Reshaping
this with a fixed reshaping procedure gives the predicted location of the interest
point. The interest point describer maps the original block to an H/8×W/8× 256
block. This is upsampled using a bicubic interpolation procedure (Section 36.2),
and the predicted vector at each location is normalized to a unit vector.

TODO: Brief description of bicubic interpolation somewhere
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FIGURE 17.6: The basic location finder of Figure 10 can be significantly improved
by exploiting the constraint that interest point predictions should be covariant. The
response of the finder to a transformed image, which is a heatmap, should be a
transformed version of the response to the original image. Equivalently, apply the
finder to a transformed image, and the inverse of the transformation to the resulting
heatmap – that heatmap should be the same as the one the detector produces from
the original image. This means that a composite finder can be built out of the the
basic location finder by predicting heatmaps from images transformed with random
(but carefully chosen) homographies, transforming the heatmaps back to the original
image frame, then averaging them. Training this composite finder improves the
original basic finder, without requiring real data.
TODO: Source, Credit, Permission

17.2.2 Finding Interest Points

Generating a large number of relatively simple images with known interest point
locations is easy. Use a simple computer graphics program to render collections of
polygons; each vertex is an interest point. If any image has more than one interest
points in one tile, discard all but one at random. We now have a labelled dataset of
images (the labels are interest point locations), and a basic detector can be trained
with this.

An interest point detector should be covariant under homographies – the
interest points for a transformed image should be obtained by transforming the
interest points of the original image. This likely won’t be a property of the basic
interest point detector, but it can be self-supervised very strongly using this idea.
Write f(I, θ) for the output of the interest point detector with parameters θ applied
to the image I (this is a heat map – at every pixel location, there is a value giving
the probability of an interest point at that location), and H(I) for the result of
applying a homography to I. The output of the detector can be thought of as an
image, so a homography can be applied to it. Covariance means that the heat map
H−1(f(H(I), θ)) should be the same as f(I, θ), at least for reasonable choices of
H. For each of the training images above, choose a collection of N homographies
at random (taking care with cropping, etc. – details in []), and train the detector
which produces the heat map

1

N

∑
i

H−1
i (f(H(I), θ)).
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Training like this has quite strong effects on θ because the detector receives gradient
if (say) an interest point is detected in the wrong place in a (say) rotated version
of the original image. It is also an extremely efficient use of data.

17.2.3 Refining Detection and Learning to Describe

The refined detector can now be trained to improve interest point detections and to
produce descriptions. Take a synthetic image with interest points known and apply
a homography. The interest points in the result should be close to those predicted by
applying the homography to the interest points in the original image. This property
can be imposed with a cross-entropy loss between Hf(I, θ) and f(H(I), θ).

Corresponding points in I and H(I) should have similar descriptors and pairs
of points that don’t correspond should have different descriptors. It is easier to
impose this on tiles than points. For every pair of tiles, where one comes from
I and the other from H(I), say the pair corresponds if there is some interest
point in the first that maps to a point in the second. Otherwise, the pair does
not correspond. Recall that the descriptors are computed on a coarse grid where
each location corresponds to a tile (and are then upsampled). Write d(t) for the
descriptor of a tile, and so on. The matching loss is a hinge loss that ensures that, if
tiles t and t′ correspond, then dT (t)d(t′) is positive and greater than some margin,
and if they do not, it is negative and less than some margin.

Resources: Interest Points A pretrained version of Su-
perPoint can be found at https: // github. com/ magicleap/

SuperPointPretrainedNetwork . There are implementations
for TensorFlow () and PyTorch (). HPatches is an evaluation
dataset (at https: // github. com/ hpatches/ hpatches-dataset )
which comes with evaluation protocols and benchmarks (at https:

// github. com/ hpatches/ hpatches-benchmark ). OpenCV provides an
implementation of the Harris corner detector, and procedures to compute
SIFT descriptors.
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FIGURE 17.7: SuperPoint produces many good interest point locations together with
descriptors that are distinctive. Left shows SuperPoint detections and matches for
four image pairs, and right for a SIFT based matcher. The images are trans-
formed with a known homography (red dots are detected interest points; blue dots
are detected interest points that are outside the field of view of the corresponding
image, and so could not have a match; green lines indicate matches). Generally,
SuperPoint produces large numbers of interest points that match well. The original
SuperPoint is trained with relatively small image rotations, because big rotations
are less common in practice, and so handles large image rotations poorly compared
to a SIFT based matcher (fourth row).
TODO: Source, Credit, Permission
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Registration

Computing a transformation that aligns an image or a depth map or a set
of images with another such is generally known as registration. One approach to
registration is to abstract the image (etc.) as a set of points, often referred to as
point clouds. Generally, we will write P for a point cloud whose i’th point is pi and
so on. Now assume we have two point clouds, X and Y. Each is obtained by starting
with a set of reference points, dropping some of them at random, transforming the
remaining points, then adding noise to the points and also including some pure noise
points. This is a reasonable model of what a depth camera or a LIDAR sensor might
produce when it views an object. The model means that there is transformation
that maps from one to the other, though it may not place every point in one on
top of some point in the other. We want to determine the transformation between
the two point clouds.

This problem occurs in a wide range of practical applications. As we shall
see, calibrating a camera involves solving a version of this problem (Section 36.2).
Determining where you are in a known map very often involves solving a version
of this problem. Imagine, for example, a camera looking directly downwards from
an aircraft flying at fixed height. The image in the camera translates and rotates
as the aircraft moves. If we can compute the transformation from image i to image
i+ 1, we can tell how the aircraft has moved. Another useful case occurs when we
have a depth map of a known object and want to compute the pose of the object
(its position and orientation in the frame of the depth sensor). We could do so
by reducing the object model to a point cloud, then computing the transformation
from the object model to the point cloud from the depth sensor.

How one approaches this class of problem depends on three important factors.

� Correspondence: if it is known which observation corresponds to which
reference point, the problem is relatively straightforward to solve (unless
there are unusual noise effects). This case is uncommon, but does occur.
In robotics, beacons are objects that identify themselves (perhaps by wearing
a barcode; by transmitting some code; by a characteristic pattern) and can be
localized. They are useful, precisely because they yield correspondence and
so simplify computing the transformation. If correspondence is not known,
which is the usual case, computing the transformation becomes rather harder.

� Transformation: there are closed form solutions for known correspondence
and Euclidean or affine transformations. Homographies (and higher dimen-
sional analogs) do not admit closed form transformations.

� Noise: computing a transformation can become very hard if many of the
observations do not come from reference points, if many of the reference
points are dropped, or if some observations are subject to very large noise
effects.

184
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18.1 REGISTRATION WITH KNOWN CORRESPONDENCE AND GAUSSIAN NOISE

18.1.1 Affine Transformations and Gaussian Noise

In the simplest case, the correspondence is known – perhaps Y consists of beacons
and X of observations – and the only noise is Gaussian (so N = M). We will
assume the noise is isotropic, which is by far the most usual case. Once you have
followed this derivation, you will find it easy to incorporate a known covariance
matrix. We have

xi = Myi + t+ ξi (18.1)

where ξi is the value of a normal random variable with mean 0 and covariance matrix
Σ = σ2I. A natural procedure to estimate M and t is to maximize the likelihood
of the noise. Because it will be useful later, we assume that there is a weight wi for
each pair, so the negative log-likelihood we must minimize is proportional to∑

i

wi (xi −Myi − t)
T
(xi −Myi − t) (18.2)

(the constant of proportionality is σ2, which doesn’t affect the optimization prob-
lem). The gradient of this cost with respect to t is

−2
∑
i

wi (xi −Myi − t) (18.3)

which vanishes at the solution. In turn, if
∑

i wixi =
∑

i wiMyi, t = 0. One
straightforward way to achieve this is to ensure that both the observations and the
reference points have a center of gravity at the origins. Write

cx =

∑
i wixi∑
i wi

(18.4)

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy (18.5)

and if we use U and V, then the translation will be zero. In turn, the translation
from the original reference points to the original observations is cx − cy.

We obtain M by minimizing∑
i

wi (ui −Mvi)
T
(ui −Mvi) . (18.6)

Now write W = diag ([w1, . . . , wN ]), U = [u1, . . . ,uN ] (and so on). You should
check that the objective can be rewritten as

Tr
(
W(U −MV)T (U −MV)

)
. (18.7)

Now the trace is linear; UTU is constant; and we can rotate matrices through the
trace (Section 36.2). This means the cost is equivalent to

Tr
(
−2MVUT +MTMVVT

)
(18.8)
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which will be minimized when

MVWVT = VWUT (18.9)

(which you should check). Many readers will recognize a least squares solution here.
The trace isn’t necessary here, but it’s helpful to see an example using the trace,
because it will be important in the next case.

18.1.2 Euclidean Motion and Gaussian Noise

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because the M obtained that
way won’t be a rotation matrix. But we can obtain a least squares solution with a
rotation matrix, using a neat trick. We adopt the notation of the previous section,
and change coordinates from xi to ui as above to remove the need to estimate
translation.

We must choose R to minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi). (18.10)

This can be done in closed form (a fact you should memorize). Equivalently, we
must minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U −RV)(U −RV)T

)
= Tr

(
−2UWVTRT

)
+K

(because RTR = I)
= −2Tr

(
RUWVT

)
Now we compute an SVD of UVT to obtain UWVT = ASBT (where A, B are
orthonormal, and S is diagonal – Section 36.2 if you’re not sure). Now BTRA is
orthonormal, and we must maximize Tr

(
BTRAS

)
, meaning BTRA = I (check this

if you’re not certain), and so R = BAT .
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Procedure: 18.1 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t) (18.11)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Then the least squares estimate t̂ of t is

t̂ = cx − cy (18.12)

Write U = [u1,u2, . . . ,uN ] (etc); W = diag(w1, . . . , wN ); and
SVD(USV) = AΣBT . The least squares estimate R̂ is

R̂ = BAT (18.13)

18.1.3 Homographies and Gaussian Noise

We now work with d = 2, and allow the transformation to be a homography.
Solving for a homography requires solving an optimization problem, but estimating
a homography from data is useful, and relatively easy to do. Furthermore, we can’t
recover the translation component from centers of gravity (exercises TODO:
homography exercise ). In all cases of interest, the points xi and yi will be
supplied in affine coordinates, rather than homogeneous coordinates, and we convert
to homogeneous coordinates by attaching a 1, as before. Write mij for the i, j’th
element of matrix M. In affine coordinates, a homography M will map yi =
(yi,x, yi,y) to xi = (xi,x, xi,y) where

xi,x =
m11yi,x +m12yi,y +m13

m31xi,x +m32xi,y +m33
and xi,y =

m21yi,x +m22yi,y +m23

m31xi,x +m32xi,y +m33
(18.14)

Write M(y) for the result of applying the homography to y, in affine coordinates.
In most cases of interest, the coordinates of the points are not measured precisely, so
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we observe xi = M(yi) + ξi, where ξi is some noise vector drawn from an isotropic
normal distribution with mean 0 and covariance Σ.

The error will be in affine coordinates – for example, in the image plane –
which justifies working in affine rather than homogeneous coordinates. Again, we
assume that the noise is isotropic, and so that Σ = σ2I. The homography can
be estimated by minimizing the negative log-likelihood of the noise, so we must
minimize

∑
i

wiξ
T
i ξi (18.15)

where

ξi =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
(18.16)

using standard methods (Levenberg-Marquardt is favored; Chapter 36.2). This
approach is sometimes known as maximum likelihood . Experience teaches that
this optimization is not well behaved without a strong start point.

There is an easy construction for a good start point. Notice that the equations
for the homography mean that

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0 (18.17)

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0 (18.18)

so each corresponding pair of points xi, yi yields two homogeneous linear equa-
tions in the coefficients of the homography. They are homogeneous because scaling
M doesn’t change what it does to points (check this if you’re uncertain). If we
obtain sufficient points, we can solve the resulting system of homogeneous linear
equations. Four point correspondences yields an unambiguous solution; more than
four – which is bteter – can be dealt with by least squares (exercises TODO:
fourpoint homography ). The resulting estimate of M has a good reputation as a
start point for a full optimization.
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Procedure: 18.2 Estimating a Homography from Data

Given N known source points yi = (yi,x, yi,y) in affine coordinates and
N corresponding target points xi with measured locations (xi,x, xi,y)
and where measurement noise has zero mean and covariance Σ = σ2I,
estimate the homography M with i, j’th element mij by minimizing:∑

i

ξTi ξi (18.19)

where

ξ =

[
xi,x − m11yi,x+m12yi,y+m13

m31yi,x+m32yi,y+m33

xi,y − m21yi,x+m22yi,y+m23

m31yi,x+m32yi,y+m33

]
(18.20)

Obtain a start point by as a least-squares solution to the set of homo-
geneous linear equations

xi,x(m31yi,x +m32yi,y +m33)−m11yi,x +m12yi,y +m13 = 0 (18.21)

and

xi,y(m31yi,x +m32yi,y +m33)−m21yi,x +m22yi,y +m23 = 0. (18.22)

18.1.4 Projective Transformations and Gaussian Noise

A projective transformation is the analogue of a homography for higher dimensions.
In affine coordinates, a projective transformation M will map yi = (yi,1, . . . , yi,d)
to xi = (xi,1, . . . , xi,d) where

xi,1 =
m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)
(18.23)

and

xi,d =
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1)
(18.24)

Estimating this transformation follows the recipe for a homography, but there are
now more parameters. I have put the result in a box, below.
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Procedure: 18.3 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and where measurement noise has zero mean and is
isotropic, the homography M with i, j’th element mij by minimiz-
ing: ∑

i

ξTi Σ
−1ξi (18.25)

where

ξi =

 xi,1 −
m11yi,1+...+m1dyi,d+m1(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

. . .

xi,d −
md1yi,1+...+mddyi,d+md(d+1)

m(d+1)1xi,1+...+m(d+1)dxi,d+m(d+1)(d+1)

 (18.26)

Obtain a start point by as a least squares solution to the set of homo-
geneous linear equations

0 = xi,1(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m11yi,1 + . . .+m1dyi,d +m1(d+1)

. . .

0 = xi,d(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

18.2 UNKNOWN CORRESPONDENCE

18.2.1 Unknown Correspondence and ICP

Now assume correspondences are not known, and some reference (resp. observed)
points may not even have corresponding observed (resp. reference) points. We
have N reference points yi and M observed points xi. For the moment, we will
assume that all weights wi are 1. A straightforward, and very effective, recipe
for registering the points is iterative closest points or ICP. The key insight here is
that, if the transformation is very close to the identity, then the yc(i) that corre-
sponds to xi should be the closest reference point to xi. This finding the closest
reference point to each measurement and computing the transformation using that
correspondence. But the transformation might not be close to the identity, and so
the correspondences might change. We could repeat the process until they stop
changing.

Formally, start with a transformation estimate T1, a set of m
(1)
i = T (1)(yi)

and then repeat two steps:

� Estimate correspondences using the transformation estimate. Then, for

each xi, we find the closest m(n) (say m
(n)
c ); then xi corresponds to m

(n)
c(i).
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� Estimate a transformation T (n+1) using the corresponding pairs. This

maps each m
(n)
c(i) to its corresponding xi.

These steps are repeated until convergence, which can be tested by checking if
the correspondences don’t change or if T (n+1) is very similar to the identity. The
require transformation is then

T (n+1) ◦ T (n) ◦ . . . T (1) (18.27)

There are a number of ways in which this very useful and very general recipe
can be adapted. First, if there is any description of the points available, it can be
used to cut down on correspondences (so, for example, we match only red points
to red points, green points to green points, and so on). Second, finding an exact
nearest neighbor in a large point cloud is hard and slow, and we might need to
subsample the point clouds or pass to approximate nearest neighbors (more details
below). Third, points that are very far from the nearest neighbor might cause
problems, and we might omit them (again, more details below).

18.2.2 ICP and Sampling

One particularly useful application of ICP occurs when one wishes to register a mesh
to a set of points. For example, you might want to register a cloud of measured
points to a mesh model of an object built using a CAD modelling system. A natural
procedure is to sample points on the mesh model to get a point cloud, then treat the
problem using ICP. Another useful application is when one has two mesh models,
where the triangulation of the meshes might not be the same. In this case, you
could sample both meshes to end up with two point clouds, then register the point
clouds. How one samples the mesh or meshes is important.

The ICP recipe becomes difficult to apply to point clouds when M or N are
very large. One obvious strategy to control this problem applies when something
else – say, a color measurement – is known about each point. For example, we
might get such data by using a range camera aligned with a conventional camera,
so that every point in the depth map comes with a color. When extra information
is available, one searches only compatible pairs for correspondences.

Large point clouds are fairly common in autonomous vehicle applications. For
example, the measurements might be LIDAR measurements of some geometry. It
is quite usual now to represent that geometry with another, perhaps enormous,
point cloud, which you could think of as a map. Registration would then tell the
vehicle where it was in the map. Notice that in this application, there is unlikely
to be a measurement that exactly corresponds to each reference point. Instead,
when the registration is correct, every xi is very close to some transformed yi, so
a least squares estimate is entirely justified. In cases like this, one can subsample
the reference point cloud, the measurement point cloud, or both.

The sampling procedure depends on the application, and can have significant
effects. For example, imagine we are working with LIDAR on a vehicle which is
currently in an open space next to a wall (Figure ??). There will be many returns
from the wall, and likely few from the open space. Uniformly sampled measurements
would still have many returns from the wall, and few from the open space. This
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Sample

Register

FIGURE 18.1: In many problems, one has to register a mesh – which might come
from a CAD model – to a set of measurements – which might come from LIDAR
or from a range camera. Top left: shows a view of a very simple 1D mesh, in
2D. Registering this mesh to a set of measurements bottom is a straightforward
application of ICP. One samples the mesh top left, then registers this set of points
to the measurements.

FIGURE 18.2: On the left a map of a simple arena, represented as a point cloud.
Such a map could be obtained by registering LIDAR measurements to one another.
A LIDAR or depth sensor produces measurements in the sensor’s coordinate sys-
tem, and registering these measurements to the map will reveal where the sensor is.
However, the sensor may measure points more densely at some positions than at
others. Left shows such a measurement; note the heavy sampling of points near the
corner and the light sampling on the edges. This can bias the registration, because
the large number of points near the corner mean that the registration error consists
mostly of errors from these points. It can also create significant computational prob-
lems, because finding the closest points will become slower as the number of points
increases. A stratified sample of the measurements (right) is obtained by dividing
the plane (in this case) into cells of equal area (usually a grid), then resampling the
measurements at random so there are no more than a fixed number of samples in
each box. Such a sample can both reduce bias and improve the speed of registration.
TODO: Source, Credit, Permission
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FIGURE 18.3: The sample of points used in registration can be biased in useful ways.
For example, (a) shows a cross section of a flat surface with a small groove (above)
which needs to be registered to a similar surface (below). If point samples are drawn
on the surface at random, then there will be few samples in the groove; the dashed
lines indicate correspondences. In turn, the registration will be poor, because the
surfaces can slide on one another. In (b), the samples have been drawn so that
normal directions are evenly represented in the samples. Notice this means more
samples concentrated in the groove, and fewer on the flat part. As a result, the
surface is less free to slide, and the registration improves.
TODO: what do c and d show? TODO: Source, Credit, Permission

could bias the estimate of the vehicle’s pose. A better alternative would be to
build a stratified sample by breaking the space around the vehicle into blocks of
fixed size, then choosing uniformly at random a fixed number of samples in each
block. In this scheme, the wall would be undersampled, and the open space would
be oversampled, somewhat resolving the bias.

Another stratified sampling strategy is to ensure that surface normal direc-
tions are evenly represented in the samples. Make an estimate of a surface normal
at each point (for example, by fitting a plane to the point and some of its nearest
neighbors). Now break the unit sphere, which encodes the surface normals, into
even cells, and sample the points so that each cell has the same number of samples.
This approach is particularly useful when we are trying to register flat surfaces with
small relief details on them (Figure ??).

18.2.3 Beyond ICP

ICP minimizes a cost function∑
i

[
min
j

||xj − T (yi) ||22
]
=
∑
i

Ei(T) (18.28)

by finding the corresponding pairs (the xj that corresponds to yi), then minimiz-
ing, then repeating. This is an easy way to exploit the closed form solution for
T when correspondence is known, but it isn’t the only way. The min means the
objective function isn’t differentiable everywhere (exercises), but it is continuous,
and it is differentiable at most locations. This is usually a sign that straightfor-
ward optimization methods can be applied successfully, which is true here. The
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Levenberg-Marquardt algorithm (Section ??) works particularly well here, because
for a particular correspondence, the cost is a least squares cost, and because it
doesn’t require second derivatives. Notice that, to obtain the gradient of Ei(T)
with respect to T, you need to know which xj is closest to T (yi), so you still need
to find the nearest neighbor.

18.2.4 Finding Nearest Neighbors

Finding the exact nearest neighbor of a query point in a large collection of reference
points is more difficult than most people realize (one can beat linear search, but
by only a very small factor []). However, finding a point that has high probability
of being almost as close as the nearest neighbor (an approximate nearest neighbor)
can be done rather fast using a variety of approximation schemes []. It is usual to
substitute an approximate nearest neighbor, found using a k-d tree (eg []).

Resources: ICP TODO: ICP Resources

18.3 NOISE THAT ISN’T GAUSSIAN: ROBUSTNESS AND IRLS

In our examples, if we assume the noise is normal and isotropic, the squared error
is reasonably described as negative log-likelihood. But in some cases, even when
the measurements and the reference points are properly aligned, some measurement
points may lie quite far from the closest reference point. One reason is pure error.
Effects like scattering from rain or translucency can cause LIDAR or depth sensors
to report measurements that are quite different from the actual geometry. Another
is overhangs, which occur when either the reference or measured set contains points
representing geometry that isn’t in the other set. In this case, some points from
one set should be far away from the closest point in the other set. Each of these
effects (Figure 36.2) means that modelling noise as Gaussian may not be justified.

Large distances between some point pairs could have a significant effect on
the estimate of the transformation. The square of a large number is very large
indeed, so that reducing a large distance somewhat can justify incurring small to
medium error on many other pairs (Figure ??). A simple procedure to manage this
effect is to ignore corresponding pairs if the distance between them is too large.
One estimates the transformation using only pairs where distances are small. If
points were omitted in one step of the iteration, they may return in another. This
strategy can be helpful, but there is a danger that too many pairs are omitted
and the iteration does not converge. Corresponding pairs with large distances
between them are likely outliers – measurements or data that will not conform to a
model, but can have significant impact on estimating the model. Well established
procedures for handling outliers are easily adapted to registration problems.
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FIGURE 18.4: Significant registration errors can be caused by just one point that is
in the wrong place. On the left, a set of empty points must be registered to a set of
filled points. Notice that one empty point is badly out of place. An ideal registration
would ignore this, and put the approximate line of empty points on the line of filled
points. On the right, the registration that actually results. The square of a large
number is very large, meaning the minimum of the squared error isn’t where you
might think; reducing the large offset entirely justifies a set of medium sized errors.
Points that lie significantly far from their “natural” positions are often known as
outliers.

18.3.1 IRLS: Weighting Down Outliers

Rather than just ignoring big distances, one might weight down correspondences
that seem implausible. Doing so requires some way to estimate an appropriate
set of weights. A large weight for errors at points that are “trustworthy” and a
low weight for errors at “suspicious” points should result in a registration that
is robust to outliers. We can obtain such weights using a robust loss, which will
reduce the cost of large errors. This can be seen as modifying the probability model.
Gaussian noise tends to produce few large values (which so have very large negative
log-likelihood), and we want a model that has higher probability of large errors
(equivalently, penalizes them less severely than a normal model would). Write θ for
the parameters of the transformation, Tθ for the transformation, and ri(xi,yc(i), θ)
for the residual error of the model on the ith measurement and its corresponding
reference point. For us, ri will always be l2normxi − Tθ(yc(i)). So rather than
minimizing ∑

i

(ri(xi,yc(i), θ))
2 (18.29)

as a function of θ, we will minimize an expression of the form∑
i

ρ(ri(xi,yc(i), θ);σ), (18.30)

for some appropriately chosen function ρ. Clearly, our negative log-likelihood is
one such estimator (use ρ(u;σ) = u2). The trick is to make ρ(u;σ) look like u2 for
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FIGURE 18.5:

TODO: Figure showing a bunch of robust loss functions TODO: Source, Credit,
Permission

smaller values of u, but ensure that it grows more slowly than u2 for larger values
of u.

The Huber loss uses

ρ(u;σ) =

{
u2

2 |u | < σ

σ|u | − σ2

2

(18.31)

which is the same as u2 for −σ ≤ u ≤ σ, switches to |u | for larger (or smaller) σ,
and has continuous derivative at the switch. The Huber loss is convex (meaning
that there will be a unique minimum for our models) and differentiable, but is not
smooth. The choice of the parameter σ (which is known as scale) has an effect on
the estimate. You should interpret this parameter as the distance that a point can
lie from the fitted function while still being seen as an inlier (anything that isn’t
even partially an outlier).

The Pseudo Huber loss uses

ρ(u;σ) = σ2

(√
1 +

(u
σ

)
− 1

)
. (18.32)

A little fiddling with Taylor series reveals this is approximately u2 for |u |/σ small,
and linear for |u |/σ big. This has the advantage of being differentiable.

The **** TODO: what is this loss called uses

ρ(u;σ) =
σ2u2

u2 + σ2
(18.33)

which is approximately u2 for |u | much smaller than σ, and close to σ2 for |u |
much larger than σ.

Each of these losses increases monotonically in |u | (the absolute value is im-
portant here!), so it is always better to reduce the residual. For the Huber loss and
the Pseudo-Huber loss, the penalty grows with |u |, but grows more slowly with
big |u | than with small |u |. This implies that the underlying probability model
will produce very large distances less often than large distances, but more often
than a Gaussian model would. For the **** loss, the penalty eventually increases
extremely slowly with increasing |u |, implying the underlying probability model is
willing to produce arbitrarily large distances on occasion, and that the probability
of large distances declines very slowly.

Our minimization criterion is

∇θ

(∑
i

ρ(r(xi,yi, θ);σ)

)
=

∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ)

= 0.
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Here the derivative ∂ρ
∂u is evaluated at r(xi,yi, θ, so it is a function of θ. Now notice

that

∑
i

[
∂ρ

∂u

]
∇θr(xi,yi, θ) =

∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
r(xi,yi, θ)∇θr(xi,yi, θ)

=
∑
i

[(
∂ρ
∂u

r(xi,yi, θ)

)]
∇θ [r(xi,yi, θ)]

2

= 0.

Now [r(xi,yi, θ)]
2
is the squared error. If we happened to know the true minimum

θ̂ and wrote

wi =

(
∂ρ
∂u

r(xi,yi, θ)

)
(18.34)

(evaluated at that minimum), then

∑
i

wi∇θ [r(xi,yi, θ)]
2
= 0 (18.35)

at θ = θ̂. We do not know wi, but if we did, we already have a recipe to solve this
problem for a variety of different transformations (Sections 36.2, 36.2 and 36.2). A
natural strategy to adopt is to start with some transformation estimate and unit
weights, then repeat:

� Estimate correspondences using the estimated transformation. Because
all the robust losses are monotonic in |u |, finding the closest reference point
to each measurement will do.

� Re-estimate weights using the new correspondences and the transforma-
tion.

� Re-estimate transformation using the new correspondences and the new
weights, and the closed form algorithms from Sections 36.2, 36.2 and 36.2.

This procedure is known as iteratively reweighted least squares
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Procedure: 18.4 Estimating a Transformation from Data with a Robust
Loss: Iteration

Start with N known reference points yi = (yi,1, . . . , yi,d) in affine coor-
dinates andM measurements xi = (xi,1, . . . , xi,d), and a transformation

estimate Tθ(1) with parameters θ1. Form m
(1)
i = Tθ(1)(yi), then iterate:

� for each xi, find m
(n+1)
c(i) that is closest;

� for each pair (xi,m
(n+1)
c(i) ), form ui = ||xi −m

(n+1)
c(i) ||2 and

wi =

(
∂ρ
∂u

ui

)
; (18.36)

� estimate Tθ(n+1) using the set of pairs (xi, mc(i)) and the weights
wi;

� form mi = Tθ(n+1)(mi).

Test for convergence by testing either that the correspondences did not
change in a round, or by checking that Tθ(n+1) is close to the identity.
The required transformation is Tθ(n+1) ◦ Tθ(n) ◦ . . . ◦ Tθ(1) .

18.3.2 Starting IRLS

There are many local minima for the IRLS cost function (Figure 36.2 has one
example). This means that IRLS likely won’t work unless the y and the x are
reasonably well aligned. One strong recipe for obtaining a start point involves
repeating: obtain a small set of distinctive x which are spread out (call these u);
for each ui, choose at random from the s most likely corresponding y to get vi;
compute a transformation T that takes vi to ui using least squares; apply this T
and compute an error metric. We then use the T that obtains the best error metric
seen in this randomized search to map y to y′, and apply IRLS to the sets X and
Y ′.

Making this recipe concrete requires identifying distinctive points and their
likely correspondences as well as specifying the error metric.
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Procedure: 18.5 Estimating a Transformation from Data with a Robust
Loss: Initialization

Given N known reference points yi = (yi,1, . . . , yi,d) in affine co-
ordinates and M measurements xi = (xi,1, . . . , xi,d), initialize by:
TODO: What is best? likely translation from cogs, affine / euclidean
from second moments, but how do you compute second moments ro-
bustly?

18.3.3 Beyond IRLS: Line Processes

18.3.4 Registering Multiple Point Sets
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A Camera Above a Ground Plane

Imagine a camera is moving above a ground plane. Using registration tools
together with camera matrices makes means we can calibrate the camera’s intrinsics,
reason about the position and orientation of the camera, and reconstruct the pattern
on the ground plane. In turn, this reconstruction can yield estimates of what objects
are moving and whether there are objects that have relief (“stick out” from the
ground).

19.1 PIPH: PERPENDICULAR IMAGE PLANE AND FIXED HEIGHT

Assume the camera moves at fixed height above a ground plane, and the ground
plane is at right angles to the image plane (call this configuration PIPH for short).
This is a good model for a camera on (say) an autonomous car or a taxiing aircraft.
Figure 19.1 shows the notation, etc. Here the focal length is f , the ground plane
is the plane y = −h in the camera coordinate system (remember, z is depth into
the scene). Remarkably, we can calibrate the camera with elementary geometric
reasoning in a configuration like this, at least for simple cameras.

X

Y

Z

z=f

camera center

focal point

image plane

Ground plane

(U, -h, V)

(fU/V, -fh/V, f)

FIGURE 19.1: A perspective camera with its image plane at right angles to a ground
plane (y = −h), imaging a point on the ground plane.

200
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19.1.1 PIPH Geometry

From Figure 19.1, in the camera coordinate system, the point (u,−h, v) on the
ground plane in intersects the image plane at (fu/v,−fh/v, f). These are affine
coordinates for a point in 3D. Homogeneous coordinates for the point on the image
plane are (u/v,−h/v, 1) or equivalently (u,−h, v). Similarly, homogeneous coordi-
nates for the point on the ground plane are (u, v, 1).

To get the transformation from the ground plane in world coordinates to the
image in image coordinates, we must account for extrinsics and intrinsics. The
homography from the ground plane to the image will be

Tg→i = Tint

 1 0 0
0 0 −h
0 1 0

 Text =

 as k cx
0 s cy
0 0 1

 1 0 0
0 0 −h
0 1 0

 Text.

Here Tint comes from the camera intrinsics and Text (which represents extrinsics)
is a rotation and translation in the ground plane. This transformation is present
because the coordinate system on the ground plane may not be directly below the
focal point and aligned with the camera.

You should check that, in PIPH geometry, the horizon of the ground plane is
horizontal in the image and passes through cy (Figure 19.1 should help), so we can
determine cy from an image. Write (ix, iy) for the affine coordinates of a point in
the image. If we ensure that the horizon is the line iy = 0 (which we can do by a
simple subtraction), then cy = 0. In these coordinates, we have

Tg→i =

 as k cx
0 s 0
0 0 1

 1 0 0
0 0 −h
0 1 0

 Text =

 as cx −hk
0 0 −sh
0 1 0

 Text.

This is not an affine transformation. However

Cg→iTg→i =

 1 0 0
0 0 1
0 −1 0

 Tg→i

=

 as cx −hk
0 1 0
0 0 sh

 Text

≡

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

 Text

(recall ≡ means that they are the same homography; one is a scaling of the other,
which doesn’t matter in homogeneous coordinates). This means Cg→iTg→i is an

affine transformation. This is a powerful fact. If we know some points on the ground
plane and corresponding points in the image, we can recover Tg→i, premultiply by

Cg→i (which we know), then read off some camera parameters. Remarkably, we

can also estimate camera ground plane motion and the pattern on the ground
plane without calibrating the camera. These estimates are up to scale – we cannot
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get the magnitude of the translation or the size of objects on the ground plane
without other information.

19.1.2 PIPH Calibration

Now assume we have a set of points pi on the ground plane, and we can find the
corresponding points qi on the image plane. Fit Tg→i to this information using

procedure 18.2, to obtain F . Now

Cg→iF ≡

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

 Text

=

 a
h

cx
sh −k

s
0 1

sh 0
0 0 1

[ R t
0T 1

]

=

[
M u
0T 1

]
where Text is a Euclidean transformation on the plane. We cannot recover k

s from u
because we don’t know t, the translation from the ground plane coordinate system
to the camera coordinate system. However, for many cameras k = 0, and we assume
this is the case for our camera. We have

M =

[
a
h − cx

sh
0 1

sh

]
R

and we can factor M using an RQ factorization (see procedure 35.1). Doing so
yields h

a , cx and sh.
Notice there is a weakness in this procedure. The homography Tg→i has a

known, special parametric form and we did not impose this form when we estimated
the homography. The correct way to resolve this is to minimize the error between
Tg→i(pi) and qi for a homography of the correct form, using our estimates to

provide a start point. This is an example of general recipe for calibration that we
shall see again – first, make an estimate of parameters to provide a start point,
then polish that estimate using an optimization problem

Procedure: 19.1 PIPH Calibration: Overview

Given a set of points pi on the ground plane, corresponding points qi on
the image plane, and a camera known to be in PIPH geometry, estimate
camera intrinsics and extrinsics by:

� Assuming k = 0;

� Obtaining a start point for h
a , cx, sh and extrinsic parameters as

below;

� Polishing the start point by optimization.
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Procedure: 19.2 PIPH Calibration: Initialization

Initial: Fit Tg→i to the points using procedure 18.2, to obtain F . Now
compute

Cg→iF =

[
M u
0 1

]
.

Intrinsics start point: Use an RQ factorization on M to obtain
M = RQ; R is upper triangular, and yields h

a , cx, sh. Extrinsics
start point: We have

Text =
[

Q u
0 1

]

Procedure: 19.3 PIPH Calibration: Optimization

Solve the optimization problem∑
i

(qi,x − wi,x)
2 + (qi,y − wi,y)

2

where

wi,x =
h11pi,x + h12pi,y + h13
h31pi,x + h32pi,y + h33

wi,y =
h21pi,x + h22pi,y + h23
h31pi,x + h32pi,y + h33

H =

 a
h

cx
sh 0

0 1
sh 0

0 0 1

[ Q u
0T 1

]

Q =

[
cos θ − sin θ
sin θ cos θ

]
and the parameters are a

h , cx, sh, θ and u using the start point of
procedure 19.2.

19.1.3 Using PIPH to Estimate Motion

Imagine the camera captures an image In at frame n, moves rigidly, then captures
In+1. The camera image plane stays perpendicular to the ground plane, and the
height of the focal point doesn’t change. We can recover the camera motion and
some camera parameters in this case. We know that Cg→iTg→in and Cg→iTg→in+1

are both affine. Notice that

Tin→in+1
= Tg→in+1

T −1

g→in
.
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We can measure Tin→in+1
by finding interest points in the two images, then using

Procedure 18.2. Write F for the measured transformation. We must have that

Cg→iFC−1

g→i = Cg→iTg→in+1
T −1

g→in
C−1

g→i =
[
Cg→iTg→in+1

] [
Cg→iTg→in

]−1

and so Cg→iFC−1

g→i is affine. In fact, we know the form of this matrix, which is a
h

cx
sh 0

0 1
sh 0

0 0 1

 Textn+1
T −1
extn

 a
h

cx
sh 0

0 1
sh 0

0 0 1

−1

.

Now En→n+1 = Textn+1
T −1
extn

is the camera motion on the ground plane. Notice

that  a
h

cx
sh 0

0 1
sh 0

0 0 1

 =

 1 cx
sa 0

0 1
sa 0

0 0 1

 a
h 0 0
0 a

h 0
0 0 1


and recall that isotropic scaling commutes with rotation (Section 36.2), to find that

F =

 1 cx
sa 0

0 1
sa 0

0 0 1

 E

 1 cx
sa 0

0 1
sa 0

0 0 1

−1

.

Now write M = Cg→iFC−1

g→i. The upper 2× 2 block of M is[
cos θ + cx

sa sin θ −(sa+
c2x
sa ) sin θ

1
sa sin θ cos θ − cx

sa sin θ

]
so we can recover the rotation from

cos θ = m11 +m22,

and some calibration parameters from

s2a2 =
1− cos2 θ

m2
12( cx

as

)2
=

(m22 − cos θ)2

(1− cos2 θ)
.

This means we can recover as and cx if we can determine the signs of the square
roots. But a and s are necessarily positive and we can obtain the sign of cx by
elementary reasoning about the camera, so we can recover the signs. Now if the
camera translates by [tx, ty], then the translation component of M is[

m13

m23

]
=

[
−h

a tx + hcx
a ty

−shty

]
so that

−(as)m13 +
cx
asm23

−m23
=
tx
ty
.
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Now we observe u and v, and can recover as and cx, so we know the direction but
not magnitude of the translation. Equivalently, we can recover the movement of
the camera up to scale.

Procedure: 19.4 PIPH Motion Estimation

Given an image In at frame n and In+1 at frame n + 1, where an
uncalibrated camera with k = 0 moves rigidly, with image plane per-
pendicular to the ground plane, and the height of the focal point fixed
but unknown, obtain an estimate of TIn→In+1 ; write F for this esti-
mate. Find this by identifying interest points in In and In+1, and
fitting a homography to these interest points (Procedure 18.2). Then
M = Cg→iFC−1

g→i is affine. We have

cos θ = m11 +m22

s2a2 =
1− cos2 θ

m2
12( cx

as

)2
=

(m22 − cos θ)2

(1− cos2 θ)

yielding rotation and some camera parameters. The translation is re-
covered from

−(as)m13 +
cx
asm23

−m23
=
tx
ty
.

19.1.4 The Pattern on the Ground Plane

We can recover the pattern on the ground plane up to scale as well from two
images. Write the true pattern P. Recall that Cg→iTg→i is affine, which means

that Ti→gC
−1

g→i is affine as well (Section 36.2). This means that if we apply the

homography Cg→i to the image, we will obtain a pattern that is within an affine

transformation of the ground plane, and we can determine the form of the affine
transformation. This is easy to do, because Cg→i is known.

We have

Tg→i =

 as cx −hk
0 0 −sh
0 1 0

 Text.

so that

Ti→gC
−1

g→i = T −1
ext

 as cx −hk
0 0 −sh
0 1 0

−1

C−1

g→i.
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Now as in Section 19.1.2, we assume k = 0. We have

Cg→i

 as cx 0
0 0 −sh
0 1 0

 ≡

 a
h

cx
sh 0

0 1
sh 0

0 0 1


so that

Ti→gC
−1

g→i = T −1
ext

 h
a 0 0
0 h

a 0
0 0 1

 1 −cx 0
0 as 0
0 0 1

 .
In turn, if we know cx and as, we can recover the image plane pattern up to scale.
As Section 19.1.3 shows, these parameters can be estimated from two distinct views
of the ground plane.

Procedure: 19.5 PIPH Pattern Estimation

Given an image In at frame n and In+1 at frame n + 1, where an
uncalibrated camera with k = 0 moves rigidly, with image plane per-
pendicular to the ground plane, and the height of the focal point fixed
but unknown, obtain camera parameters as and cx from procedure 19.4.
Write

Tpartial =

 1 −cx 0
0 as 0
0 0 1

 .
Then the ground plane pattern is within a scale of

T −1

partial
Cg→i(In)

19.1.5 Off Perpendicular Image Planes

All the procedures above can be extended to deal with an off-perpendicular image
plane if one is allowed a single calibration step. This step essentially estimates the
angle between the image plane and the ground plane. In particular, notice that the
methods of Section 19.1.3 and 19.5 depend on the fact that a known homography
applied to the image yields something that is within an affine transformation of the
ground plane.

When the image plane is not perpendicular to the ground plane, the homogra-
phy from ground plane to image can be derived from Figure 36.2 (assuming k = 0)
as

Pg→i =

 as 0 cx
0 s cy
0 0 1

 1 0 0
0 γ −h
0 1 0

 Text =

 as cx −hk
0 sγ + cy −hs
0 1 0

 Text.

You should check that 1 0 0
0 0 1
0 1

sγ+cy
−1

Pg→i ≡

 a
h

cx
hs 0

0 1
hs 0

0 0 1

 Text.
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This means that, if we can estimate sγ + cy, we can apply the strategies of
the previous section. A simple strategy for doing so is to image a set of reference
points on the ground plane, compute the homography from ground plane to image
Pg→i, then obtain

Dw =

 1 0 0
0 0 1
0 w −1


such that DwPg→i is affine.

19.1.6 PIPH Mosaics

19.2 CAMERA CALIBRATION FROM PLANE REFERENCES

It is possible to calibrate a camera fully with a plane calibration object, but you
need to have several views. Plane patterns are easy to make and easy to disseminate.
Obtain a plane pattern with a set of easily localized points (a checkerboard is good)
where the locations of those points on the plane are known in world units. So if one
is using a checkerboard, one might know that the checks are square and 10cm on
edge, for example. Lay this down flat, and take a set of images of it from different
views. In each view the calibration points should be visible.

For each view, we will compute the homography from the calibration object’s
plane to the image plane using point correspondences (Section 36.2). It turns out
that these homographies yield constraints on the camera matrix (Section 36.2)
and these constraints yield a camera estimate (Section 36.2). This estimate is a
start point for an optimization problem (Section 36.2, very much on the lines of
Section 36.2).

19.2.1 Constraining Intrinsics with Homographies

Each map from the pattern to an image is a homography. Choose the world coor-
dinate system so that the pattern lies on the plane z = 0. Doing so just changes
the camera extrinsics, so no generality has been lost, but it allows us to write the
homography in a useful form. Recall the camera is

TiCpTe,j

where Te,j is the euclidean transformation giving the extrinsics for the j’th view.
This is applied to a set of points (sx,i, sy,i, 0, 1). In turn, the homography for the
j’th view must have the form

λjMj = Ti [r1,j , r2,j , tj ]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj
is the translation). We do not know λj (which is non-zero) because scaling the

homography matrix yields the same homography. Now write Nj = T (−1)
i Mj =

[n1,n2,n3]. We must have that

nT
1 n1 − nT

2 n2 = 0 and nT
1 n2 = 0.
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These equations constrain the unknown values of Ti, and we get two for each ho-
mography. In turn, with sufficient views (and so homographies), we can estimate
Ti.

19.2.2 Estimating Intrinsics from Homographies

In the j’th view of the plane calibration object, we recover a homography Mj . Now

write Nj = T (−1)
i Mj = [nj,1,nj,2,nj,3]. We know from Section 36.2 that

nT
j,1nj,1 − nT

j,2nj,2 = 0 and nT
j,1nj,2 = 0.

Now write A = (T (−T )
i T (−1)

i ) (which is unknown). These two constraints are linear
homogenous equations in the entries of A, which is 3×3 but symmetric, and so has
6 unknown parameters. If we have 3 homographies, we will have 6 constraints, and
can use least squares to recover a 1D family of solutions λB, where B is known and

λ is a scale. We now need to find Ti and λ so that λB is close to (T (−T )
i T (−1)

i )).

There are constraints here. Write U = T (−1)
i . Recall Ti is upper triangular,

and i33 = 1. This means that U is upper triangular, and u33 = 1. We will find U
and λ by finding V such that VTV is closest to B, then computing U = (1/v33)V.

Finding V is straightforward. We obtain the closest symmetric matrix to
B, then apply a Cholesky factorization (Section 36.2). The factorization could be
modified if a very small number appears on the diagonal, but this event is most
unlikely. We now invert U to obtain an estimate E of Ti. Recall this has the form as′ k′ c′x

0 s′ c′y
0 0 1

 .
so we have c′x = e13, c

′
y = e23, s

′ = e22, a = e11/e22 and k′ = e12. This is usually
an acceptable start point for optimization.

19.2.3 Estimating Extrinsics from Homographies

We have an estimate of the camera intrinsics, and now need an estimate of the
extrinsics for each view. Recall from Section ?? that

λjMj = Ti [r1,j , r2,j , tj ]

(where r1,j , r2,j are the first two columns of the rotation matrix in Te,j and tj is
the translation). We have estimates of Mj and of Ti, but we do not know λj . We
can solve for λj by noticing that the first two columns of

λjT −1
i Mj = λjQj = λj [q1,j ,q2,j ,q3,j ]

are unit vectors, and are normal to one another. For example, we might estimate

λj =

√
2

qT
1,jq1,j + qT

2,jq2,j

and from this follows the estimate

Te,j =
[
λjq1,j λjq2,j λ2jq1,j × q2,j λjq3,j

0 0 0 1

]
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19.2.4 Formulating the Optimization Problem

We will calibrate the camera by solving an optimization problem. All calibration
points will lie on the plane z = 0 in world coordinates, and we will have more than
one view of that plane. Write tij = [tx,ij , ty,ij ] for the measured x, y position in the
image plane of the i’th reference point in the j’th view. We have that tij = t̂ij+ξij ,
where ξij is an error vector and t̂ij is the true (unknown) position. Again, assume
the error is isotropic, so it is natural to minimize∑

ij

ξTijξij .

The main issue here is writing out expressions for ξij in the appropriate coordinates.
Write Ti for the intrinsic matrix whose u, v’th component will be iuv; Te,j for the j’th
extrinsic transformation, whose u, v’th component will be euv; and si = [sx,i, sy,i, 0]
for the known coordinates of the i’th reference point in the coordinate frame of
the reference points. Recalling that Ti is lower triangular, and engaging in some
manipulation, we obtain∑

ij

ξTijξij =
∑
i

(tx,ij − px,ij)
2 + (ty,ij − py,ij)

2

where

px,ij =
i11gx,ij + i12gy,ij + i13gz,ij

gz,ij

py,ij =
i22gx,ij + i23gz,ij

gz,ij

and

gx,ij = e11,jsx,i + e12,jsy,i + e14,j

gy,ij = e21,jsx,i + e22,jsy,i + e24,j

gz,ij = e31,jsx,i + e32,jsy,i + e34,j

(which you should check as an exercise – notice the missing sz,i terms!). This is a
constrained optimization problem, because Te is a Euclidean transformation. The
constraints here are

1−
∑
v

e2j,1v = 0 and 1−
∑
v

e2j,2v = 0 and 1−
∑
v

e2j,3v = 0∑
v

ej,1vej,2v = 0 and
∑
v

ej,1vej,3v = 0 and 1−
∑
v

ej,2vej,3v = 0 .

As in Section 36.2, we could just throw this into a constrained optimizer (review
Section 36.2), but good behavior requires a good start point.

Procedure: 19.6 Calibrating a Camera from Multiple Homographies
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Procedure: 19.7 Calibrating a Camera from Multiple Homographies:
Start Point
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C H A P T E R 20

Pairs of Cameras

20.1 GEOMETRY

Two perspective cameras view a point X in 3D; we see x1 in the first camera and
x2 in the second. As section 36.2 sketched, knowing something about the relative
geometry of the cameras and where the point appears in each camera will reveal
the 3D coordinates of the point. We will use some form of search to link points in
the first and second cameras. But not any point in camera 2 could correspond to
x1, and understanding this constraint reveals a great deal of information about the
relative configuration of the cameras.

All of this geometry can be done without using coordinates. Figure 36.2 shows
two general perspective cameras viewing a point. Notice the line joining the two
focal points of the cameras. This line intersects each image plane in an important
point, known as the epipole for that image plane.

20.1.1 The Fundamental and Essential Matrices

20.2 INFERENCE

20.2.1 Recovering Fundamental Matrices from Correspondences

20.2.2 RANSAC: Searching for Good Points

An alternative to modifying the cost function is to search the collection of data
points for good points. This is quite easily done by an iterative process: First, we
choose a small subset of points and fit to that subset, then we see how many other
points fit to the resulting object. We continue this process until we have a high
probability of finding the structure we are looking for.

For example, assume that we are fitting a line to a data set that consists of
about 50% outliers. We can fit a line to only two points. If we draw pairs of points
uniformly and at random, then about a quarter of these pairs will consist entirely
of good data points. We can identify these good pairs by noticing that a large
collection of other points lie close to the line fitted to such a pair. Of course, a
better estimate of the line could then be obtained by fitting a line to the points
that lie close to our current line.

? formalized this approach into an algorithm — search for a random sample
that leads to a fit on which many of the data points agree. The algorithm is usually
called RANSAC, for RANdom SAmple Consensus, and is displayed in Algorithm 20.1.
To make this algorithm practical, we need to choose three parameters.

The Number of Samples Required Our samples consist of sets of points
drawn uniformly and at random from the data set. Each sample contains the
minimum number of points required to fit the abstraction we wish to fit. For

212
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Determine:
n — the smallest number of points required (eg., for lines, n = 2,
for circles, n = 3)

k — the number of iterations required
t — the threshold used to identify a point that fits well
d — the number of nearby points required
to assert a model fits well

Until k iterations have occurred
Draw a sample of n points from the data
uniformly and at random

Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the structure
against t; if the distance from the point to the structure
is less than t, the point is close

end
If there are d or more points close to the structure
then there is a good fit. Refit the structure using all
these points. Add the result to a collection of good fits.

end
Use the best fit from this collection, using the
fitting error as a criterion

Algorithm 20.1: RANSAC: fitting structures using random sample consensus

example, if we wish to fit lines, we draw pairs of points; if we wish to fit circles,
we draw triples of points, and so on. We assume that we need to draw n data
points, and that w is the fraction of these points that are good (we need only a
reasonable estimate of this number). Now the expected value of the number of
draws k required to get one point is given by

E[k] = 1P (one good sample in one draw) + 2P (one good sample in two draws) + . . .

= wn + 2(1− wn)wn + 3(1− wn)2wn + . . .

= w−n

(where the last step takes a little manipulation of algebraic series). We would like
to be fairly confident that we have seen a good sample, so we wish to draw more
than w−n samples; a natural thing to do is to add a few standard deviations to this
number. The standard deviation of k can be obtained as

SD(k) =

√
1− wn

wn
.

An alternative approach to this problem is to look at a number of samples that
guarantees a low probability z of seeing only bad samples. In this case, we have

(1− wn)k = z,



214 Chapter 20 Pairs of Cameras

which means that

k =
log(z)

log(1− wn)
.

It is common to have to deal with data where w is unknown. However, each fitting
attempt contains information about w. In particular, if n data points are required,
then we can assume that the probability of a successful fit is wn. If we observe a long
sequence of fitting attempts, we can estimate w from this sequence. This suggests
that we start with a relatively low estimate of w, generate a sequence of attempted
fits, and then improve our estimate of w. If we have more fitting attempts than the
new estimate of w predicts, then the process can stop. The problem of updating
the estimate of w reduces to estimating the probability that a coin comes up heads
or tails given a sequence of fits.

Telling Whether a Point Is Close We need to determine whether a point
lies close to a line fitted to a sample. We do this by determining the distance be-
tween the point and the fitted line, and testing that distance against a threshold d;
if the distance is below the threshold, the point lies close. In general, specifying this
parameter is part of the modeling process. In general, obtaining a value for this
parameter is relatively simple. We generally need only an order of magnitude esti-
mate, and the same value applies to many different experiments. The parameter is
often determined by trying a few values and seeing what happens; another approach
is to look at a few characteristic data sets, fitting a line by eye, and estimating the
average size of the deviations.

The Number of Points That Must Agree Assume that we have fitted a
line to some random sample of two data points. We need to know whether that line
is good. We do this by counting the number of points that lie within some distance
of the line (the distance was determined in the previous section). In particular,
assume that we know the probability that an outlier lies in this collection of points;
write this probability as y. We should like to choose some number of points t such
that the probability that all points near the line are outliers, yt, is small (say less
than 0.05). Notice that y ≤ (1− w) (because some outliers should be far from the
line) so we could choose t such that (1− w)t is small.

20.2.3 Visual Odometry
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Filtering

21.1 THE KALMAN FILTER

21.2 THE EXTENDED KALMAN FILTER
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C H A P T E R 22

Tracking

22.1 THE KALMAN FILTER AND VARIANTS

22.1.1 The Kalman Filter in 1D

22.1.2 The Kalman Filter

22.1.3 The Extended Kalman Filter

22.1.4 The Unscented Kalman Filter

22.2 SIMPLE TRACKING WITH THE KALMAN FILTER

22.3 TRACKING BY DETECTION

22.4 ATTENTION

22.4.1 Keys and Retrieval

22.4.2

22.5 SEQUENCES AND TRANSFORMERS

22.5.1

22.6 TRACKING BY ATTENTION

22.7 STREAMING VISION
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C H A P T E R 23

Structure from Motion

23.1 AFFINE CAMERA CONFIGURATION AND GEOMETRY BY FACTORIZATION

23.1.1 Matches Yield Cameras and Geometry

23.2 COPING WITH PERSPECTIVE CAMERAS

23.3 LARGE SCALE PROCEDURES

23.4 APPLICATION: VISUALIZING CITIES USING SFM

23.5 APPLICATION: CONSTRUCTION MONITORING USING SFM

217



C H A P T E R 24

SLAM

24.1 EKF-SLAM

218



MORE THAN ONE IMAGE:

MODELLING
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C H A P T E R 25

Stereopsis

25.1 DEPTH BY MATCHING PIXELS FROM LEFT TO RIGHT

25.1.1 Depth and Disparity

25.1.2 Matching Challenges

25.1.3 Standard Configurations

25.1.4 Stereo as a CRF

25.1.5 Self-Learned Stereo

25.2 RECOVERING CAMERA GEOMETRY FROM PICTURES

25.2.1 The 8-point Algorithm and Variants

25.2.2 Robustness, RANSAC and Variants

25.3 MULTI-VIEW STEREO AND OBJECT MODELLING

25.3.1 The Photometric Consistency Constraint

220



C H A P T E R 26

Optic Flow

26.1 OPTIC FLOW AS A CUE

26.2 LEARNING TO ESTIMATE OPTIC FLOW

26.3 SMALL FAST OBJECTS AND FLOW
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3D Models from Images

27.1 MESH MODELS

27.2 IMPLICIT SURFACE MODELS

27.3 NERF MODELS

222



TOPICS
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C H A P T E R 28

Segmentation

28.1 REGIONS AND SEGMENTATION

28.1.1 Regions and Clusters

28.1.2 Segmentation as Clustering

28.1.3 Evaluating Image Segmentation

28.2 CONDITIONAL RANDOM FIELDS

28.2.1 Definition

28.2.2 Inference for a Simple CRF

28.2.3 Methods for MultiLabel CRFs

28.2.4 Fully Connected CRFs

28.2.5 FCCRFs and Semantic Segmentation

224
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Learning Features without Labels

29.1 FEATURES FROM IMAGE CONSTRUCTIONS

29.2 FEATURES FROM CONTRAST

29.3 FEATURES FROM VIDEO
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C H A P T E R 30

Interpreting Human Action

30.1 RECOVERING HUMAN POSE FROM IMAGES

30.2 RECOVERING MESH MODELS OF HUMANS

30.3 INTERPRETING EGOCENTRIC VIDEO

226
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Neural Network Tricks for the Hard
Core

31.1 ATTENTION

31.2 TRANSFORMERS
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Visual Speculation

32.1 INVERSE GRAPHICS

32.2 OBJECT INSERTION

32.3 SCENE RELIGHTING
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C H A P T E R 33

Words and Pictures

33.1 PREDICTING NATURAL LANGUAGE FROM IMAGES

33.1.1 Detection as Predicting Tags

33.1.2 Sentences as Complicated Labels

33.2 PRODUCING IMAGES FROM WRITTEN DESCRIPTIONS
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C H A P T E R 34

Vision for Movement

34.1 AUTONOMOUS VEHICLES

34.2 DRONES
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C H A P T E R 35

Some useful Matrix and
Transformation Facts

35.1 NOMENCLATURE

35.1.1 Types of Matrix

35.1.2 Types of Transformation

TODO: rotations commute with scales

35.2 LEAST SQUARES

35.2.1 General Linear Systems

35.2.2 Homogeneous Equations

35.3 TRICKS

The trace of matrix M is the sum of values along the diagonal. It is applicable only
to square matrices. In the exercises, you will show that the trace is linear, that

Tr (AB) = Tr (BA)

and that
Tr (ABC) = Tr (CAB) = Tr (BCA),

all facts sufficiently well worth remembering to deserve being put in a box.

Remember this: The trace of M is
∑

imii. We have that the trace
is linear, that

Tr (AB) = Tr (BA)

and that
Tr (ABC) = Tr (CAB) = Tr (BCA).

The Frobenius norm is the matrix norm obtained by summing squared entries
of the matrix. We write

||A||F =
∑
i,j

a2ij .

In the exercises, you will show that

||A||F = Tr
(
ATA

)
232
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Remember this: The Frobenius norm of M is
∑

ij m
2
ij. It can be

computed as Tr
(
MTM

)
.

35.3.1 RQ Factorization

Any real square matrix M can be factored into RQ, where R is upper triangular
and Q is orthonormal. We do the 2× 2 case, then write out in general form. Write
M =

[
mT

1 ;m
T
2

]
(etc). Then

M =
[
m11q

T
1 +m12q

T
2 ;m22q

T
2

]
.

The upper triangular form of R means we can solve for terms in a convenient order,
so

� m22 =
√
mT

2 m2 and q2 = (1/m22)m2 (because the second row of Q must be
a unit vector);

� and m12 = mT
1 q2 (because q1 and q2 are orthonormal);

� and so m11 =
√
lT1 l1 and q1 = (1/m11)l1 where l1 = m1 −m12q2

This logic works for larger matrices, where the main nuisance is notation.

Procedure: 35.1 RQ Factorization

Now assume M is d× d. Then

M =

[
d∑

i=1

m1iq
T
i ;

d∑
i=2

m2iq
T
i ; . . . ;mddq

T
d

]

We have that

� mdd =
√
mT

d md and qd = (1/mdd)md;

� and for u ranging from d− 1 to 1:

– mud = mT
uqd;

– muu =
√
lTu lu;

– and qu = (1/muu)lu;

– where lu = mu −
∑

v=u+1 v = dmuvqv.

RQ factorization is a variant of the more commonly used QR factorization
(orthonormal times upper triangular) which is useful for camera calibration.



234 Chapter 35 Some useful Matrix and Transformation Facts

35.3.2 Cholesky Factorization

A symmetric, positive definite matrix M can be factored as UTU , where U is upper
triangular. An example (below) will show why this works, but it is most unwise
to write your own Cholesky factorization because the best behavior comes from
pivoting, etc. to preserve numerical precision. Notice that if you want to factor the
matrix into lower triangular factors (so M = LTL), a version of the same procedure
will work.

I will plod through Cholesky factorization of a 3 × 3 matrix to illustrate the
principle. Assume the factorization exists. Then we have m11 m12 m13

m12 m22 m23

m13 m23 m33

 =

 u11 0 0
u12 u22 0
u13 u23 u33

 u11 u12 u13
0 u22 u23
0 0 u33

 .
If you multiply out, you will notice u11 =

√
m11. For concreteness, choose the

positive square root (this is usual – there are actually 8 factorizations of this matrix,
but they differ only by choice of sign of various square roots). Now u12 = m11/u11
and u13 = m13/u11. Similarly, u22 =

√
m22 − u212 (and again, choose the positive

square root) and u23 = (m23 − u13)/u22. Finally, u33 =
√
m33 − u213 − u223. Notice

the trick – if we compute the elements of U in the right order, there is only ever one
unknown. This procedure is clearly going to fail if we attempt to take a square root
of a negative number. A little manipulation will establish that this occurs only if
M is not positive definite.
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Tools for High Dimensional Data

TODO: Curse of dimension TODO: PCA TODO: Simple multidimen-
sional scaling TODO: TSNE

36.1 PRINCIPAL COMPONENTS ANALYSIS

36.1.1 Mean and Covariance

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi
N

.

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

Variance, standard deviation and correlation can each be seen as an instance
of a more general operation on data. Extract two components from each vector of
a dataset of vectors, yielding two 1D datasets of N items; write {x} for one and
{y} for the other. The i’th element of {x} corresponds to the i’th element of {y}
(the i’th element of {x} is one component of some bigger vector xi and the i’th
element of {y} is another component of this vector). We can define the covariance
of {x} and {y}.

Definition: 36.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

235
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Covariance measures the tendency of corresponding elements of {x} and of
{y} to be larger than (resp. smaller than) the mean. The correspondence is defined
by the order of elements in the data set, so that x1 corresponds to y1, x2 corresponds
to y2, and so on. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is also larger (resp. smaller) than its mean, then the covariance
should be positive. If {x} tends to be larger (resp. smaller) than its mean for data
points where {y} is smaller (resp. larger) than its mean, then the covariance should
be negative.

Notice that
std (x)2 = var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures
the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant. More important
is the relationship between covariance and correlation, in the box below.

Remember this:

corr ({(x, y)}) = cov ({x} , {y})√
cov ({x} , {x})

√
cov ({y} , {y})

.

This is occasionally a useful way to think about correlation. It says that the
correlation measures the tendency of {x} and {y} to be larger (resp. smaller) than
their means for the same data points, compared to how much they change on their
own.

36.1.2 The Covariance Matrix

Working with covariance (rather than correlation) allows us to unify some ideas.
In particular, for data items which are d dimensional vectors, it is straightforward
to compute a single matrix that captures all covariances between all pairs of com-
ponents — this is the covariance matrix.

Definition: 36.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T

N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Covariance matrices are often written as Σ, whatever the dataset (you get to
figure out precisely which dataset is intended, from context). Generally, when we
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want to refer to the j, k’th entry of a matrix A, we will write Ajk, so Σjk is the
covariance between the j’th and k’th components of the data.

Definition: 36.3 Properties of the covariance matrix

� The j, k’th entry of the covariance matrix is the covariance
of the j’th and the k’th components of x, which we write
cov

({
x(j)

}
,
{
x(k)

})
.

� The j, j’th entry of the covariance matrix is the variance of the
j’th component of x.

� The covariance matrix is symmetric.

� The covariance matrix is always positive semi-definite; it is pos-
itive definite, unless there is some vector a such that aT (xi −
mean ({xi}) = 0 for all i.

Proposition:

Covmat ({x})jk = cov
({
x(j)

}
,
{
x(k)

})
Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T

N

and the j, k’th entry in this matrix will be∑
i(x

(j)
i −mean

({
x(j)

})
)(x

(k)
i −mean

({
x(k)

})
)T

N

which is cov
({
x(j)

}
,
{
x(k)

})
.
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Proposition:

Covmat ({xi})jj = Σjj = var
({
x(j)

})
Proof:

Covmat ({x})jj = cov
({
x(j)

}
,
{
x(j)

})
= var

({
x(j)

})

Proposition:
Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({
x(j)

}
,
{
x(k)

})
= cov

({
x(k)

}
,
{
x(j)

})
= Covmat ({x})kj
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Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u|| > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑
i

[
uT (xi −mean ({x}))

] [
(xi −mean ({x}))Tu

]
=

1

N

∑
i

[
uT (xi −mean ({x}))

]2
.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

36.2 REPRESENTING DATA ON PRINCIPAL COMPONENTS

We have seen that a blob of data can be translated so that it has zero mean, then
rotated so the covariance matrix is diagonal. In this coordinate system, we can set
some components to zero, and get a representation of the data that is still accurate.
The rotation and translation can be undone, yielding a dataset that is in the same
coordinates as the original, but lower dimensional. The new dataset is a good ap-
proximation to the old dataset. All this yields a really powerful idea: we can choose
a small set of vectors, so that each item in the original dataset can be represented
as the mean vector plus a weighted sum of this set. This representation means we
can think of the dataset as lying on a low dimensional space inside the original
space. It’s an experimental fact that this model of a dataset is usually accurate for
real high-dimensional data, and it is often an extremely convenient model. Further-
more, representing a dataset like this very often suppresses noise – if the original
measurements in your vectors are noisy, the low dimensional representation may be
closer to the true data than the measurements are.

We start with a dataset of N d-dimensional vectors {x}. We translate this
dataset to have zero mean, forming a new dataset {m} where mi = xi−mean ({x}).
We diagonalize Covmat ({m}) = Covmat ({x}) to get

UTCovmat ({x})U = Λ
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and form the dataset {r}, using the rule

ri = UTmi = UT (xi −mean ({x})).

We saw the mean of this dataset is zero, and the covariance is diagonal. Most
high dimensional datasets display another important property: many, or most, of
the diagonal entries of the covariance matrix are very small. This means we can
build a low dimensional representation of the high dimensional dataset that is quite
accurate.

36.2.1 Approximating Blobs

The covariance matrix of {r} is diagonal, and the values on the diagonal are inter-
esting. It is quite usual for high dimensional datasets to have a small number of
large values on the diagonal, and a lot of small values. This means that the blob
of data is really a low dimensional blob in a high dimensional space. For example,
think about a line segment (a 1D blob) in 3D. As another example, look at Fig-
ure ??; the scatterplot matrix strongly suggests that the blob of data is flattened
(eg look at the petal width vs petal length plot).

Now assume that Covmat ({r}) has many small and few large diagonal entries.
In this case, the blob of data represented by {r} admits an accurate low dimensional
representation. The data set {r} is d-dimensional. We will try to represent it with
an s dimensional dataset, and see what error we incur. Choose some s < d. Now
take each data point ri and replace the last d − s components with 0. Call the
resulting data item pi. We should like to know the average error in representing ri
with pi.

This error is
1

N

∑
i

[
(ri − pi)

T
(ri − pi)

]
.

Write r
(j)
i for the j′ component of ri, and so on. Remember that pi is zero in the

last d− s components. The mean error is then

1

N

∑
i

 j=d∑
j=s+1

(
r
(j)
i

)2 .
But we know this number, because we know that {r} has zero mean. The error is

j=d∑
j=s+1

[
1

N

∑
i

(
r
(j)
i

)2]
=

j=d∑
j=s+1

var
({
r(j)
})

which is the sum of the diagonal elements of the covariance matrix from r, r to d, d.
Equivalently, writing λi for the i’th eigenvalue of Covmat ({x}) and assuming the
eigenvalues are sorted in descending order, the error is

j=d∑
j=s+1

λj
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FIGURE 36.1: On the left, the translated and rotated blob of figure ??. This blob is
stretched — one direction has more variance than another. Setting the y coordinate
to zero for each of these datapoints results in a representation that has relatively
low error, because there isn’t much variance in these values. This results in the
blob on the right. The text shows how the error that results from this projection is
computed.

FIGURE 36.2: A panel plot of the bodyfat dataset of figure ??, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Each scatterplot is on the same set of axes, so you can see that the dataset extends
more in some directions than in others. You should notice that, in some directions,
there is very little variance. This suggests that replacing the coefficient in those
directions with zero (as in figure 36.1) should result in a representation of the data
that has very little error.

If this sum is small compared to the sum of the first s components, then dropping
the last d − s components results in a small error. In that case, we could think
about the data as being s dimensional. Figure 36.1 shows the result of using this
approach to represent the blob I’ve used as a running example as a 1D dataset.

This is an observation of great practical importance. As a matter of experi-
mental fact, a great deal of high dimensional data produces relatively low dimen-
sional blobs. We can identify the main directions of variation in these blobs, and
use them to understand and to represent the dataset.

36.2.2 Example: Transforming the Height-Weight Blob

Translating a blob of data doesn’t change the scatterplot matrix in any interesting
way (the axes change, but the picture doesn’t). Rotating a blob produces really
interesting results, however. Figure 36.2 shows the dataset of Figure ??, translated
to the origin and rotated to diagonalize it. Now we do not have names for each
component of the data (they’re linear combinations of the original components),
but each pair is now not correlated. This blob has some interesting shape features.
Figure 36.2 shows the gross shape of the blob best. Each panel of this figure has
the same scale in each direction. You can see the blob extends about 80 units in
direction 1, but only about 15 units in direction 2, and much less in the other two
directions. You should think of this blob as being rather cigar-shaped; it’s long in
one direction, but there isn’t much in the others. The cigar metaphor isn’t perfect
(have you seen a four-dimensional cigar recently?), but it’s helpful. You can think
of each panel of this figure as showing views down each of the four axes of the cigar.

Now look at figure 36.3. This shows the same rotation of the same blob of
data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here
worth studying. Second, you can see that some points seem to lie away from the
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FIGURE 36.3: A panel plot of the bodyfat dataset of figure ??, now rotated so that the
covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables.
Compare this figure with figure 36.3; in that figure, the axes were the same, but in
this figure I have scaled the axes so you can see details. Notice that the blob is a
little curved, and there are several data points that seem to lie some way away from
the blob, which I have numbered.

FIGURE 36.4: The data of Figure ??, represented by translating and rotating so that
the covariance is diagonal, projecting off the two smallest directions, then undoing
the rotation and translation. This blob of data is two dimensional (because we
projected off two dimensions – figure 36.2 suggested this was safe), but is represented
in a four dimensional space. You can think of it as a thin two dimensional pancake
of data in the four dimensional space (you should compare to Figure ?? on page
??). It is a good representation of the original data. Notice that it looks slightly
thickened on edge, because it isn’t aligned with the coordinate system – think of a
view of a flat plate at a slight slant.

main blob. I have plotted each data point with a dot, and the interesting points
with a number. These points are clearly special in some way.

The problem with these figures is that the axes are meaningless. The compo-
nents are weighted combinations of components of the original data, so they don’t
have any units, etc. This is annoying, and often inconvenient. But I obtained Fig-
ure 36.2 by translating, rotating and projecting data. It’s straightforward to undo
the rotation and the translation – this takes the projected blob (which we know
to be a good approximation of the rotated and translated blob) back to where the
original blob was. Rotation and translation don’t change distances, so the result
is a good approximation of the original blob, but now in the original blob’s co-
ordinates. Figure 36.4 shows what happens to the data of Figure ??. This is a
two dimensional version of the original dataset, embedded like a thin pancake of
data in a four dimensional space. Crucially, it represents the original dataset quite
accurately.

36.2.3 Representing Data on Principal Components

Now consider undoing the rotation and translation for our projected dataset {p}.
We would form a new dataset {x̂}, with the i’th element given by

x̂i = Upi +mean ({x})

(you should check this expression). But this expression says that x̂i is constructed
by forming a weighted sum of the first s columns of U (because all the other
components of pi are zero), then adding mean ({x}). If we write uj for the j’th
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column of U and wij for a weight value, we have

x̂i =

s∑
j=1

wijuj +mean ({x}).

What is important about this sum is that s is usually a lot less than d. In turn,
this means that we are representing the dataset using a lower dimensional dataset.
We choose an s dimensional flat subspace of d dimensional space, and represent
each data item with a point that lies on in that subset. The uj are known as

principal components (sometimes loadings) of the dataset; the r
(j)
i are sometimes

known as scores, but are usually just called coefficients. Forming the representation
is called principal components analysis or PCA. The weights wij are actually easy
to evaluate. We have that

wij = r
(j)
i = (xi −mean ({x}))Tuj .

Remember this: Data items in a d dimensional data set can usually be
represented with good accuracy as a weighted sum of a small number s of d
dimensional vectors, together with the mean. This means that the dataset
lies on an s-dimensional subspace of the d-dimensional space. The subspace
is spanned by the principal components of the data.

36.2.4 The Error in a Low Dimensional Representation

We can easily determine the error in approximating {x} with {x̂}. The error in
representing {r} by {p} was easy to compute. We had

1

N

∑
i

[
(ri − pi)

T
(ri − pi)

]
=

j=d∑
j=s+1

var
({
r(j)
})

=

j=d∑
j=s+1

λj

If this sum is small compared to the sum of the first s components, then dropping
the last d− s components results in a small error.

The average error in representing {x} with {x̂} is now easy to get. Rotations
and translations do not change lengths. This means that

1

N

∑
i

||xi − x̂i||2 =
1

N

∑
i

||ri − pi||2 =

j=d∑
j=s+1

λj

which is easy to evaluate, because these are the values of the d − s eigenvalues of
Covmat ({x}) that we decided to ignore. Now we could choose s by identifying how
much error we can tolerate. More usual is to plot the eigenvalues of the covariance
matrix, and look for a “knee”, like that in Figure ??. You can see that the sum of
remaining eigenvalues is small.
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Procedure: 36.1 Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that

ΣU = UΛ

(these are the eigenvectors and eigenvalues of Σ). Ensure that the
entries of Λ are sorted in decreasing order. Choose r, the number of
dimensions you wish to represent. Typically, we do this by plotting the
eigenvalues and looking for a “knee” (Figure ??). It is quite usual to
do this by hand.
Constructing a low-dimensional representation: For 1 ≤ j ≤ s,
write ui for the i’th column of U . Represent the data point xi as

x̂i = mean ({x}) +
s∑

j=1

[
uT
j (xi −mean ({x}))

]
uj

The error in this representation is

1

N

∑
i

||xi − x̂i||2 =

j=d∑
j=s+1

λj

36.2.5 Extracting a Few Principal Components with NIPALS

If you remember the curse of dimension, you should have noticed something of a
problem in my account of PCA. When I described the curse, I said one consequence
was that forming a covariance matrix for high dimensional data is hard or impos-
sible. Then I described PCA as a method to understand the important dimensions
in high dimensional datasets. But PCA appears to rely on covariance, so I should
not be able to form the principal components in the first place. In fact, we can
form principal components without computing a covariance matrix.

I will now assume the dataset has zero mean, to simplify notation. This is
easily achieved. You subtract the mean from each data item at the start, and add
the mean back once you’ve finished. As usual, we have N data items, each a d
dimensional column vector. We will now arrange these into a matrix,

X =


xT
1

xT
2

. . .
xT
N


where each row of the matrix is a data vector. Now assume we wish to recover
the first principal component. This means we are seeking a vector u and a set of
N numbers wi such that wiu is a good approximation to xi. Now we can stack
the wi into a column vector w. We are asking that the matrix wuT be a good
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approximation to X , in the sense that wuT encodes as much of the variance of X
as possible.

The Frobenius norm is a term for the matrix norm obtained by summing
squared entries of the matrix. We write

||A||F 2
=
∑
i,j

a2ij .

In the exercises, you will show that the right choice of w and u minimizes the cost

||X −wuT ||F
2

which we can write as

C(w,u) =
∑
ij

(xij − wiuj)
2
.

Now we need to find the relevant w and u. Notice there is not a unique choice,
because the pair (sw, (1/s)u) works as well as the pair (w,u). We will choose u
such that ||u|| = 1. There is still not a unique choice, because you can flip the signs
in u and w, but this doesn’t matter. At the right w and u, the gradient of the cost
function will be zero.

The gradient of the cost function is a set of partial derivatives with respect
to components of w and u. The partial with respect to wk is

∂C

∂wk
=
∑
j

(xkj − wkuj)uj

which can be written in matrix vector form as

∇wC = (X −wuT )u.

Similarly, the partial with respect to ul is

∂C

∂ul
=
∑
i

(xil − wiul)wi

which can be written in matrix vector form as

∇uC = (X T − uwT )w.

At the solution, these partial derivatives are zero. Notice that, if we know
the right u, then the equation ∇wC = 0 is linear in w. Similarly, if we know the
right w, then the equation ∇uC = 0 is linear in u. This suggests an algorithm.
First, assume we have an estimate of u, say u(n). Then we could choose the w that
makes the partial wrt w zero, so

ŵ =
Xu(n)

(u(n))Tu(n)
.
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Now we can update the estimate of u by choosing a value that makes the partial
wrt u zero, using our estimate ŵ, to get

û =
X T ŵ

(ŵ)T ŵ
.

We need to rescale to ensure that our estimate of u has unit length. Write s =√
(û)T û We get

u(n+1) =
û

s

and

w(n+1) = sŵ.

This iteration can be started by choosing some row of X as u(0). You can test for
convergence by checking ||u(n+1) − u(n)||. If this is small enough, then the algorithm
has converged.

To obtain a second principal component, you form X (1) = X −wuT and apply
the algorithm to that. You can get many principal components like this, but it’s not
a good way to get all of them (eventually numerical issues mean the estimates are
poor). The algorithm is widely known as NIPALS (for Non-linear Iterative Partial
Least Squares).

36.2.6 Principal Components and Missing Values

Now imagine our dataset has missing values. We assume that the values are not
missing in inconvenient patterns — if, for example, the k’th component was missing
for every vector then we’d have to drop it — but don’t go into what precise kind
of pattern is a problem. Your intuition should suggest that we can estimate a few
principal components of the dataset without particular problems. The argument
is as follows. Each entry of a covariance matrix is a form of average; estimating
averages in the presence of missing values is straightforward; and, when we estimate
a few principal components, we are estimating far fewer numbers than when we are
estimating a whole covariance matrix, so we should be able to make something
work. This argument is sound, if vague.

The whole point of NIPALS is that, if you want a few principal components,
you don’t need to use a covariance matrix. This simplifies thinking about missing
values. NIPALS is quite forgiving of missing values, though missing values make
it hard to use matrix notation. Recall I wrote the cost function as C(w,u) =∑

ij(xij−wiuj)
2. Notice that missing data occurs in X because there are xij whose

values we don’t know, but there is no missing data in w or u (we’re estimating the
values, and we always have some estimate). We change the sum so that it ranges
over only the known values, to get

C(w,u) =
∑

ij∈known values

(xij − wiuj)
2
.

Now we need a shorthand to ensure that sums run over only known values. Write
V(k) for the set of column (resp. row) indices of known values for a given row (resp.
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column index) k. So i ∈ V(k) means all i such that xik is known or all i such that
xki is known (the context will tell you which). We have

∂C

∂wk
=

∑
j∈V(k)

(xkj − wkuj)uj

and

∂C

∂ul
=
∑

i∈V(l)

(xil − wiul)wi.

These partial derivatives must be zero at the solution. This means we can use u(n),
w(n) to estimate

ŵk =

∑
j∈V(k)

xkju
(n)
j∑

j

u
(n)
j u

(n)
j

and

ûl =

∑
i∈V(l)

xilŵl∑
i

ŵiŵi

We then normalize as before to get u(n+1), w(n+1).
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Procedure: 36.2 Obtaining some principal components with NIPALS

We assume that X has zero mean. Each row is a data item. Start with
u0 as some row of X . Write V(k) for the set of indices of known values
for a given row or column index k. Now iterate

� compute

ŵk =

∑
j∈V(k)

xkju
(n)j

∑
j u

(n)
j u

(n)
j

and

ûl =

∑
i∈V(l)

xilŵl∑
i ŵiŵi

;

� compute s =
√

(û)T û, and

u(n+1) =
û

s

and
w(n+1) = sŵ;

� Check for convergence by checking that ||u(n+1) − u(n)|| is small.

This procedure yields a single principal component representing the
highest variance in the dataset. To obtain the next principal compo-
nent, replace X with X −wuT and repeat the procedure. This process
will yield good estimates of the first few principal components, but as
you generate more principal components, numerical errors will become
more significant.

36.2.7 PCA as Smoothing

Assume that each data item xi is noisy. We use a simple noise model. Write x̃i for
the true underlying value of the data item, and ξi for the value of a normal random
variable with zero mean and covariance σ2I. Then we use the model

xi = x̃i + ξi

(so the noise in each component is independent, has zero mean, and has variance
σ2; this is known as additive, zero-mean, independent gaussian noise). You should
think of the measurement xi as an estimate of x̃i. A principal component analysis
of xi can produce an estimate of x̃i that is closer than the measurements are.

There is a subtlety here, because the noise is random, but we see the values
of the noise. This means that Covmat ({ξ}) (i.e. the covariance of the observed
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numbers) is the value of a random variable (because the noise is random) whose
mean is σ2I (because that’s the model). The subtlety is that mean ({ξ}) will not
necessarily be exactly 0 and Covmat ({ξ}) will not necessarily be exactly σ2I. The
weak law of large numbers tells us that Covmat ({ξ}) will be extremely close to its
expected value (which is σ2I) for a large enough dataset. We will assume that
mean ({ξ}) = 0 and Covmat ({ξ}) = σ2I.

The first step is to write Σ̃ for the covariance matrix of the true underlying
values of the data, and Covmat ({x}) for the covariance of the observed data. Then
it is straightforward that

Covmat ({x}) = Σ̃ + σ2I

because the noise is independent of the measurements. Notice that if U diagonalizes
Covmat ({x}), it will also diagonalize Σ̃. Write Λ̃ = UT Σ̃U . We have

UTCovmat ({x})U = Λ = Λ̃ + σ2I.

Now think about the diagonal entries of Λ. If they are large, then they are quite
close to the corresponding components of Λ̃, but if they are small, it is quite likely
they are the result of noise. But these eigenvalues are tightly linked to error in a
PCA representation.

In PCA (procedure 36.1), the d dimensional data point xi is represented by

x̂i = mean ({x}) +
s∑

j=1

[
uT
j (xi −mean ({x}))

]
uj

where uj are the principal components. This representation is obtained by setting
the coefficients of the d− s principal components with small variance to zero. The
error in representing {x} with {x̂} follows from section 36.2.4 and is

1

N

∑
i

||xi − x̂i||2 =

j=d∑
j=s+1

λj .

Now consider the error in representing x̃i (which we don’t know) by xi (which we
do). The average error over the whole dataset is

1

N

∑
i

||xi − x̃i||2.

Because the variance of the noise is σ2I, this error must be dσ2. Alternatively, we
could represent x̃i by x̂i. The average error of this representation over the whole
dataset will be

1

N

∑
i

|| x̂i − x̃i||2 = Error in components that are preserved +

Error in components that are zeroed

= sσ2 +

d∑
j=s+1

λ̃u.
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Now if, for j > s, λ̃j < σ2, this error is smaller than dσ2. We don’t know which

s guarantees this unless we know σ2 and λ̃j which often doesn’t happen. But it’s
usually possible to make a safe choice, and so smooth the data by reducing noise.
This smoothing works because the components of the data are correlated. So the
best estimate of each component of a high dimensional data item is likely not the
measurement – it’s a prediction obtained from all measurements. The projection
onto principal components is such a prediction.

Remember this: Given a d dimensional dataset where data items have
had independent random noise added to them, representating each data item
on s < d principal components can result in a representation which is on
average closer to the true underlying data than the original data items. The
choice of s is application dependent.

36.3 VISUALIZATION

36.3.1 Simple Visualization with Principal Coordinate Analysis

36.3.2 TSNE

36.3.3 the other mapper
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Clustering Methods

37.1 AGGLOMERATIVE CLUSTERING

37.1.1 Link Functions and Dendrograms

37.2 K MEANS CLUSTERING

37.2.1 Basic K Means

37.2.2 Hierarchical K Means

37.2.3 K Means with Soft Weights

37.3 EXPECTATION MAXIMIZATION

37.3.1 Mixture Models: Probabilistic Models of Clustered Data

37.3.2 EM for Mixture Models

37.3.3 General EM

37.4 SPECTRAL CLUSTERING

37.4.1 Affinity Matrices

37.4.2 Affinity Subspaces and EigenVectors

37.4.3 Normalized Cuts
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SILS

38.1 SHIFT INVARIANT LINEAR SYSTEMS

Convolution represents the effect of a large class of system. In particular, most
imaging systems have, to a good approximation, three significant properties:

� Superposition: We expect that

R(f + g) = R(f) +R(g);

that is, the response to the sum of stimuli is the sum of the individual re-
sponses.

� Scaling: The response to a zero input is zero. Taken with superposition, we
have that the response to a scaled stimulus is a scaled version of the response
to the original stimulus; that is,

R(kf) = kR(f).

A device that exihibits superposition and scaling is linear.

� Shift invariance: In a shift invariant system, the response to a translated
stimulus is just a translation of the response to the stimulus. This means
that, for example, if a view of a small light aimed at the center of the camera
is a small, bright blob, then if the light is moved to the periphery, we should
see the same small, bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear system,
or often just as a system.

The response of a shift invariant linear system to a stimulus is obtained by
convolution. We demonstrate this first for systems that take discrete inputs—say,
vectors or arrays—and produce discrete outputs. We then use this to describe the
behavior of systems that operate on continuous functions of the line or the plane,
and from this analysis we obtain some useful facts about convolution.

38.1.1 Discrete Convolution

In the 1D case, we have a shift invariant linear system that takes a vector and
responds with a vector. This case is the easiest to handle because there are fewer
indices to look after. The 2D case—a system that takes an array and responds with
an array—follows easily. In each case, we assume that the input and output are
infinite dimensional. This allows us to ignore some minor issues that arise at the
boundaries of the input. We deal with these in Section 38.1.3.

Discrete Convolution in One Dimension

252
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We have an input vector f . For convenience, we assume that the vector has
infinite length and its elements are indexed by the integers (i.e., there is an element
with index −1, say). The ith component of this vector is fi. Now f is a weighted
sum of basis elements. A convenient basis is a set of elements that have a one in a
single component and zeros elsewhere. We write

e0 = . . . 0, 0, 0, 1, 0, 0, 0, . . .

This is a data vector that has a 1 in the zeroth place, and zeros elsewhere. Define
a shift operation, which takes a vector to a shifted version of that vector. In
particular, the vector Shift(f , i) has, as its jth component, the j − ith component
of f . For example, Shift(e0, 1) has a zero in the first component. Now, we can
write

f =
∑
i

fiShift(e0, i).

We write the response of our system to a vector f as

R(f).

Now, because the system is shift invariant, we have

R(Shift(f , k)) = Shift(R(f), k).

Furthermore, because it is linear, we have

R(kf) = kR(f).

This means that

R(f) = R

(∑
i

fiShift(e0, i)

)
=
∑
i

R(fiShift(e0, i))

=
∑
i

fiR(Shift(e0, i))

=
∑
i

fiShift(R(e0), i)).

This means that to obtain the system’s response to any data vector, we need to
know only its response to e0. This is usually called the system’s impulse response.
Assume that the impulse response can be written as g. We have

R(f) =
∑
i

fiShift(g, i) = g ∗ f .

This defines an operation—the 1D, discrete version of convolution—which we write
with a ∗.
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This is all very well, but it doesn’t give us a particularly easy expression for
the output. If we consider the jth element of R(f), which we write as Ri, we must
have

Rj =
∑
i

gj−ifi,

which conforms to (and explains the origin of) the form used in Section ??.

Discrete Convolution in Two Dimensions We now use an array of
values and write the i, jth element of the array D as Dij . The appropriate analogy
to an impulse response is the response to a stimulus that looks like

E00 =

. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . . . . .

If G is the response of the system to this stimulus, the same considerations as
for 1D convolution yield a response to a stimulus F , that is,

Rij =
∑
u,v

Gi−u,j−vFuv,

which we write as
R = G ∗ ∗H.

38.1.2 Continuous Convolution

There are shift invariant linear systems that produce a continuous response to a
continuous input; for example, a camera lens takes a set of radiances and produces
another set, and many lenses are approximately shift invariant. A brief study of
these systems allows us to study the information lost by approximating a contin-
uous function—the incoming radiance values across an image plane—by a discrete
function—the value at each pixel.

The natural description is in terms of the system’s response to a rather un-
natural function, the δ-function, which is not a function in formal terms. We do
the derivation first in one dimension to make the notation easier.

Convolution in One Dimension
We obtain an expression for the response of a continuous shift invariant linear

system from our expression for a discrete system. We can take a discrete input and
replace each value with a box straddling the value; this gives a continuous input
function. We then make the boxes narrower and consider what happens in the
limit.

Our system takes a function of one dimension and returns a function of one
dimension. Again, we write the response of the system to some input f(x) as R(f);
when we need to emphasize that f is a function, we write R(f(x)). The response
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is also a function; occasionally, when we need to emphasize this fact, we write
R(f)(u). We can express the linearity property in this notation by writing

R(kf) = kR(f)

(for k some constant) and the shift invariance property by introducing a Shift

operator, which takes functions to functions:

Shift(f, c) = f(u− c).

With this Shift operator, we can write the shift invariance property as

R(Shift(f, c)) = Shift(R(f), c).

We define the box function as:

boxϵ(x) =

{
0 abs(x) > ϵ

2
1 abs(x) < ϵ

2

.

The value of boxϵ(ϵ/2) does not matter for our purposes. The input function is f(x).
We construct an even grid of points xi, where xi+1 − xi = ϵ. We now construct
a vector f whose ith component (written fi) is f(xi). This vector can be used to
represent the function.

We obtain an approximate representation of f by
∑

i fiShift(boxϵ, xi). We
apply this input to a shift invariant linear system; the response is a weighted sum
of shifted responses to box functions. This means that

R

(∑
i

fiShift(boxϵ, xi)

)
=
∑
i

R(fiShift(boxϵ, xi))

=
∑
i

fiR(Shift(boxϵ, xi))

=
∑
i

fiShift(R(
boxϵ
ϵ
ϵ), xi)

=
∑
i

fiShift(R(
boxϵ
ϵ

), xi)ϵ.

So far, everything has followed our derivation for discrete functions. We now have
something that looks like an approximate integral if ϵ→ 0.

We introduce a new device, called a δ-function, to deal with the term boxϵ/ϵ.
Define

dϵ(x) =
boxϵ(x)

ϵ
.

The δ-function is:
δ(x) = lim

ϵ→0
dϵ(x).

We don’t attempt to evaluate this limit, so we need not discuss the value of
δ(0). One interesting feature of this function is that, for practical shift invariant
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linear systems, the response of the system to a δ-function exists and has compact
support (i.e., is zero except on a finite number of intervals of finite length). For
example, a good model of a δ-function in 2D is an extremely small, extremely
bright light. If we make the light smaller and brighter while ensuring the total
energy is constant, we expect to see a small but finite spot due to the defocus of
the lens. The δ-function is the natural analogue for e0 in the continuous case.

This means that the expression for the response of the system,∑
i

fiShift(R(
boxϵ
ϵ

), xi)ϵ,

turns into an integral as ϵ limits to zero. We obtain

R(f) =

∫
{R(δ)(u− x′)} f(x′)dx′

=

∫
g(u− x′)f(x′)dx′,

where we have written R(δ)—which is usually called the impulse response of
the system—as g and have omitted the limits of the integral. These integrals could
be from −∞ to ∞, but more stringent limits could apply if g and h have compact
support. This operation is called convolution (again), and we write the foregoing
expression as

R(f) = (g ∗ f).

Convolution is commutative, meaning

(g ∗ h)(x) = (h ∗ g)(x).

Convolution is associative, meaning that

(f ∗ (g ∗ h)) = ((f ∗ g) ∗ h).

This latter property means that we can find a single shift invariant linear system
that behaves like the composition of two different systems. This will be useful when
we discuss sampling.

Convolution in Two Dimensions
The derivation of convolution in two dimensions requires more notation. A

box function is now given by boxϵ2(x, y) = boxϵ(x)boxϵ(y); we now have

dϵ(x, y) =
boxϵ2(x, y)

ϵ2
.

The δ-function is the limit of dϵ(x, y) function as ϵ → 0. Finally, there are more
terms in the sum. All this activity results in the expression

R(h)(x, y) =

∫ ∫
g(x− x′, y − y′)h(x′, y′)dxdy

= (g ∗ ∗h)(x, y),
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where we have used two ∗s to indicate a two-dimensional convolution. Convolution
in 2D is commutative, meaning that

(g ∗ ∗h) = (h ∗ ∗g),

and associative, meaning that

((f ∗ ∗g) ∗ ∗h) = (f ∗ ∗(g ∗ ∗h)).

A natural model for the impulse response of a two-dimensional system is to think
of the pattern seen in a camera viewing a very small, distant light source (which
subtends a very small viewing angle). In practical lenses, this view results in some
form of fuzzy blob, justifying the name point spread function, which is often used
for the impulse response of a 2D system. The point spread function of a linear
system is often known as its kernel.

38.1.3 Edge Effects in Discrete Convolutions

In practical systems, we cannot have infinite arrays of data. This means that when
we compute the convolution, we need to contend with the edges of the image; at
the edges, there are pixel locations where computing the value of the convolved
image requires image values that don’t exist. There are a variety of strategies we
can adopt:

� Ignore these locations, which means that we report only values for which
every required image location exists. This has the advantage of probity, but
the disadvantage that the output is smaller than the input. Repeated convo-
lutions can cause the image to shrink quite drastically.

� Pad the image with constant values, which means that, as we look at
output values closer to the edge of the image, the extent to which the output
of the convolution depends on the image goes down. This is a convenient
trick because we can ensure that the image doesn’t shrink, but it has the
disadvantage that it can create the appearance of substantial gradients near
the boundary.

� Pad the image in some other way. For example, we might think of
the image as a doubly periodic function so that if we have an n ×m image,
then column m+ 1—required for the purposes of convolution—would be the
same as column m− 1. This can create the appearance of substantial second
derivative values near the boundary.
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Index

1× 1 convolution, 105
****, 196

aberrations, 20
accuracy, 72
additive, zero-mean, independent

gaussian noise, 248
affine 3D space, 155
affine coordinates, 154
affine line, 154
affine plane, 155
airlight, see color sources
albedo, 21

reflectance, 39
spectral albedo, 39
spectral reflectance, 39

aliasing, see sampling
ambient illumination, 23
approximate nearest neighbor, 194
area source, 25
area sources

shadows, 25
aspect ratio, 162
average pooling, 107

backpropagation, 83
barrel distortion, 20
baseline, 27, 29
batch, 77
batch normalization, 109
batch size, 77
beacons, 184
bed-of-nails function, 133
bias, 81
black body, see color sources

color, physical terminology, 38
blocks, 101
blurring, see smoothing
brightness, see color spaces, 50

calibration object, 166
calibration points, 166

camera
pinhole, see pinhole camera

Camera calibration, 166
camera center, 15
camera extrinsic parameters, 160
camera extrinsics, 160
camera intrinsic parameters, 160
camera intrinsics, 160
camera obscura, 19
camera response function, 20
chromatic aberrations, 20
CIE, see color spaces
CIE LAB, see color spaces
CIE u’v’ space, see color spaces
CIE xy, see color spaces
CIE xy color space, see color spaces
CIE XYZ, see color spaces
CIE XYZ color space, see color

spaces
classifier, 72
CMY space, see color spaces
coarse-to-fine matching, 147
coefficients, 243
color bleeding, 70
color constancy, 65

finite-dimensional linear model,
65

recovering surface color by
gamut mapping, 68

recovering surface color from
average reflectance, 68

recovering surface color from
gamut, 68

recovering surface color from
specular reflections, 68

human color constancy, 65, 66
lightness computation, 50

color matching functions, 41
color perception, 32

cone, 35
Grassman’s laws, 34

259
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lightness
computing lightness, 50

photometry does not explain,
65, 66

primaries, 32
principle of univariance, 35
rod, 35
subtractive matching, 33
surface color, 65
surface color perception, 65
test light, 32
trichromacy, 33

color sources
airlight, 37
black body, 38
color temperature, 38

daylight, 36
fluorescent light, 38
incandescent light, 37
mercury arc lamps, 38
Mie scattering, 37
Rayleigh scattering, 37
skylight, 37
sodium arc lamps, 38

color spaces, 40
brightness, 45
by matching experiments, 41
CIE, 41
CIE LAB, 46
CIE u’v’ space, 46
CIE xy color space, 42
CIE XYZ color space, 42
CIE xy, 42–44

CMY space, 44
mixing rules, 44
use of four inks, 45

cyan, 44
HSV space, 45, 46
hue, 45
just noticeable differences, 45
lightness, 45
magenta, 44
opponent color space, 42
RGB color space, 42
RGB cube, 42
saturation, 45
uniform color space, 46

uniform color spaces, 47
value, 45
yellow, 44

color temperature, see color sources
color, modeling image, 59

color constancy using model, 65
color depends on surface and on

illuminant, 61
complete equation, 60
diffuse component, 61
finite-dimensional linear model,

65, 66
computing receptor responses,
67

recovering surface color by
gamut mapping, 68

recovering surface color from
average reflectance, 68

recovering surface color from
gamut, 68

recovering surface color from
specular reflections, 68

illuminant color, 59, 60
color, physical terminology

spectral energy density, 32
comb function, 133
compact support, 256
convolution, 88

associative, 256, 257
commutative, 256, 257
continuous, 254, 256

1D derivation, 254
2D derivation, 256
impulse response, 256
point spread function, 257
properties, 256

discrete
convention about sums, 88
effects of finite input datasets,
257

examples
finite differences, 95–98
ringing, 92
smoothing, see smoothing

gives response of shift invariant
linear system

discrete 1D derivation, 252
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discrete 2D derivation, 254
kernel, 257
like a dot product, 140, 142, 143
notation, 253, 254

convolution theorem, 130
convolutional layer, 102
corner

detection, 174
estimating scale with Laplacian

of Gaussian, 177
Harris corner detector, 176

covariant, 174
CRF, 20
cross-entropy loss, 74
cross-validation, 73
cyan, see color spaces

Da Vinci stereopsis, 27
data augmentation, 86, 111
daylight, see color sources
decay rate, 115
delta function, see convolution
dense depth map, 53
depth map, 53
depth of field, 20
derivative of Gaussian filters, see

gradient, estimating
derivatives, estimating

differentiating and smoothing
with one convolution, 95

using finite differences, 95
noise, 95, 96
smoothing, 95, 97, 98

descent direction, 76
dielectric surfaces, 62
diffuse reflection, 21
diffusion equation, 148
disparity, 27, 29
distant point light source, 23
dropout, 84

edge detection
gradient based
finding maxima of gradient
magnitude, 98

edge-preserving smoothing, 148
entropy, 64

epipole, 212
epoch, 78
error rate, 72
estimating scale with Laplacian of

Gaussian
corner
Laplacian, 177

Euclidean transformation, 160

fc layer, 80
feature maps, 101
feature tracking, 147
features, 104
finite difference, 95
finite differences, 95

choice of smoothing, 98
derivative of Gaussian filters,

95, 97, 98
differentiating and smoothing

with one convolution, 95
smoothing, 95, 97

finite-dimensional linear model, see
color, modeling image

focal length, 15
focal point, 15
Fourier transform, 128

as change of basis, 128, 129
basis elements as sinusoids, 129
definition for 2D signal, 128
inverse, 129
is linear, 129
of a sampled signal, 136
pairs, 130
phase and magnitude, 131
magnitude spectrum of image

uninformative, 131, 132
sampling, see sampling

Frobenius norm, 75, 232, 245
fully connected layer, 80
future data, 72

gamut, 43
geometric distortions, 20
gradient descent, 76
gradient, estimating

differentiating and smoothing
with one convolution, 95



262 INDEX

using derivative of Gaussian
filters, 95, 98

using finite differences, 95
noise, 95, 96
smoothing, 97

Grassman’s laws, see color
perception

Harris corner detector, see corner
HDR imaging, 48
heat map, 181
height map, 53
high dynamic range imaging, 48
homogeneous coordinates, 154
homographies, 158
horizon, 16
HSV space, see color spaces
Huber loss, 196
hue, see color spaces

ICP, 190
image, 15
image plane, 15
image pyramid, 144, see also scale,

145
coarse scale, 145
Gaussian pyramid, 145, 146
analysis, 145
applications, 145, 147

impulse response, 253, see
convolution

indicator function, 72
inlier, 196
integrability, 56

in lightness computation, 51
in photometric stereo, 56

interest points, 174
interreflections, 23
intrinsic representations, 49
invariant image, see shadow removal
irradiance, 48
isotropic, 166
iterative closest points, 190
iteratively reweighted least squares,

197

Jacobian, 82

kernel, 88, see convolution
kernel block, 102

labelled data, 72
Lambert’s cosine law, 23
lambertian+specular model, 23
Laplacian, see estimating scale with

Laplacian of Gaussian
layers, 79
learning curve, 79
learning curves, 78
learning rate, 77
learning rate schedule, 78
lightness, see color spaces, 50
lightness computation, 50

algorithm, 52
assumptions and model, 51
constant of integration, 52

lightness constancy, 50
line at infinity, 155
line search, 76
linear, 252
linear color space, 41
linear systems, shift invariant

convolution like a dot product,
140, 142, 143

filters respond strongly to
signals they look like, 139

impulse response, 256
point spread function, 257
properties, 252

scaling, 252
superposition, 252

response given by convolution,
254

1D derivation, 254
2D derivation, 256
discrete 1D derivation, 252
discrete 2D derivation, 254

loadings, 243
local shading model, 24
localize, 174
log-loss, 74
logistic regression, 73
luminaires, 21

magenta, see color spaces
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magnitude spectrum, see Fourier
transform

mask, 88
max pooling, 107
maximum likelihood, 188
Mie scattering, see color sources
Mondrian world, 51
Mondrian worlds, 65
Monge patch, 52
Munsell chips, 69

neurons, 81
noise

additive stationary Gaussian
noise, 90, 91

choice of smoothing filter
effect of scale, 98

smoothing to improve finite
difference estimates, 95, 97

non-square pixels, 132, 162
normalized correlation, 143
Nyquist’s theorem, 136

one hot, 74
opponent color space, see color

spaces
orientation, 99
orientations, 98

differ for different textures, 99
orthographic camera matrix, 160
orthographic projection, 18
outliers, 194, 195

padding, 100
PCA, 243
penumbra, 25
perceptron, 81
Perspective, 17
perspective camera matrix, 159
perspective projection, 15
phase spectrum, see Fourier

transform
Photometric stereo, 53
photometric stereo

depth from normals, 56
formulation, 55
integrability, 51, 56

normal and albedo in one
vector, 54

recovering albedo, 55
recovering normals, 56

pincushion distortion, 20
pinhole

camera, 14
pinhole camera, 14
PIPH, 200
plane at infinity, 155
point clouds, 184
point spread function, see

convolution
pooling, 106
pose, 166, 184
posterior distribution, 73
primaries, see color perception
principal components, 243
principal components analysis, 243
principle of univariance, see color

perception
projection model

pinhole perspective
planar, 14

projective 3-space, 155
projective 3D space, 155
Projective geometry, 154
projective line, 154
projective plane, 155
projective space, 155
projective transformation, 189
properties

linear systems, shift invariant
shift invariant, 252

Pseudo Huber loss, 196

radial distortion model, 171
radiance, 48
radiometric calibration, 48
RANSAC, see robustness
Rayleigh scattering, see color sources
receptive field, 106
reciprocity, 48
reflectance, see albedo

color, physical terminology, 39
registration, 184
regularized training loss, 75
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regularizer, 75
relief, 18
ReLU, 81
ReLU layer, 81
residual function, 110
residual layer, 110
RGB color space, see color spaces
RGB cube, see color spaces
ringing, see convolution
robust loss, 195
robustness

RANSAC, 212
how many points need to
agree?, 214

how many tries?, 212
how near should it be?, 214
searching for good data, 212

running means, 110

sampling, 131
aliasing, 133, 134, 136–141
formal model, 132, 133
Fourier transform of sampled

signal, 136
illustration, 135
non-square pixels, 132
Nyquist’s theorem, 136
poorly causes loss of

information, 134
saturation, see color spaces
scale, see smoothing, 144, 196

anisotropic diffusion or edge
preserving smoothing, 148

applications, 145
coarse scale, 145
effects of choice of scale, 98

scaled orthograpic projection, 18
scaling, see linear systems, shift

invariant
scores, 243
shading, 21
shadow, 23
shadow removal, 62

color temperature direction, 63
estimating color temperature

direction, 64
examples, 64

general procedure, 62
invariant image, 64

shadows
area sources, 25
penumbra, 25
umbra, 25

shift invariant linear system, see
linear systems, shift
invariant

SIFT descriptor, 179
sigmoid layer, 81
skew, 162, 163
skylight, see color sources
smooth, 250
smoothing, 91

as high pass filtering, 136, 138,
140, 141

Gaussian kernel, 92
discrete approximation, 93

Gaussian smoothing, 92, 93
avoids ringing, 92
discrete kernel, 93
effects of scale, 92, 98
standard deviation, 92
suppresses independent
stationary additive noise,
94

scale, 96
to reduce aliasing, 136, 138, 140,

141
softmax, 74
softmax layer, 80
sources

source colors, 59, 60
spatial frequency

see Fourier transform, 128
spatial frequency components, 129
spectral albedo, see albedo

color, physical terminology, 39
spectral colors, 32
spectral energy density, see color,

physical terminology
spectral locus, 44
spectral reflectance, see albedo

color, physical terminology, 39
specular

dielectric surfaces, 62
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metal surfaces, 62
specular albedo, 22
specular direction, 21
specular reflection, 21
specularity, 22
standard deviation, see smoothing
step size, 77
steplength, 77
steplength schedule, 78
Stochastic gradient descent, 77
stratified sample, 193
stride, 100
subtractive color mixing, 44
subtractive matching, see color

perception
superposition, see linear systems,

shift invariant
surface color, see color perception
symmetric Gaussian kernel, see

smoothing

system, see linear systems, shift
invariant

tangential distortion, 171
tanh layer, 81
template matching

filters as templates, 139
test set, 73
trace, 232
trichromacy, see color perception

umbra, 25
unit, 81

value, see color spaces
vanishing point, 16
vignetting, 20

weights, 81

yellow, see color spaces
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Index: Procedures

Calibrating a Camera from Multiple
Homographies, 210

Calibrating a Camera from Multiple
Homographies: Start Point,
210

Calibrating a Camera using 3D
Reference Points, 169

Calibrating a Camera using 3D
Reference Points: Start
Point, 170

Estimating a Homography from
Data, 189

Estimating a Projective
Transformation from Data,
190

Estimating a Transformation from
Data with a Robust Loss:
Initialization, 199

Estimating a Transformation from
Data with a Robust Loss:
Iteration, 198

Evaluating a classifier for unknown
regularization constant λ,
76

Obtaining some principal
components with NIPALS,
248

PIPH Calibration: Initialization, 203
PIPH Calibration: Optimization,

203
PIPH Calibration: Overview, 203
PIPH Motion Estimation, 205
PIPH Pattern Estimation, 206
Principal Components Analysis, 244

RQ Factorization, 233

Simple image whitening, 119

Weighted Least Squares for
Euclidean Transformations,
187
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Index: Remember This

Cameras: A general perspective
camera, 162

Cameras: A Line from Points, 157,
158

Cameras: Focal Point Constrains
Extrinsics, 168

Cameras: Focal point of general
camera, 168

Cameras: Homogeneous coordinates,
154

Cameras: Lines on the Projective
Plane, 156

Cameras: Models of lens distortions,
172

Cameras: Orthographic Camera
Matrix, 160

Cameras: Perspective Camera
Matrix, 159

Cameras: perspective effects, 18
Cameras: pinhole model, 15
Cameras: Planes in Projective 3D,

157, 158
Cameras: Projective spaces, 156
Cameras: scaled orthographic

projection, 18
Classification: Cross entropy loss, 75
Classification: Train on train, test on

test and do not mix them,
73

Classifier: train linear SVM’s with
stochastic gradient descent,
78

Correlation from covariance, 236

Image classification: 1× 1
convolution=linear map,
105

Image classification: convolutional
layer + ReLU=Pattern
detector, 104

Image classification: pattern
detector responses are
usually sparse, 104

Image classification: there are two
common meanings of
“convolutional layer”, 104

Matrices: A general perspective
camera, 233

Matrices: Trace, 232

Neural: backpropagation yields
gradients, 83

Neural: dropout can be useful, 84
Neural: gradient tricks can help, 115
Neural: making fully connected

layers with convolutional
layers, 103

Neural: use a software environment,
85

PCA: a few principal components
can represent a high-D
dataset, 243

PCA: PCA can significantly reduce
noise, 250

Regularization, 75
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Index: Notation

s(u): Softmax, 74
Jf ;x: Jacobian, 82

I[f(x)=y](x, y): Indicator function, 72
Ep[f ]: Expectation, 73
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Index: Resources

Interest Points, 182 Iterated Closest Points, 194
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Index: TODO

Brief description of bicubic
interpolation somewhere,
180

Curse of dimension, 235

Do this with a 101 layer resnet? and
rebore, 115

Figure showing a bunch of robust
loss functions, 196

fourpoint homography, 188

homography exercise, 187

ICP Resources, 194

LED lights, 38

Notation for data blocks; also, work
in batches, 102

Other kinds of normalization, 119

PCA, 235

rotations commute with scales, 232

Simple multidimensional scaling, 235
Source, Credit, Permission, 180, 181,

183, 192, 193, 196
Source, Credit, Permission:

SIFTPIC, 179

transformer based detection, 125
TSNE, 235

We have a logistic regression on a
feature stack, 106

what do c and d show?, 193
What is best? likely translation from

cogs, affine / euclidean
from second moments, but
how do you compute second
moments robustly?, 199

what is this loss called, 196
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